头像

孙政

研究员、博士生导师

精密光谱科学与技术国家重点实验室      

个人资料

  • 部门: 精密光谱科学与技术国家重点实验室
  • 毕业院校: 纽约市立大学
  • 学位: 理学博士
  • 学历: 博士
  • 邮编: 200241
  • 联系电话:
  • 传真:
  • 电子邮箱: zsun@lps.ecnu.edu.cn
  • 办公地址: 光学大楼A307
  • 通讯地址: 上海市闵行区东川路500号

教育经历

2012.08--2017.09纽约市立大学理学博士
2008.08--2012.01复旦大学理学硕士
2004.09--2008.06浙江师范大学理学学士

工作经历

2020.12--至今华东师范大学研究员
2017.11--2020.10匹兹堡大学博士后

个人简介

孙政博士毕业于纽约市立大学研究生院。2017年至2020年在匹兹堡大学从事博士后工作。长期致力于低维半导体材料的腔量子电动力学研究。在探索微观尺度下光和物质相互作用,研制可调控材料光电特性的光子晶体器件及应用等方面取得一系列创新成果。近年来,以第一或通讯作者,在Nature Photonics; ACS Nano; Nano Letters; Light Science & Applications等国际权威期刊上发表学术论文30余篇。曾入选国家优秀青年基金(海外)上海市海外高层次人才引进计划和上海市浦江人才计划。主持参与科技创新2030重大项目、科技部重点研发专项、基金委面上项目、上海市“科技创新”行动计划基础研究项目、上海市科委项目和高校联合项目7项。

个人主页:http://sunzheng85.github.io/ZSUN/

招生信息:欢迎对宏观量子态调控及其光电器件应用方面感兴趣的本科生、研究生和具备物理、材料科学背景的博士后咨询报名吴健教授团队孙政研究员课题组。

社会兼职

《光子学报》青年编委; 并为以下杂志常约审稿人

Nature; Nature Photonics; Nature Nanotechnology; Nature Communications; ACS Nano; Nano Letters; Physical Review Letters; Physical Review X;  Optica; Light Science & Applications and so on.

研究方向

我们课题组主要兴趣之一是研究微腔中的光子与物质的相互作用。我们通过有限元模拟和传输矩阵算法, 设计不同种类的光学微腔,能够利用成熟的薄膜生长技术制备布拉格反射镜,并将增益介质囚禁在一对狭小的布拉格反射镜中。已知当光子和物质相互作用的速率大于它们各自弛豫的速率,系统会出现强耦合状态,形成新的物质态:激子极化激元(exciton-polariton)。而当达到一定阈值,系统可以经历玻色-爱因斯坦凝聚,这是一种宏观的具有自发相干的物质状态。通过微腔结构的特殊设计我们可以看到极化子凝聚体在毫米距离上的超流;我们还可以在不同的势阱中捕获极化子凝聚体,并可以看到凝聚体的相干性导致的干涉。我们研究的课题涉及几个基本问题。其中一个基本问题是相干性(退相干)是如何在例如激光和凝聚体等系统中自发发生,以及相干性如何在标准量子系统中弛豫(退相干)。这其实是与一个深层次的问题有关,为什么自然界中存在不可逆性,即时间轴的单向性。而另一个基本问题是如何在非平衡系统中发生相变。

我们课题组的另一个兴趣点是研究极化子凝聚体对电子输运的影响。这可能会产生一种光诱导超导体, 当极化子凝聚出现时,这种超导体会对传导产生显著影响。我们对新材料的特性研究同样感兴趣,例如利用过渡金属硫化物(TMDs)、钙钛矿(Perovskite),氧化锌(ZnO)等材料将极化子凝聚效应提升到室温等。

  • 什么是激子极化激元(exciton-polariton)


  • 什么是二维材料(2D Materials) 


  • Twistronics building moire supperlattice from 2D materials


课题组成员:

 陈星州 2021届 硕士生         张敏 2023届 博士生      范悦宁 2023届 博士生        管媛君 2023届 硕士生

 丁承烨 2023届 硕士生   王道成 2023届 本科生      孙迪 2024届 博士后

招生与培养

开授课程

科研项目

I Toward a room temperature Schafroth superconductor based on charged excitonic complexes

     In 1954, Schafroth proposed a mechanism for superconductivity that is physically possible, but ended up not being the explanation of the well-known BCS superconductors. The proposal argued correctly that a Bose condensate of charged bosons should also be a superconductor. In 1996, V.I. Yudson proposed a way to produce a charged boson by attaching two free charges to an exciton in a semiconductor, to make a quaternion. While that state was never seen in III-V semiconductors, our calculations show that it is predicted to be stable in structures made with monolayers of transition metal dichalcogenide (TMD) materials. We present experimental spectroscopic measurements that agree with this theory, which indicate that we have observed this charged-boson state in this type of structure. This opens up a new path for pursuing room temperature superconductivity. [Read More]

Zheng Sun* et.alNano Lett., 21(18), 7669-7675 (2021) 


II Photoluminescence switching in a two-dimensional atomic crystal

    Two-dimensional materials are an emerging class of new materials with a wide range of electrical and optical properties and potential applications. Single-layer structures of semiconducting transition metal dichalcogenides are gaining increasing attention for use in field-effect transistors. Here, we report a photoluminescence switching effect based on single-layer WSe2 transistors. Dual gates are used to tune the photoluminescence intensity. In particular, a side-gate is utilized to control the location of ions within a solid polymer electrolyte to form an electric double layer at the interface of electrolyte WSe2 and induce a vertical electric field. Additionally, a back-gate is used to apply a 2nd vertical electric field. An on-off ratio of the light emission up to 90 was observed under constant pump light intensity. In addition, a blue shift of the photoluminescence line up to 36 meV was observed. [Read More]

Zheng Sun* et.al ACS Nano, 15 (12), 19439-19445 (2021) 


III Observation of the Interlayer Exciton Gases in WSe2-p:WSe2 Heterostructures

     Interlayer excitons (IXs) possess a much longer lifetime than intralayer excitons due to the spatial separation of the electrons and holes; hence, they have been pursued to create exciton condensates for decades. The recent emergence of two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs), and of their van der Waals heterostructures (HSs), in which two different 2D materials are layered together, has created new opportunities to study IXs. Here we present the observation of IX gases within two stacked structures consisting of hBN/WSe2/hBN/p:WSe2/hBN. The IX energy of the two different structures differed by 82 meV due to the different thickness of the hBN spacer layer between the TMD layers. 

Zheng Sun* et.alACS Photonics7(7), 1622-1627 (2020) 


IV Polaritons 2D TMDs and Devices

     Two-dimensional atomic crystals of graphene, aswell as transtion-metal dichalcogenides, have emerged as a class of materals that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate is engineered to be faster than dissipation from the light and matter entities, one reaches the ‘strong coupling’ regime. This results in the formation of half-light, half-matter bosonic quasiparticles called microcavity polaritons.  Realizing strong coupling at room temperature in two-dimensional materials that offer a disorder-free potential landscape provides an attractive route for the development of practical polaritonic devices.

1. Zheng Sun, et al., Nat. Photonics, 11, 491-496 (2017)

2. Zheng Sun*, et al., [Invited], Nat. Photonics, [News and Views], 13, 370-371, (2019)

3. X. Liu, T. Galfsky, Z. Sun, et al., Nat. Photonics, 9, 30–34 (2015)

4. Biswanath Chakraborty, Jie Gu, Zheng Sun, et al., Nano Lett., 18 (10), 6455-6460 (2018)

5. Zheng Sun*, et al., Appl. Phys. Lett., 115, 161103 (2019) 

6. Zheng Sun*, et al., Solid State Communications, 288, 18-21 (2019) 


V Hyperbolic Metamaterials

     Light-matter interactions can be controlled by manipulating the photonic environment. An optical topological transition in strongly anisotropic metamaterials that results in a dramatic increase in the photon density of states—an effect that can be used to engineer this interaction. The increased rates of spontaneous emission of emitters positioned near the metamaterial could be modified by controlling the transition in the topology of the iso-frequency surface from a closed ellipsoid to an open hyperboloid using artificially nanostructured metamaterials. Altering the topology of the iso-frequency surface by using metamaterials provides a fundamentally new route to manipulating light-matter interactions.

1. T. Galfsky, Zheng Sun#, et al., Nano Lett., 16(8), 4940-4945 (2016) 

2.  T. Galfsky, Z. Sun, et al., Optical Materials Express, 5(12), 2878-2883 (2015)


VI Polariton GaAs Quantum Wells

     We present a study of the macroscopic dynamics of a polariton condensate formed by non-resonant optical excitation in a quasi-one-dimensional ring shaped microcavity. The presence of a gradient in the cavity photon energy creates a macroscopic trap for the polaritons in which a single mode condensate is formed. With time- and energy-resolved imaging we show the role of interactions in the motion of the condensate as it undergoes equilibration in the ring. These experiments also give a direct measurement of the polariton-polariton interaction strength above the condensation threshold. Our observations are compared to the open-dissipative one-dimensional Gross-Pitaevskii equation which shows excellent qualitative agreement.











1. S. Mukherjee, Z. Sun, et al., Phys. Rev. B, 100(24), 245304 (2019)

2. S. Mukherjee, Z. Sun, et al., Phys. Rev. B, 103(16), 165306 (2021)






学术成果

主要学术成果(Google Scholar)

* Corresponding author; # Co-first author)

Under Consideration

1. Yongsheng Hu, Danqun Mao, Linqi Chen, Yuanjun Guan, Zhe-Yu Shi, Long Zhang, Hongxing, Dong, Hongxing Xu, Wei Xie, Jian Wu, Zheng Sun*, “ Cavity-enhanced superfluorescence induced stimulated energy transfer in perovskite quantum dot supperlattice” (2024)

2. J. Beaumariage, Z. Sun, H. Alnatah, D. M. Myers, M. Steger, L. N. Pfeiffer, K. West, Z. Wasilewski and D. W. Snoke, “Measurement of exciton fraction of microcavity exciton-polaritons using transfer-matrix modeling” (2024)

3. Yuening Fan, Qiaochu Wan,  Qi Yao, Xingzhou Chen, Yuanjun Guan, Hassan Alnatah, Daniel Vaz, Jonathan Beaumariadge, Kenji Watanabe, Takashi Taniguchi, Jian Wu, Zheng Sun* and David Snoke, “High efficiency of exciton-polariton lasing in a 2D multi-layer structure” (2024)


2024

1. Danqun Mao, Linqi Chen, Zheng Sun*, Min Zhang, Zhe-yu Shi, Yongsheng, Hu, Long Zhang, Jian Wu, Hongxing Dong, Wei Xie, Hongxing Xu, “ Observation of transition from superfluorescence to polariton condensation in perovskite quantum dots” , Light Sci. & Appl., 13 (1), 34 (2024) 


2023

1. Xingzhou Chen, Hassan Alnatah, Danqun Mao, Mengyao Xu, Qiaochu Wan, Jonathan Beaumariage, Wei Xie, Hongxing Xu, Zhe-Yu Shi, David Snoke, Zheng Sun*, Jian Wu, “ Bose condensation of upper-branch exciton-polaritons in a transferrable microcavity” , Nano Lett., 20 (23), 9538-9546 (2023) 

2. Min Zhang, Yuan Tian, Xingzhou Chen, Zheng Sun*, Xiaolong Zhu, Jian Wu, “ Ultra-large Rabi splitting in the plasmon-exciton polaritons at room temperature” , Nanophotonics, 12 (16), 3267-3275 (2023) 

3. Xingzhou Chen, Zheng Sun*, Ming Zhang, Ming Li, Zhigao Hu, Kenji Watanabe, Takashi Taniguchi, David Snoke, Zhe-Yu Shi, Jian Wu, “Broadband enhancement of absorption by two-dimensional atomic crystals modeled as non-Hermitian photonics scattering”, Appl. Phys. Lett., 122, 0411105 (2023) 

4. D. W. Snoke, V. Hartwell, J. Beaumariage, S. Mukherjee, Y. Yoon, D. M. Myers, M. Steger, Z. Sun, K. A. Nelson, L. N. Pfeiffe, “ Experimental determinations of polariton-polariton interactions in microcavities”, Phys. Rev. B, 107, 165302  (2023)

5. Jingyan Feng, Hui Li, Zheng Sun, Tim Byrnes, “ Entanglement generation and detection in split exciton-polariton condensatesPhys. Rev. A, 108 053301 (2023) 


2022

1. Fei Chen, Hui Li, Hang Zhou, Song Luo, Zheng Sun, Ziyu Ye, Fenghao Sun, Jiawei Wang, Yuanlin Zheng, Xianfeng Chen, Hongxing Xu, Hongxing Xu, Tim Byrnes, Zhanghai Chen, Jian Wu, “Optically Controlled Femtosecond Polariton Switch at Room Temperature”, Phys. Rev. Lett., 129, 057402 (2022)

2. Fei Chen, Hang Zhou, Hui Li, Song Luo, Zheng Sun, Zhe Zhang, Fenghao Sun, Beier Zhou, Hongxing Dong, Huailiang Xu, Hongxing Xu, Alexey Kavokin, Zhanghai Chen, Jian Wu, “Femtosecond dynamics of a polariton bosonic cascade at room temperature”, Nano Lett., 22 (5), 2023-2029 (2022)

3. Fei Chen, Hang Zhou, Ziyu Ye, Song Luo, Zheng Sun, Yuanlin Zheng, Xianfeng Chen, Huailiang Xu, Hongxing Xu, Tim Byrnes, Hui Li, Zhanghai Chen, Jian Wu, “Buildup dynamics of room-temperature polariton condensation”, Phys. Rev. B, 106 (2), L020301 (2022)

4. Ziyu Ye, Fei Chen, Hang Zhou, Song Luo, Fenghao Sun, Zheng Sun, Yuanlin Zheng, Xianfeng Chen, Huailiang Xu, Zhanghai, Chen, Hui Li, Jian Wu, “Exciton-Polarization-dependent dynamics of polariton condensates at room temperature” Journal of Physics: Condensed Matter, 34 (22) (2022)


2021

1. Zheng Sun*#, Ke Xu#, Chang Liu#, Jonathan Beaumariage, Jierui Liang, Susan K Fullerton-Shirey, Zhe-Yu Shi, Jian Wu, David Snoke, “Photoluminescence switching in a two-dimensional atomic crystal”, ACS Nano 15 (12), 19439-19445 (2021) 

2. Z. Sun*, J. Beaumariage, Q.Wan, H. Alnatah,N. Hougland, J. Chisholm, Q. Cao, K. Watanabe, T. TaniguchiB. HuntI. V. BondarevD. W. Snoke, “Charged bosons made of fermions in a solid state system without Cooper pairing”, Nano Lett., 21 (18), 7669-7675 (2021) 

3. Xu Wang, Lishu Wu, Xuewen Zhang, Weihuang Yang, Zheng Sun, Jingzhi Shang, Wei Huang and Ting Yu, “Observation of Bragg Polariton in Monolayer Tungsten Disulphide”, Nano Research 15, 1479-1485 (2021)

4. Shouvik Mukherjee, Valera K Kozin, Anton V Nalitov, Ivan A Shelykh, Zheng Sun, David M Myers, Burcu Ozden, Jonathan Beaumariage, Mark Steger, Loren N Pfeiffer, Ken West, David W Snoke, “Dynamics of spin polarization in tilted polariton rings”, Phys. Rev. B, 103, 165306 (2021)

5. Fei Chen, Hui Li, Hang Zhou, Ziyu Ye, Song Luo, Zheng Sun, Fenghao Sun, Jiawei Wang, Huailiang Xu, Hongxing Xu, Zhanghai Chen, Jian Wu, “Ultrafast Dynamics of Exciton- Polariton in Optically Tailored Potential Landscapes at Room Temperature” Journal of Physics: Condensed Matter, 34 (2) (2021)


Old

1. Zheng Sun, Jie Gu, Areg Ghazryan, Zav Shotan, Christopher R. Considine, Michael Dollar, Biswanath Chakraborty, Xiaoze Liu, Pouyan Ghaemi, S. Kéna-Cohen, Vinod M. Menon, “Optical Control of Room Temperature Valley Polaritons”, Nat. Photonics, 11, 491-496 (2017)

2. Zheng Sun*, David W Snoke, “Optical switching with organics”, Nat. Photonics, 13, 370-371, (2019)

3. X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals”, Nat. Photonics, 9, 30–34 (2015)

4. T Galfsky#, Zheng Sun#, CR Considinel, CT Chou, WC Ko, YH Lee, E Narimanov, “Broadband enhancement of light-matter interaction in 2D semiconductors by photonic hypercrystals”, Nano Lett., 16 (8), 4940-4945 (2016) 

5. Zheng Sun*, Jonathan Beaumariage, Qingrui Cao, Benjamin Hunt, KenjiWatanabe, Takashi Taniguchi, DavidW. Snoke, “Observation of the Interlayer Exciton Gases in WSe2- p: WSe2 Heterostructures”, ACS Photonics, 7 (7), 1622-1627 (2020) 

6. Biswanath Chakraborty, Jie Gu, Zheng Sun, Mandeep Khatoniar, Rezlind Bushati, Alexandra L Boehmke, Rian Koots, Vinod M Menon, “Control of Strong Light-matter Interaction in Monolayer WS2 Through Electric Field Gating”, Nano Lett., 18 (10), 6455-6460, (2018)

7. Zheng Sun*, Jonathan Beaumariage, Ke Xu, Jierui Liang, Shaocong Hou, Stephen R. Forrest, Susan K Fullerton-Shirey, David W. Snoke, “Electric-field-induced optical hysteresis in single-layer WSe2”, Appl. Phys. Lett., 115, 161103 (2019) 

8. Zheng Sun*, Jonathan Beaumariage, Hema C P Movva, Sayema Chowdhury, Anupam Roy, Sanjay K Banerjee, David W Snoke, “Stress-induced bandgap renormalization in atomic crystals”, Solid State Communications, 288, 18-21, (2019) 

9. Zheng Sun, LinHong Yang, XueChu Shen, ZhangHai Chen, “Anisotropic Raman spectroscopy of a single b-Ga2O3 nanobelt”, Science Bulletin, 57(6) (2012) (Cover Story)

10. Qijun Ren, Jian Lu, H H Tan, ShanWu, Liaoxin Sun,Weihang Zhou,Wei Xie, Zheng Sun, Yongyuan Zhu, C Jagadish, S C Shen, Zhanghai Chen, “Spin-Resolved Purcell Effect in a Quantum Dot Microcavity System”, Nano Lett., 12 (7), 3455-3459 (2012)

11. S. Mukherjee, D. M. Myers, R. G. Lena, B. Ozden,  J. BeaumariageZ. Sun, M. Steger, L. N. Pfeiffer, K. West, A. J. Daley, D. W. Snoke,, “Observation of nonequilibrium motion and equilibration in polariton rings”, Phys. Rev. B, 100, 245304 (2019)

12. Z. Sun, Y. P. Xu, S. Li, T. F. George, “Forbidden Singlet Exciton Transitions Induced by Localization in Polymer Light-Emitting Diodes in a Strng Electric Field”, J. Phys. Chem. B 115 (5), 869-873 (20112)

13. T. Galfsky, Z. Sun, Z. Jacob, V. M. Menon, “Preferential emission into epsilon-near-zero metamaterial”, Opt. Mat. Exp., 5 (12), 2878-2883 (2015)

14. Y. Lin-Hong, D. Hong-Xing, S. Zheng, S Liao-Xin, S Xue-Chu, C Zhang-Hai, “Temperature-Induced Phase Transition of In2O3 from a Phombohedral Structure to a Body-Centered Cubic Structure”, C. Phys. Lett., 28 (8) 087803 (2011)


荣誉及奖励

2023 Achieving IOP Trusted Reviewer status



2021 华东师范大学紫江优秀青年学者

2021 国家海外高层次人才引进计划

2021 上海市浦江人才计划

2020 上海市海外高层次人才引进计划

2020 华东师范大学紫江青年学者

实验室地址

10 访问

相关教师