头像

Senmiao Xu

Related to the teacher

About

  • Department: School of Chemistry and Molecular Engineering
  • Gender: male
  • Post:
  • Graduate School: Shanghai Institute of Organic Chemistry
  • Degree: PhD
  • Academic Credentials:
  • Tel:
  • Email: smxu@chem.ecnu.edu.cn
  • Office:
  • Address: No. 500 Dongchuan Rd.
  • PostCode: 200241
  • Fax:

Education

2013.09-2015.02    Boston College, Postdoc (Mentor: Prof. Shih-Yuan Liu) 

2010.10-2013.09    University of Oregon, Postdoc (Mentor: Prof. Shih-Yuan Liu)  

2009.09-2010.09    Kyoto University, Postdoc (Mentor: Prof. Keiji Maruoka)

2004.09-2009.07    Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Ph. D. (Mentor: Prof. Kuiling Ding) 

2000.09-2004.07    Zhejiang University, BSc 



WorkExperience

2025.02-present     School of Chemistry and Molecular Engineering, East China Normal University, Professor

2015.03-2025.01    Lanzhou Insititute of Chemical Physics, Chinese Academy of Sciences,  Professor


Resume

Senmiao obtained his Bachelor's degree from Zhejiang University in July 2004 and earned his Ph.D. under the supervision of Professor Kuiling Ding at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences in July 2009. Subsequently, he conducted postdoctoral research with Professor Keiji Maruoka at Kyoto University, Japan (September 2009-September 2010), followed by positions with Professor Shih-Yuan Liu at the University of Oregon, USA (October 2010-September 2013) and Boston College, USA (September 2013-February 2015). From March 2015 to January 2025, he served as a professor at the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. In February 2025, Senmiao joined the School of Chemistry and Molecular Engineering at East China Normal University as a Professor.


Other Appointments

Research Fields

Transition metal catalysis has profoundly transformed synthetic chemistry over the past decades and will continue to enable sustainable and atom- and step-economical chemical transformations. Although significant progress has been made in this field, substantial challenges remain in achieving chemoselective, regioselective, and stereoselective functionalization of unactivated hydrocarbons. To address these challenges, our group will develop novel strategies based on new ligand designs to achieve efficient and selective borylation of hydrocarbons. The research program will focus on four main components:

1. Design and synthesis of novel chiral ligands;

2. Ligand-enabled chemoselective, regioselective, and stereoselective functionalization of unactivated alkenes;

3. Ligand-promoted chemoselective, regioselective, and stereoselective C-H bond functionalization;

4. Applications of new synthetic methodologies in interdisciplinary fields.


Enrollment and Training

Course

Scientific

Academic Achievements

Independent Research:

55. Gao, Q.; Li, Y.; Chen, L.; Xie, L.-J.; Shao, X.; Ke, Z.*; Xu, S.* Enantioselective α-C(sp3)-H Borylation of Masked Primary Alcohols Enabled by Iridium Catalysis.  J. Am. Chem. Soc. 2025, 147, 88-95.





54. He, M.; Xie, L.-J.; Chen, L.; Xu, S.* Diastereodivergent Parallel Kinetic Resolution of Racemic 2-Substituted Pyrrolidines via Iridium-Catalyzed C(sp3)–H Borylation. ACS Catal. 2024, 14, 18701-18707.



53. Wang, B.-L.; Zhao, H.; Wang, X.-W.*; Xu, S.* Merging Ring-Opening 1,2-Metallate Shift with Asymmetric C(sp3)-H Borylation of Aziridines. J. Am. Chem. Soc. 2024, 146, 18879-18885.




52. Xie, L.; Chen, L.*; Xu, S.* Benzothiazole-Directed Enantioselective Borylation of Secondary Benzylic C-H Bonds Using Iridium Catalysis. Synthesis 2024, 56, 2638-2647. [Invited paper]




51. Du, R.; Xu, S.* Enantio-Divergent C-H Borylation with Two Different Ligands from a Single Chiral Source. Sci. China Chem. 2025, 68, 226-232.




50. Yang, Y.; Chen. J.; Shi, Y.; Feng, Y.; Peng, Q.;* Xu, S.* Catalytic Enantioselective Primary C–H Borylation for Acyclic All-carbon Quaternary Stereocenters. J. Am. Chem. Soc. 2024, 146, 1635-1643.

49. Zhao, H.; Zhao, C.-Y.; Chen, L.; Xia, C.;* Hong, X.;* Xu, S.* Aryl Chloride-Directed Enantioselective C(sp2)-H Borylation Enabled by Iridium Catalysis. J. Am. Chem. Soc. 2023, 145, 25214-25221.

  




48. Xu, S.* Palladium-Catalyzed Enantioselective Isodesmic C-H Iodination. Chin. J. Org. Chem. 2023, 43, 3325-3327. [Invited Highlight]



47. Chen, L.; Xu, S.* Ligand-Enabled Regio- and/or Stereoselective Hydroboration of Alkenes. Synlett 2023, 34, 2103-2108. [Inivited Review for Special Issue on Modern Boron Chemistry: 60 years of the Matteson Reaction]




46. Jing, K.; Chen, L.; Zhang, P.;* Xu, S.* Iridium-Catalyzed Site- and Enantioselective C(sp2)-H Borylation of Benzhydryl Ethers: Enantioselectivity Amplification by Kinetic Resolution Relay. Chin. J. Chem. 2023, 41, 2119-2124.




45. Xiao, X.; Xu, K.; Gao, Z.-H.; Zhu, Z.-H.; Ye, C.; Zhao, B.;* Luo, S.;* Ye, S.;* Zhou, Y.-G.;* Xu, S.;* Zhu, S.-F.;* Bao, H.;* Sun, W.;* Wang, X.;* Ding, K.* Biomimetic Asymmetric Catalysis. Sci. China Chem. 2023, 66, 1553-1633.





44. Jing, K.; Zhang, P.;* Xu, S.* Applications of 1,4-Azaborines in Organo- and Transition Metal Catalysis. Chin. J. Org. Chem. 2023, 43, 1742-1750. [Inivited Review for the Special Issue of Boron Chemistry]




43. Xie, T.; Chen, L.; Shen, Z.;* Xu, S.* Simple Ether-Directed Enantioselective C(sp3)-H Borylation of Cyclopropanes Enabled by Iridium Catalysis. Angew. Chem. Int. Ed. 2023, 62, e202300199.






42. Zhao, H.; Chen, L.; Xia, C.;* Xu, S.* Enantioselective C-H Borylation for the Synthesis of Axially Chiral N-Aryl phthalimides. Asian J. Org. Chem. 2023, e202200695. [Invited Paper][VIP paper]







41. Gao, Q.; Xu, S.* Site- and Stereoselective C(sp3)-H Borylation of Strained (Hetero)Cycloalkanols Enabled by Iridium Catalysis. Angew. Chem. Int. Ed. 2023, 62, e202218025. [Hot Paper]







40. Song, S.; Zhou, X.; Ke, Z.;* Xu, S.* Synthesis of Chiral Sulfoximines via Iridium-Catalyzed Regio-and Enantioselective C-H Borylation: A Remarkable Sidearm Effect of Ligand. Angew. Chem. Int. Ed. 2023, 62, e202217130.  [Hot Paper]









39. Song, S.; Xu, S.* Recent Progress in Selective C-F Bond Activation of Trifluoromethyl Alkenes. Chin. J. Org. Chem. 2023, 43, 411-425. [invited review]







38. Shi, Y.; Yang, Y.; Xu, S.* Iridium-Catalyzed Enantioselective C(sp3)-H Borylation of Aminocyclopropanes. Angew. Chem. Int. Ed. 2022, 61, e202201463. [Hot Paper]







37. Zou, X.; Li, Y.; Ke, Z.*; Xu, S.* Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Enantioselective Dual C-H Borylation of Ferrocenes: Reaction Development and Mechanistic Insights. ACS Catal. 2022, 12, 1830-1840.







36. Liu, W.; Shen, Z.*; Xu, S.* Synthesis of 1,1-Diboron Alkanes via Diborylation of Unactivated Primary C(sp3)-H Bonds Enabled by AsPh3/Iridium Catalysis. Chin. J. Org. Chem. 2022, 42, 1101-1110.






35. Song, S.; Li, Y.; Ke, Z.;* Xu, S.* Iridium-Catalyzed Enantioselective C-H Borylation of Diarylphosphinates. ACS Catal. 2021, 11, 13445-13451.






34. Zou, X.; Xu, S.* Recent Progress in Iridium-Catalyzed Remote Regioselective C-H Borylation of (Hetero)Arenes. Chin. J. Org. Chem. 2021, 41, 2610-2620. [invited review]







33. Yang, Y.; Xu, S.* A Versatile Enantioselective Catalytic Cyclopropanation-Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals.  Chin. J. Org. Chem. 2020, 40, 4380-4381. [Invited Highlight] 




32. Pan, Z.; Liu, L.; Xu, S.*; Shen, Z.* Ligand-Free Iridium-Catalyzed Regioselective C-H Borylation of Indoles. RSC Adv. 2021, 11,  5487-5490






31. Liu, L.; Du, R.; Xu, S.*  Ligand-free Iridium-Catalyzed Borylation of Secondary Benzylic C-H Bonds. Chin. J. Org. Chem.  2021, 41, 1572-1581. 







  30. Du, R.; Liu, L.; Xu, S.* Iridium-Catalyzed Regio- and Enantioselective Borylation of Unbiased Methylene C(sp3)-H Bonds at the Position Beta to a Nitrogen Center. Angew. Chem. Int. Ed. 2021, 60, 5843-5847.






29. Yang, Y.; Chen, L.Xu, S.* Iridium-Catalyzed Enantioselective Unbiased Methylene C(sp3)-H Borylation of Acyclic Amides. Angew. Chem. Int. Ed. 2021, 60, 3524-3528.[Hot Paper]





28. Chen, L.; Yang, Y.; Liu, L.; Gao, Q.; Xu, S.* Iridium-Catalyzed Enantioselective α-C(sp3)-H Borylation of Azacycles. J. Am. Chem. Soc. 2020, 14212062-12068.      






27. Chen, X.; Chen, L.; Zhao, H.; Gao, Q.; Shen, Z.; Xu, S. Iridium-Catalyzed Enantioselective C(sp3)-H Borylation of Cyclobutanes. Chin. J. Chem. 2020,  38, 1533-1537. 







26. Zhao, H.; Gao Q.; Zhang, Y.; Zhang, P; Xu. S. Iridium-Catalyzed γ-Selective Hydroboration of γ-Substituted Allylic Amides. Org. Lett. 2020, 22, 2861-2866.






25. Shen, J.-J.; Gao Q.; Wang G.; Tong, M.; Chen L.;  Xu. S. Cu‐NHC‐Catalyzed Enantioselective Conjugate Silyl addition to Indol‐1‐ylacrylate Derivatives. ChemistySelect 2019, 4, 11358-11361. 







24. Shi, Y.; Gao, Q., Xu, S. Iridium-Catalyzed Asymmetric C-H Borylation Enabled by Chiral Bidentate Boryl Ligands. Synlett 2019, 30, 2107-2112.





23. Shi, Y.; Gao, Q., Xu, S. Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Enantioselective C(sp3)-H Borylation of Cyclopropanes. J. Am. Chem. Soc. 2019, 141, 10599-10604.





22. Wang, G.; Liang, X.; Chen, L.; Gao, Q.; Wang, J.-G.; Zhang, P.; Peng, Q.; Xu, S. Iridium-Catalyzed Distal Hydroboration of Aliphatic Internal Alkenes. Angew. Chem., Int. Ed. 2019, 58, 8187-8191.




      

                             

21. Zhang, Y.; Tong, M.; Gao, Q.; Zhang, P.; Xu, S. NHC-Copper-Catalyzed Asymmetric Conjugate Silylation to Acess of Chiral α-Aminosilanes. Tetrahedron Lett. 2019, 60, 1210-1212. 







20. Zou, X.; Zhao, H.; Li, Y.; Gao, Q.; Ke, Z.; Xu, S. Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Asymmetric C(sp2)-H Borylation of Diarylmethylamines. J. Am. Chem. Soc. 2019, 141, 5334-5342.








19. Yang, Y.; Gao, Q.; Xu, S. Ligand-Free Iridium-Catalyzed Dehydrogenative ortho C−H Borylation of Benzyl-2-Pyridines at Room Temperature. Adv. Synth. Catal. 2019, 361, 858-862.






18. Shi, Y.; Gao, Q.; Xu, S. NHC-Copper-Catalyzed Asymmetric Dearomative Silylation of Indoles. J. Org. Chem. 2018, 83, 14758-14767.







17.  Chen, L.; Shen, J.-J.; Gao, Q.; Xu, S. Synthesis of cyclic chiral α-amino boronates by copper-catalyzed asymmetric dearomative borylation of indoles. Chem. Sci. 2018, 9, 5855-5859.







16. Gao, Q.; Xu, S. Palladium-catalyzed synthesis of fluoreones from bis(2-bromophenyl)methanols. Org. Biomol. Chem. 2018, 16 , 208-212.







15. Chen, L.; Zou, X.; Zhao, H.; Xu, S. Copper-Catalyzed Asymmetric Protoboration of β-Amidoacrylonitriles and β-Amidoacrylate Esters: An Efficient Approach to Functionalized Chiralα-Amino Boronate Esters. Org. Lett. 2017, 19, 3676-3679.




14. Zhao, H.; Tong, M.; Wang, H.; Xu, S. Transition-metal-free synthesis of 1,1-diboronate esters with a fully substituted benzylic center via diborylation of lithiated carbamates. Org. Biomol. Chem. 2017, 15, 3418-3422.




Previous Publications:



13. Zhang, Y.; Wang, Z.; Wu,Lamine, W.; Xu, S.; Li, B.; Chrostowska, A.; Miqueu, K.; Liu, S.-Y. "Mechanism of Pd/Senphos-Catalyzed trans-Hydroboration of 1,3-Enynes: Experimental and Computational Evidence in Support of the Unusual Outer-Sphere Oxidative Addition Pathway. J. Org. Chem. 2023, 88, 2415-2424. 

12. Xu, S.; Zhang, Y.; Li, B.; Liu, S.-Y. Site- and Stereo-selective trans-Hydroboration of 1,3-Enynes Catalyzed by 1,4-Azaborine-Based Phosphine-Pd Complex. J. Am. Chem. Soc. 2016, 138, 14566-14569.

11. Saif, M.; Widom, J. R.; Xu, S.; Abbey, E. R.; Liu, S.-Y.; Marcus, A. H. Electric Dipole Transition Moments and Solvent-Dependent Interactions of Fluorescent Boron-Nitrogen Substituted Indole Derivatives. J. Phys. Chem. B 2015, 119, 7985-7993.

10. Chrostowska, A.; Xu, S.; Maziere, A.; Boknevitz, K.; Li, B.; Abbey, E. R.; Dargelos, A.; Graciaa, A.; Liu, S.- Y. UV-Photoelectron Spectroscopy of BN Indoles: Experimental and Computational Electronic Structure Analysis. J. Am. Chem. Soc. 2014, 136, 11813-11820.

9. Xu, S.; Haeffner, F.; Li, B.; Zakharov, L. N.; Liu, S.-Y. Monobenzofused 1,4-Azaborines: Synthesis, Characterization, and Discovery of a Unique Coordination Mode. Angew. Chem. Int. Ed. 2014, 53, 6795-6799.

8. Xu, S.; Mikulas, T. C.; Zakharov, L. N.; Dixon, D. A.; Liu, S.-Y. Boron-Substituted 1,3-Dihydro-1,3-azaborines: Synthesis, Structure, and Evaluation of Aromaticity. Angew. Chem. Int. Ed. 2013, 52, 7527-7531. 

7. Chrostowska, A.; Xu, S.; Lamm, A. N.; Maziere, A.; Weber, C. D.; Dargelos, A.; Baylere, P.; Graciaa, A.; Liu, S.-Y. UV-Photoelectron Spectroscopy of 1,2- and 1,3-Azaborines: A Combined Experimental and Computational Electronic Structure Analysis. J. Am. Chem. Soc. 2012, 134, 10279-10285. 

6. Xu, S.; Zakharov, L. N.; Liu, S.-Y. A 1,3-Dihydro-1,3-azaborine Debuts. J. Am. Chem. Soc. 2011, 133, 20152-20155. 

5. Moteki, S. A.; Xu, S.; Arimitsu, S.; Maruoka, K. Design of Structurally Rigid trans-Diamine-Based Tf-Amide Organocatalysts with a Dihydroanthracene Framework for Asymmetric Conjugate Additions of Heterosubstituted Aldehydes to Vinyl Sulfones. J. Am. Chem. Soc. 2010, 132, 17074-17076.

4. Xu, S.; Wang, Z.; Zhang, X.; Ding, K. Charge-transfer effect on chiral phosphoric acid catalyzed asymmetric Baeyer-Villiger oxidation of 3-substituted cyclobutanones using 30% aqueous H2O2 as the oxidant. Chin. J. Chem. 2010, 28 , 1731-1735.

3. Xu, S.; Wang, Z.; Zhang, X.; Ding, K. Asymmetric Baeyer-Villiger Oxidation of 2,3- and 2,3,4-Substituted Cyclobutanones Catalyzed by Chiral Phosphoric Acids with Aqueous H2O2 as the Oxidant. Eur. J. Org. Chem. 2011,  10-116. 

2. Xu, S.; Wang, Z.; Li, Y.; Zhang, X.; Wang, H.; Ding, K. Mechanistic investigation of chiral phosphoric acid catalyzed asymmetric Baeyer-Villiger reaction of 3-substituted cyclobutanones with H2O2 as the oxidant. Chem. - Eur. J. 2010, 16 , 3021-3035. 

1. Xu, S.; Wang, Z.; Zhang, X.; Zhang, X.; Ding, K. Chiral Bronsted acid catalyzed asymmetric Baeyer-Villiger reaction of 3-substituted cyclobutanones by using aqueous H2O2. Angew. Chem., Int. Ed. 2008, 47, 2840-2843.




Honor

2008 3rd Roche Creative Chemistry Award

2020 Thieme Chemistry Journals Awards

2021 JSPS Inivitational Fellowships