头像

毛秀光

硕士生导师副研究员

生态与环境科学学院      

个人资料

  • 部门: 生态与环境科学学院
  • 毕业院校: 华东师范大学
  • 学位: 博士
  • 学历:
  • 邮编: 200241
  • 联系电话:
  • 传真:
  • 电子邮箱: xgmao@sklec.ecnu.edu.cn
  • 办公地址: 上海市闵行校区资环楼245
  • 通讯地址: 东川路500号

教育经历

教育背景

2007. 9 - 2010. 7:  华东师范大学分子生态学,博士

2004. 9 - 2007. 7:  中科院昆明动物研究所,细胞遗传学,硕士

1998. 9 - 2002. 7:  西北大学,学士

学习经历:

2010. 3 - 2010. 4:  Queen Mary University of London

2004. 9 - 2005. 7:中科院上海生科院生化与细胞研究所




工作经历

2020. 2 - 至今 :  华东师范大学生态与环境科学学院,副研究员

2014. 11 - 2020.1:  华东师范大学河口海岸科学研究院,副研究员

2012. 3 - 2014. 3:  Queen Mary University of London, 欧盟玛丽居里学者

2010. 7 - 2012. 6:  华东师范大学博士后


个人简介

社会兼职

Scientific Data  编委

Discover Animals  编委




研究方向

蝙蝠多样性与进化课题组

研究领域:动物分子生态学、保护生物学、进化基因组学、生态基因组学。  

主要研究问题:

  1)适应性表型(如:回声定位和冬眠)产生和变异的遗传基础。

  2)系统发育与物种形成。

  3)染色体进化与基因组进化。

  4)蝙蝠、体表寄生虫及病毒间共进化的遗传机制

欢迎对动物生态学、进化生物学、基因组学感兴趣的同学加盟我们课题组(email:xgmao@sklec.ecnu.edu.cn)。


课题组成员

硕士研究生:

2023级:谢津津

2023级:段璨

2023级:胡道原(联合培养)

2024级:张海心

2025级:林晓慧

2025级:洪喜红


已毕业硕士研究生

2013级:石慧珍 (联合培养,2015年国家奖学金)

2014级:吴昊楠

2015级:邢宇彤

2017级:王嘉颖

2018级:丁玉婷 (上海市优秀毕业生)

2019级:陈文丽 (2021年国家奖学金,上海市优秀毕业生)

2020级:李倩倩 (2022年国家奖学金,上海市优秀毕业生,华师大优秀硕士论文)

2020级:周维维 (联合培养,华师大优秀硕士论文)

2021级:兰淋靖 (华师大优秀硕士论文,赴英国爱丁堡大学攻读博士学位)

2022级:张欣  (2024年国家奖学金,华师大地学部优秀硕士论文)

2022级:吴建宇 (2024年国家奖学金

2022级:杨善琇 



招生与培养

开授课程

进化生物学(硕士研究生)

生态学研究进展(硕士研究生,参与)


科研项目

主持项目:


5)2020. 7 - 2023. 6  上海市自然科学基金面上项目:基于染色体级别基因组和基因组重测序探讨染色体重排在皮氏菊头蝠类群物种形成中的作用。

4)2020. 6 - 2023. 5  遗传资源与进化国家重点实验室开放课题:基于基因组重测序研究渐渗杂交在菊头蝠属物种快速演化中的作用。

3)2016. 1 - 2019. 12  国家自然科学基金面上项目:基因流频繁发生下中菊头蝠类群间遗传分化与物种形成的基因组学研究。

2)2015. 7 - 2017. 6  上海市浦江人才计划:同域和邻域分布下近缘类群间基因流与物种形成研究。

1)2011. 3 - 2012. 6  中国博士后基金(第48批)面上项目(一等资助):皮氏菊头蝠类群物种生成研究


学术成果

发表期刊文章:*Corresponding author #Co-first author


2024

45) Lan LJ#, Zhang X#, Yang SX, Mao XG*, Dong J*. 2024. Chromosome-level genome assembly  

      of the king horseshoe bat (Rhinolophus rex) provides insights into its conservation status and 

     chromosomal evolution of Rhinolophus. Journal of Heredityesae077.

44) Zhao L#, Yuan JQ#, Wang GQ#, Jing HH, Huang C, Xu LL, Xu X, Sun T, Chen W, Mao XG*, Li G*.

       2024. Chromosome-level genome and population genomics of the intermediate horseshoe bat

        (Rhinolophus affinis) reveal the molecular basis of virus tolerance in Rhinolophus and echolocation

        call frequency variationZoological Research, 45, 1147-1160.

43) Wu JY, Duan C, Lan LJ, Chen WL, Mao XG*. 2024Sex differences in cochlear transcriptomes in 

       horseshoe bats. Animals, 14(8), 1177.

42) Liu ML#, Wang CL#, Huo LF#, Cao J#, Mao XG#, He ZQ#, Hu CX#, Sun HJ#Deng WJ, He WY, 

     Chen YF, Gu MF, Liao JY, Guo N, He XY, Wu Q, Chen JK, Zhang LB*, Wang XQ*, Shang CP*

     Dong J*. 2024. Complexin-1 enhances ultrasound neurotransmission in the mammalian auditory 

     pathway. Nature Genetics, 56, 1503-1515. 

41) Li QQ, Wu JYMao XG*. 2024The roles of different gene expression regulators in acoustic variation 

      in the intermediate horseshoe bat revealed by long-read and short-read RNA sequencing data. Current 

      Zoology, 70, 575-588.

2023

40) Lan LJ#, Zhang X#, Yang SX#, Li LJ*Mao XG*. 2023. Chromosome-level genome assembly of the 

      Stoliczka’s Asian trident bat (Aselliscus stoliczkanus)Scientific Data, 10, 902.

39) Zhou WW, Furey NM, Soisook P, Thong VD, Lim BK, Rossiter SJ*, Mao XG*. 2023. Diversification 

      and introgression in four chromosomal taxa of the Pearson's horseshoe bat (Rhinolophus pearsoni

      group. Molecular Phylogenetics and Evolution, 183, 107784.

38) Chen WL, Zhou WW, Li QQ, Mao XG*. 2023. Sex differences in gene expression and alternative 

      splicing in the Chinese horseshoe bat. PeerJ11, e15231.

2022

37) Li QQ, Chen WL, Mao XG*. 2022. Characterization of microRNA and gene expression in the cochlea 

      of an echolocating bat (Rhinolophus affinis). Ecology and Evolution,12, e9025.

36) Chen WL, Mao XG*. 2022. Impacts of seasonality on gene expression in the Chinese horseshoe bat. 

      Ecology and Evolution,12, e8923.

2021

35) Chen WL, Mao XG*. 2021. Extensive alternative splicing triggered by mitonuclear mismatch in       

      naturally introgressed Rhinolophus bats. Ecology and Evolution11, 12003-12010.

34) Ding YT#, Chen WL#, Li QQ, Rossiter SJ, Mao XG*. 2021. Mitonuclear mismatch alters 

      nuclear gene  expression in  naturally introgressed Rhinolophus bats. Frontiers in Zoology18, 42.

33) Ding YT, Chen WL*Mao XG. 2021.The complete mitochondrial genome of Rhinolophus affinis   

     himalayanusMitochondrial DNA Part B, 6 (1), 164-165.

2020

32) Ma L, Sun HJ, Mao XG*. 2020. Transcriptome sequencing of cochleae from constant-frequency and frequency-modulated echolocating bats. Scientific Data,7341.

31) Sun HJ, Chen WL, Wang JY, Zhang LB, Rossiter SJ*, Mao XG*. 2020. Echolocation call frequency variation in horseshoe bats: molecular basis revealed by comparative transcriptomics. Proceedings of The Royal Society B-Biological Sciences,28720200875.

30) Sun HJ, Wang JY, Xing YT, Pan Yi-HsuanMao XG*. 2020. Gut transcriptomic changes during hibernation in the greater horseshoe bat (Rhinolophus ferrumequinum). Frontiers in Zoology, 17, 21.

29) Mao XG*, Rossiter SJ. 2020. Genome-wide data reveal discordant mitonuclear introgression in the intermediate horseshoe bat (Rhinolophus affinis). Molecular Phylogenetics and Evolution, 150, 106886.

2019

28) Mao XG*, Tsagkogeorga G, Thong VD, Rossiter SJ*. 2019. Resolving evolutionary relationships among six closely related taxa of the horseshoe bats (Rhinolophus) with targeted resequencing data. Molecular Phylogenetics and Evolution, 139, 106551.

27Wu HN, Xing YT, Sun HJ, Mao XG*. 2019. Gut microbial diversity in two insectivorous bats: Insights into the effect of different sampling sources. MicrobiologyOpen, 8(4), e00670.

2018

26) Thong VD*Mao XG, Csorba, G., Bates, P., Ruedi, M., Viet, N. V., ... & Son, N. T. 2018. First records of Myotis altarium (Chiroptera: Vespertilionidae) from India and Vietnam. Mammal Study, 43, 67-73.

2017

25) Shi HZ#, Xing YT#, Mao XG*. 2017. The little brown bat nuclear genome contains an entire mitochondrial genome: real or artifact? Gene, 629, 64-67.

24) Mao XG*, Tsagkogeorga G, Bailey SB, Rossiter SJ*. 2017. Genomics of introgression in the Chinese horseshoe bat (Rhinolophus sinicus) revealed by transcriptome sequencing. Biological Journal of Linnean Society, 121, 698-710.

2016

23) Xing YT, Mao XG*. 2016. The complete mitochondrial genome of the Thomas’s horseshoe bat (Rhinolophus thomasi) using next-generation sequencing and Sanger sequencing. Mitochondrial DNA Part B, 1, 964-965.

22) Shi HZ#,Dong J#, Irwin DM, Zhang SY*, Mao XG*. 2016. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera). Gene, 581, 161-169.

21) Shi HZ, Zhang SY, Mao XG*. 2016. The complete mitochondrial genome of the king horseshoe bat (Rhinolophus rex) using next-generation sequencing and Sanger sequencing. Mitochondrial DNA Part A, 27, 4545-4546

20) Shi HZ, Ren M, Zhang SY, Mao XG*. 2016. A complete mitochondrial genome of the Damaraland mole rat Fukomys damarensis retrieved from the published genome of the Brandt's bat Myotis brandtii. Mitochondrial DNAPart A, 27, 4282-4283.

19) Mao XG*, Zhang SY, Rossiter SJ. 2016. Differential introgression suggests candidate beneficial and barrier loci between two parapatric subspecies of Pearson′s horseshoe bat (Rhinolophus pearsoni). Current Zoology, 62, 405-412.

18) Bailey SB*Mao XG, Struebig M, Tsagkogeorga G, Csorba G, Heaney LR, Sedlock J, Stanley W, Rouillard J, Rossiter SJ. 2016. The use of museum samples for large‐scale sequence capture: a study of congeneric horseshoe bats (family Rhinolophidae). Biological Journal of Linnean Society, 117, 58-70.

Before 2015

17) Dong J#Mao XG#, Sun HJ, Irwin DM, Zhang SY, Hua PY*. 2014. Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus). Genetica, 142, 483-494.

16) Mao XG, Zhu GJ, Zhang JP, Zhang SY, Rossiter SJ*. 2014. Differential introgression among loci across a hybrid zone of the intermediate horseshoe bat (Rhinolophus affinis). BMC Evolutionary Biology, 14, 154.

15) Mao XG#, Dong J#, Hua PY, He GM, Zhang SY, Rossiter SJ*. 2014. Heteroplasmy and ancient translocation of mitochondrial DNA to the nucleus in the Chinese Rufous horseshoe bat (Rhinolophus sinicus) complex. PLoS ONE, 9, e98035.

14) Mao XG, He GM, Hua PY, Jones G, Zhang SY, Rossiter SJ*. 2013. Historical introgression and the persistence of alleles in the intermediate horseshoe bat (Rhinolophus affinis). Molecular Ecology, 22, 1035-1050.

13) Mao XG, He GM, Zhang JP, Rossiter SJ*, Zhang SY*. 2013. Lineage divergence and historical gene flow in the Chinese horseshoe bat (Rhinolophus sinicus). PLoS ONE, 8, e56786.

12) Mao XG, Thong VD, Bates PJJ, Jones G, Zhang SY, Rossiter SJ*. 2013. Multiple cases of asymmetric introgression among horseshoe bats detected by phylogenetic conflicts across loci. Biological Journal of Linnean Society, 110, 346-361.

11) Mao XG, Zhang JP, Zhang SY, Rossiter SJ*. 2010. Historical male-mediated introgression in horseshoe bats revealed by multi-locus DNA sequence data. Molecular Ecology, 19, 1352-1366.

10) Mao XG, Zhu GJ, Zhang SY, Rossiter SJ*. 2010. Pleistocene climatic cycling drives intra-specific diversification in the intermediate horseshoe bat (Rhinolophus affinis) in Southern China. Molecular Ecology, 19, 2754-2769.

9) Mao XG, Wang JH, Su WT, Wang YX, Yang FT, Nie WH*. 2010. Karyotypic evolution in family Hipposideridae (Chiroptera, Mammalia) revealed by comparative chromosome painting, G- and C-banding. Zoological Research, 31, 453-460.

8) 张礼标*,巩艳艳,朱光剑,洪体玉,赵旭东,毛秀光. 2010. 中国翼手目新记录—马来假吸血蝠

     动物学研究, 31, 336-340.

7) Mao XG, Yang L, Yingying Z, Beibei H and Shuyi Z*. 2009. Development of 19 polymorphic microsatellite loci for the intermediate horseshoe bat, Rhinolophus affinis (Rhinolophidae, Chiroptera). Conservation Genetics, 10, 709-711. 

6) Mao XG, Nie WH, Wang JH, Su WT, Feng Q, Wang YX, Dobigny G*, Yang FT*. 2008. Comparative cytogenetics of bats (Chiroptera): the prevalence of Robertsonian translocations limits the power of chromosomal characters in resolving interfamily phylogenetic relationships. Chromosome Research, 16, 155-170.

5) Mao XG, Nie WH, Wang JH, Su WT, Ao L, Feng Q, Wang YX, Volleth M, Yang FT*. 2007.  Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-banding. Chromosome Research, 15, 835-848.

4) 毛秀光,王金焕,苏伟婷,张礼标,赵旭东,韦力,佴文惠,杨凤堂*. 2007. 中国4种蝙蝠的G-带和C-带. 动物学杂志, 42, 33-40.

3) Ao L, Mao XG, Nie WH, Gu XM, Feng Q, Wang JH, Su WT, Wang YX, Volleth M, Yang FT*. 2007. Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting. Chromosome Research, 15, 257-267. 

2) Ao L, Gu XM, Feng Q, Wang JH, O'Brien PC, Fu B, Mao XG, Su WT, Wang YX, Volleth M, Yang FT*, Nie WH*. 2006. Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G-banding comparison.Cytogenetic Genome Research, 115, 145-153. 

1) 王峰,李稳宏,李多伟,毛秀光,高丽雅. 2003. 银杏外种皮中活性成分的分离与鉴定. 西北大学学报, 33, 689-692.




荣誉及奖励

10 访问

相关教师