头像

沈乐成

紫青,博士生导师

精密光谱科学与技术国家重点实验室      

个人资料

  • 部门: 精密光谱科学与技术国家重点实验室
  • 毕业院校: 美国圣路易斯华盛顿大学
  • 学位: 哲学博士
  • 学历: 博士研究生
  • 邮编: 200241
  • 联系电话:
  • 传真:
  • 电子邮箱: ycshen@lps.ecnu.edu.cn
  • 办公地址: 上海市闵行区东川路500号光学大楼A221室
  • 通讯地址: 上海市闵行区东川路500号光学大楼

教育经历

2006年9月~2010年6月,中国科学技术大学,应用物理学,理学学士

2010年8月~2015年5月,美国圣路易斯华盛顿大学,电子工程,工学博士


工作经历

2015年6月~2017年1月,美国圣路易斯华盛顿大学,博士后

2017年2月~2018年10月,美国加州理工学院,博士后

2018年2月~2024年1月,中山大学,副教授

2024年1月~至今,华东师范大学,教授


个人简介

长期专注于光场调控技术,致力于解决光学散射造成的光学成像深度受限问题。在Nature Communications、Science Advances、Physical Review Letters和Optica等国际期刊发表SCI论文80余篇,授权发明专利10余项。

社会兼职

Optics Express》Associate Editor;

《激光与光电子学进展》青年编委;

Journal of Innovative Optical Health Sciences青年编委

光学工程学会计算成像专委会青年委员。

研究方向

光场调控、光散射成像、光声成像


招生与培养

已毕业硕士生:

6名,毕业后5名均进入华为等企业工作,1人成为公务员。


已毕业博士生:

2名(1人次获国家奖学金、1人次获王大珩光学奖学生奖),毕业后1名入职华南师范大学光电子信息技术学院,1名留组从事博士后研究。


开授课程

科研项目

[15] 国家自然科学基金面上项目,基于光瞳相位编码的三维高分辨光声显微成像研究,6247507020251-202812月,48万元。

[14] 国家自然科学基金重大研究计划(新型光场调控物理及应用)培育项目,面向多光子成像的散射光时空聚焦调控基础理论与关键技术研究,9215010220221-202412月,80万。

[13] 国家自然科学基金青年项目,基于波前整形实现深层组织高分辨率光声显微成像系统,12004446202111-20231231日,24万。

[12] 广东省自然科学基金,杰出青年项目2024B1515020051,散射光场传输与调控, 20241- 202612, 100

[11] 上海市东方英才计划青年项目,QNKJ202403120251-202612月,40万元。

[10] 企业研发横向课题,基于光场调控的血氧检测仪器开发,20211115-20221115日,100万。

[9] 广州市科技局基础研究计划,  面向宽光谱散射的光场调控技术及应用研究2024A04J2001,20241- 202512, 10万元。

[8] 广州市科技局基础研究计划基于光场调控技术的散射光聚焦研究与应用,202102020603202141-2023331日,5万。

[7] 广东省纳米光学操控重点实验室开放课题,基于主动调控的多模光纤光镊关键技术研究, 20240220246-20266月,6万。

[6] CCF-之江实验室联合创新基金,单光子超快光学复振幅测量技术研究,K2022MG0AB0520231-20246月,45万。

[5] 区域光纤通信网与新型光通信系统国家重点实验室(上海交通大学)开放课题基金,面向多模光纤模式复用的光场调控技术研究,2021GZKF004202111-20221231日,5万。

[4] 信息光子学与光通信国家重点实验室(北京邮电大学)开放课题基金,基于传输矩阵快速测量与光场调控的多模光纤模式复用技术研究,IPOC2020A003202111-20221231日,6万。

[3] 安徽大学光电信息获取与控制教育部重点实验室开放基金,光学微腔中的暗态形成机理及传感研究,OEIAM202007202031-20211231日,2万。

[2] 光电材料与技术国家重点实验室自主课题,宽光谱散射光调控与聚焦研究,OEMT-2022-ZRC-0720221-202412月,15万。

[1] 高校基本科研业务费-创新人才培育计划,面向活体深层成像应用的散射光场调控,23lgbj00820231-202412月,40万。




学术成果

代表性工作(#equal contribution, *corresponding author)

[1] J. Pan#, Q. Li#, Y. Feng, R. Zhong, Z. Fu, S. Yang, W. Sun, B. Zhang, Q. Sui, J. Chen, Y. Shen*, Z. Li*, “Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography”, Nature Communications 14(1), 3250 (2023).

[2] D. Wu, J. Luo, G. Huang, Y. Feng, X. Feng, R. Zhang, Y. Shen*, and Z. Li*, “Imaging biological tissue with high-throughput single-pixel compressive holography”, Nature Communications 12(1), 4712 (2021).

[3] J. Luo, Y. Liu, D. Wu, X. Xu, L. Shao, Y. Feng, J. Pan, J. Zhao, Y. Shen*, Z. Li*, “High-speed single-exposure time-reversed ultrasonically-encoded optical focusing against dynamic scattering”, Science Advances 8(50): eadd9158 (2022).

[4] X. Wei#, Y. Shen#, J.C. Jing#, A.S. Hemphill, C. Yang, S. Xu, Z. Yang*, and L.V. Wang*, “Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb”, Science Advances 6(8): eaay1192 (2020).

[5] Z. Wang#, D. Wu#, Y. Shen*, J. Luo, J. Liang, J. Liang, Z. Zhang, D. Qi, Y. Yao, L. Deng, Z. Sun, and S. Zhang*, Retrieving Scattering Matrices with Gaussian Regularized Adaptive Statistical Prior, Laser & Photonics Review 19, 2500120 (2025).

[6] Z. Wang#, J. Luo#, Y. Shen*, D. Wu, J. Liang, J. Liang, Y. Chen, Z. Zhang, D. Qi, Y. Yao, L. Deng, Z. Sun, and S. Zhang*, Real-Time Wavefront Control of Multimode Fibers under Dynamic Perturbation, Laser & Photonics Review 19(2), 2400947 (2025).

[7] D. Wu, Z. Wang, J. Wang, D. Zou, G. Huang, J. Luo, L. Lu, Y. Shen*, and Z. Li*, “Probabilistic phase shaping guided wavefront control of complex media with information-limited intensity measurements”, Laser & Photonics Reviews 17(9), 2300110, (2023).

[8] Y. Shen#, J. Ma#, C. Hou#, J. Zhao, Y. Liu*, H. Hsu, T.T.W. Wong, B.O. Guan, S. Zhang*, and L.V. Wang*, “Acoustic-feedback wavefront-adapted photoacoustic microscopy”, Optica 11(2), 214-221 (2024).

[9] Y. Shen#, Y. Liu#, C. Ma, and L.V. Wang*, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media”, Optica 4(1), 97-102 (2017).

[10] Y. Shen, M. Bradford, and J.T. Shen*, “Single-photon diode by exploiting the photon polarization in a waveguide”, Physical Review Letters 107, 173902 (2011).

[11] D. Wu, J. Luo, Z. Liu, H. Liang, Y. Shen*, and Z. Li*, “Two-stage matrix-assisted glare suppression at a large scale”, Photonics Research 10(12), 2693-2701 (2022).

[12] Y. Huang*, Y. Shen*, and G. Veronis, “Topological edge states at singular points in non-Hermitian plasmonic systems”, Photonics Research 10(3), 745-757 (2022).

[13] G. Huang, D. Wu, J. Luo, L. Lu, F. Li, Y. Shen*, and Z. Li*, “Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices”, Photonics Research 9(1), 34-42 (2021).



全部文章列表(按年倒序)

2025

[94] N. Xu, D. Qi*, L. Cheng, Z. Pan, C. Zhou, W. Lin, H. Ma, Y. Yao, Y. Shen, L. Deng, Z. Sun, and S. Zhang*, Sparse point spread function-based multi-image optical encryption, Communication Physics 8, 184 (2025).

[93] B. Zheng, L. Deng*, H. Ma, J. Wang, Y. Yao, D. Qi, Y. Shen, Z. Sun, and S. Zhang*, Defect-related luminescence in BaF2 nanoparticles for plant cell imaging. Applied Physics Letters 126, 173701 (2025).

[92] B. Cheng, Y. Yao*, Y. He, Z. Huang, M. Guo, J. Cao, X. Huang, X. Dong, Z. Zang, Y. Lu, H. Ma*, D. Qi, Y. Shen, L. Deng, . Wang, Z. Sun, and S. Zhang*, Compressive phase-shifting fringe projection profilometry for accelerating 3D metrology, Optics Letters 50(9), 2942-2945 (2025).

[91] Z. Wang#, Y. Wang#, Y. Shen*, D. Qi, Y. Yao, L. Deng, Z. Sun, and S. Zhang*, High-resolution single-pixel holography for biological specimens, Chinese Optics Letters 23(4), 041103 (2025).

[90] C. Hu, G. Xie, K. Poulsen, Y. Zhou, J. Chu, C. Liu, R. Zhou, H. Yuan, Y. Shen, S. Liu*, N. Zinner, D. Tan*, A. Santos*, D. Yu*, Digital simulation of zero-temperature spontaneous symmetry breaking in a superconducting lattice processor, Nature Communications 16, 3289 (2025).

[89] R. Zhou, L. Zhang, B. Li, J. Xiao, Y. Xing, C. Chen, Y. Shen, H. Shen, D. Pan, H. Xu, Harnessing evanescent photoacoustic waves for multi-domain imaging, Photoacoustics 43, 100719 (2025).

[88] Z. Huang, Y. Yao*, Y. He, J. Cao, Y. He, M. Guo, B. Cheng, X. Huang, H. Ma, D. Qi, Y. Shen, L. Deng, Z. Wang, Z. Sun, and S. Zhang*, Spectral compressive structured illumination microscopy, Optics and Lasers in Engineering 190, 108985 (2025).

[87] J. Liang#, Z. Zhu#, D. Wu, Y. Shen*, J. Luo, Z. Wang, Z. Zhang, D. Qi, Y. Yao, L. Deng, F. Li, Z. Sun, Z. Luo, and S. Zhang*, Focusing scattered light with upconversion-nanoparticle-guided wavefront shaping, Physical Review Applied 23, 034071 (2025).

[86] D. Wu, J. Du, Y. Shen*, J. Luo, Z. Wang, J. Liang, Z. Zhang, D. Qi, Y. Yao, L. Deng, M. Liu, Z. Sun, Z. Luo*, and S. Zhang*, Active manipulation of the optical spectral memory effect via scattering eigenchannels, Advanced Photonics Nexus 4(2), 026013 (2025).

[85] Z. Wang#, D. Wu#, Y. Shen*, J. Luo, J. Liang, J. Liang, Z. Zhang, D. Qi, Y. Yao, L. Deng, Z. Sun, and S. Zhang*, Coded self-referencing wavefront shaping for fast dynamic scattering control, Advanced Imaging 2(1), 011002 (2025).

[84] C. Jin, J. Yao*, Z. Huang, Z. Guo, Y. He, Z. Pan, N. Xu, Y. Yao, Y. Shen, L. Deng, D. Qi*, and S. Zhang*, Line integral compressed ultrafast photography for large time-scale measurements, Optics Letters 50(6), 1799-1802 (2025).

[83] Y. He, Y. Yao*, J. Yao, Z. Huang, M. Guo, B. Cheng, H. Ma, D. Qi, Y. Shen, L. Deng, Z. Wang, J. Wu, Z. Sun, and S. Zhang*, Spatiotemporal shearing-based ultrafast framing photography for high performance transient imaging, Photonics Research 13(3), 642-648 (2025).

[82] Z. Wang#, D. Wu#, Y. Shen*, J. Luo, J. Liang, J. Liang, Z. Zhang, D. Qi, Y. Yao, L. Deng, Z. Sun, and S. Zhang*, Retrieving Scattering Matrices with Gaussian Regularized Adaptive Statistical Prior, Laser & Photonics Review 19, 2500120 (2025).

[81] Z. Wang#, D. Wu#, Y. Shen*, J. Luo, J. Liang, J. Liang, Z. Zhang, D. Qi, Y. Yao, L. Deng, Z. Sun, and S. Zhang*, Coded self-referencing wavefront shaping for fast dynamic scattering control, Advanced Imaging 2(1), 011002 (2025).

[80] Z. Zhang, Y. Shen*, S. Yang, J. Luo, Z. Wang, D. Wu, X. Hu, Z. Huang, Y. He, M. Guo, H. Chen, D. Qi, Y. Yao, L. Deng, Z. Sun, and S. Zhang*, Active wavefront shaping for multimode fiber optical tweezers with structured light, Optics and Lasers in Engineering 184, 108639 (2025).

[79] Z. Wang#, J. Luo#, Y. Shen*, D. Wu, J. Liang, J. Liang, Y. Chen, Z. Zhang, D. Qi, Y. Yao, L. Deng, Z. Sun, and S. Zhang*, Real-time wavefront control of multimode fibers under dynamic perturbation, Laser & Photonics Review 19(2), 2400947 (2025).

[78] N. Xu, D. Qi*, C. Jin, J. Mao, Y. He, Y. Yao, Y. Shen, L. Deng, Z. Wang, Z. Sun, and S. Zhang*, Temporal compressive complex amplitude imaging based on double random phase encoding, Optics and Lasers in Engineering 184, 108599 (2025).


 

2024

[78] Y. He, Y. Yao*, J. Yao, R. Han, C. Jin, J. Mao, Z. Huang, M. Guo, B. Cheng, D. Qi, Y. Shen, L. Deng, Z. Wang, Z. Sun, and S. Zhang*, Single-shot high-fidelity large-sequence chirped spectral-mapping ultrafast photography, Phys. Rev. Appl. 22, 054058 (2024).

[77] Z. Pan#, B. Zheng#, L. Deng*, Y. Yao, D. Qi, Y. Shen, Z. Sun, and S. Zhang*, Spectral phase-based valence state conversion manipulation in BaFCl: Sm3+ nanocrystals for multilevel information recording and display, Optics Express 32(24), 43643-43653 (2024).

[76] Z. Wang#, J. Luo#, Y. Shen*, D. Wu, J. Liang, J. Liang, Y. Chen, Z. Zhang, D. Qi, Y. Yao, L. Deng, Z. Sun, and S. Zhang*, Real-Time Wavefront Control of Multimode Fibers under Dynamic Perturbation, Laser & Photonics Review 2400947 (2024).

[75] M. Guo, Y. Yao*, Z. Huang, Y. He, B. Cheng, D. Qi, Y. Shen, L. Deng, Z. Wang, K. Shi, X. Yuan, Z. Sun, and S. Zhang*, High-speed super-resolution structured illumination microscopy with a large field-of-view, Optics Express 32(18), 31485-31494 (2024).

[74] J. Yao#, Z. Guo#, D. Qi*, S. Xu, W. Lin, L. Cheng, C. Jin, Y. He, N. Xu, Z. Pan, J. Mao, Y. Yao, L. Deng, Y. Shen, H. Zhao, Z. Sun, and S. Zhang*, Discrete Illumination-Based Compressed Ultrafast Photography for High-Fidelity Dynamic Imaging, Adv. Sci. 2403854 (2024).

[73] Y. Yao#, X. Liu#, D. Qi, J. Yao, C. Jin, Y. He, Z. Huang, Y. He, Y. Shen, L. Deng, Z. Wang, Z. Sun, J. Liang*, and S. Zhang*, Capturing Transient Events in Series: A Review of Framing Photography, Laser & Photonics Review 2400219 (2024).

[72] G. Lin, D. Wu, J. Zhao, Y. Xu, Y. Shen*, and L. Shao*, Camera-based ultrasound-modulated optical tomography with isometric resolution, Applied Physics Letters 124, 253701 (2024).

[71] B. Zheng#, L. Deng#, J. Li, Y. Yao, D. Qi, Y. Shen, Z. Sun and S. Zhang*, Single femtosecond laser pulse–induced valence state conversion in BaFCl: Sm3+ nanocrystals for low-threshold optical storage, Nanophotonics 0181 (2024).

[70] Y. He, Y. Yao*, Y. He, C. Jin, Z. Huang, M. Guo, J. Yao, D. Qi, Y. Shen, L. Deng, Z. Wang, W. Zhao, J. Tian, Y. Xue, D. Luo, Z. Sun, and S. Zhang*, Multimodal fusion-based high-fidelity compressed ultrafast photography, Optics and Lasers in Engineering 181, 108363 (2024).

[69] S. Yang, Y. Shen*, J. Luo, Z. Wang, D. Wu, J. Liang, Z. Zhang, D. Qi, Y. Yao, L. Deng, B. Zhang, Z. Sun, and S. Zhang*, “Neural network enabled fringe projection through scattering media”, Optics Express 32(12), 21269-21280 (2024).

[68] C. Jin#, Y. Xu#, D. Qi*, Y. Yao, Y. Shen, L. Deng, R. Han, Z. Pan, J. Yao, Y. He, Z. Huang, X. Pan, H. Tao, M. Sun, C. Liu, J. Shi, J. Liang, Z. Wang, J. Zhu*, Z. Sun, and S. Zhang*, “Single-shot intensity- and phase-sensitive compressive sensing-based coherent modulation ultrafast imaging”, Physical Review Letters 132, 173801 (2024).

[67] Y. Shen#, J. Ma#, C. Hou#, J. Zhao, Y. Liu*, H. Hsu, T.T.W. Wong, B.O. Guan, S. Zhang*, and L.V. Wang*, “Acoustic-feedback wavefront-adapted photoacoustic microscopy”, Optica 11(2), 214-221 (2024).

 

2023

[66] S. Huang, J. Wang, D. Wu, Y. Huang*, Y. Shen*, “Projecting colorful images through scattering media via deep learning”, Optics Express 31(22), 36745-36753 (2023).

[65] J. Luo#, J. Liang#, D. Wu, Y. Huang*, Z. Chen, Z. Liu, D. Zou, F. Li, Y. Shen*, “Simultaneous dual-channel data transmission through a multimode fiber via wavefront shaping”, Applied Physics Letters 123, 151106 (2023).

[64] D. Wu, Z. Wang, J. Wang, D. Zou, G. Huang, J. Luo, L. Lu, Y. Shen*, and Z. Li*, Probabilistic phase shaping guided wavefront control of complex media with information-limited intensity measurements, Laser & Photonics Reviews 17(9), (2023).

[63] J. Pan#, Q. Li#, Y. Feng, R. Zhong, Z. Fu, S. Yang, W. Sun, B. Zhang, Q. Sui, J. Chen, Y. Shen*, Z. Li*, “Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography”. Nature Communications 14(1), 3250 (2023).

[62] J. Luo, D. Wu, Y. Liu*, Z. Li, Y. Shen*, “Single-exposure ultrasound-modulated optical tomography with a quaternary phase encoded mask,” Optics Letters 48(11), 2857-2860 (2023).

[61] H. Liang, T.J. Li, J. Luo, J. Zhao, J. Wang, D. Wu, Z.C. Luo*, and Y. Shen*, “Optical focusing inside scattering media with iterative time-reversed ultrasonically encoded near-infrared light”, Optics Express 31(11), 18365-18378 (2023)

[60] Y. Wang, D. Wu, M. Yang, S. Bai, S. Huang, M. Wang, R. Liu, Z. Li, D. Li*, Y. Shen*, “Microscopic single-pixel polarimetry for biological tissue”, Applied Physics Letters 122, 203701 (2023)

[59] L. Pan, Y. Shen, J. Qi, J. Shi, and X. Feng*, Single photon single pixel imaging into thick scattering medium, Optics Express 31, 13943-13958 (2023)

[58] J. Wang#, G. Zhong#, D. Wu, S. Huang, Z.C. Luo*, and Y. Shen*, “Multimode fiber-based greyscale image projector enabled by neural networks with high generalization ability”, Optics Express 31(3), 4839-4850 (2023)

 

2022

[57] J. Luo, Y. Liu, D. Wu, X. Xu, L. Shao, Y. Feng, J. Pan, J. Zhao, Y. Shen*, Z. Li*, “High-speed single-exposure time-reversed ultrasonically-encoded optical focusing against dynamic scattering”, Science Advances 8(50), eadd9158 (2022)

[56] G. Lin,D. Wu, J. Luo, H. Liang, Z. Wei, Y. Xu, S. Liu, L. Shao*, and Y. Shen*, “Coaxial interferometry for camera-based ultrasound-modulated optical tomography with paired illumination”, Optics Express 30(26), 46227-46235 (2022)

[55] Y. Huang*, Y. Shen*, and G. Veronis, “Switching between topological edge states in plasmonic systems using phase-change materials”, Optics Express 30(25), 44594-44603 (2022)

[54] D. Wu, J. Luo, Z. Lu, H. Liang, Y. Shen*, and Z. Li*, “Two-stage matrix-assisted glare suppression at a large scale”, Photonics Research 10(12), 2693-2701 (2022).

[53] S. Jiao*, J. Feng, L. Zhang, D. Wu, and Y. Shen, “Optical logic gate operations with single-pixel imaging”, IEEE Journal of Selected Topics in Quantum Electronics, 29(2), 1-8 (2022).

[52] Z. Yu#, H. Li#, T. Zhong#, J. Park#, S. Cheng, C. Woo, Q. Zhao, J. Yao, Y. Zhou, X. Huang, W. Pang, H. Yoon, Y. Shen, H. Liu, Y. Zheng, Y. Park*, L. V. Wang*, and P. Lai*, “Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields”, The Innovation 3(5): 100292 (2022)

[51] Y. Huang*, Y. Shen*, and G. Veronis, “Topological edge states at singular points in non-Hermitian plasmonic systems”, Photonics Research 10(3), 747-757 (2022).

2021

[50] Z Wang#, D. Wu#, G. Huang, J. Luo, B. Ye, Z. Li, and Y. Shen*, “Feedback-assisted transmission matrix measurement of a multimode fiber in a referenceless system”, Optics Letters 46(22), 5542-5545 (2021).

[49] J. Wang, H. Liang, J. Luo, B. Ye, and Y. Shen*, “Modeling of iterative time-reversed ultrasonically encoded optical focusing in a reflection mode”, Optics Express 29(19), 30961-30977 (2021).

[48] D. Wu, J. Luo, G. Huang, Y. Feng, X. Feng, R. Zhang, Y. Shen*, and Z. Li*, “Imaging biological tissue with high-throughput single-pixel compressive holography”, Nature Communications 12(1), 4712 (2021).

[47] R. Zhang#, J. Du#, Y. He, D. Yuan, J. Luo, D. Wu, B. Ye, Z.C. Luo*, and Y. Shen*, “Characterization of the spectral memory effect of scattering media”, Optics Express 29(17), 26944-26954 (2021).

[46] D. Yuan#, J. Luo#, D. Wu, R. Zhang, P. Lai*, Z. Li, and Y. Shen*, “Single-shot ultrasound-modulated optical tomography with enhanced speckle contrast”, Optics Letters 46(13), 3095-3098 (2021).

[45] Y. He#, D. Wu#, R. Zhang, Z. Cao, Y. Huang*, and Y. Shen*, “Genetic-algorithm-assisted coherent enhancement absorption in scattering media by exploiting transmission and reflection matrices”, Optics Express 29(13), 20353-20369 (2021).

[44] Y. Shen*, Z. Hu, D. Wu, C. Ma, and Y. Liu*, “An open-source, accurate, and iterative calibration method for liquid-crystal-based spatial light modulators”, Optics Communications 495, 127108 (2021).

[43] Y. Zhao, D. Zhu, Y. Tu, L. Pi, H. Li, L. Xu, Z. Hu, Y. Shen, B. Yu, and L. Lu*, “Coherent laser detection of the femtowatt-level frequency-shifted optical feedback based on a DFB fiber laser”, Optics Letters 46(6), 1229-1232 (2021).

[42] Y. Huang*, L. Wang, Y. Shen*, and G. Veronis, “Switching between singular points in non-PT-symmetric multilayer structures using phase-change materials”, Optics Express 29(1), 454-469 (2021).

[41] G. Huang, D. Wu, J. Luo, L. Lu, F. Li, Y. Shen*, and Z. Li*, “Generalizing the Gerchberg–Saxton algorithm forretrieving complex optical transmission matrices”, Photonics Research 9(1), 34-42 (2021).

 

2020

[40] X. Wei, J.C. Jing, Y. Shen, and L.V. Wang*, “Harnessing a multi-dimensional fibre laser using genetic wavefront shaping”, Light: Science & Application 9:149 (2020).

[39] D. Wu#, L. Qin#, J. Luo, X. Chen, H. Chui*, and Y. Shen*, “Delivering targeted color light through a multimode fiber by field synthesis”, Optics Express 28(13), 19700-19710 (2020).

[38] G. Huang, D. Wu, J. Luo, Y. Huang*, and Y. Shen*, “Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter”, Optics Express 28(7), 9487-9500 (2020).

[37] X. Wei#, Y. Shen#, J.C. Jing#, A.S. Hemphill, C. Yang, S. Xu, Z. Yang*, and L.V. Wang*, “Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb”, Science Advances 6(8): eaay1192 (2020).

[36] R. Cui, D. Tan*, and Y. Shen*, “Statistically driven model for efficient analysis of few-photon transport in waveguide quantum electrodynamics”, Journal of the Optical Society of America B, 37(2), 420-424 (2020).

 

2019

[35] J. Yang#, L. Li#, A. A. Shemetov#, S. Lee, Y. Zhao, Y. Liu, Y. Shen, J. Li, Y. Oka, V. V. Verkhusha*, and L. V. Wang*, “Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star”, Science Advances 5(12): eeay1211 (2019).

[34] Y. Huang*, Y. Shen*, and G. Veronis, “Non-PT-symmetric two-layer cylindrical waveguide for exceptional-point-enhanced optical devices”, Optics Express 27(26), 37494-37507 (2019).

*       Selected for Editor’s pick.

[33] J. Luo#, Z. Wu#, D. Wu, Z. Liu, X. Wei, Y. Shen*, and Z. Li*, “Efficient glare suppression with Hadamard-encoding-algorithm-based wavefront shaping”, Optics Letters 44(16), 4067-4070 (2019).

[32] D. Wu, J. Luo, Z. Li, and Y. Shen*, “A thorough study on genetic algorithms in feedback-based wavefront shaping”, Journal of Innovative Optical Health Sciences, 1942004 (2019).

[31] Z. Zhen, Y. Huang*, Y. Feng, Y. Shen*, and Z. Li*, “An ultranarrwo photonic nanojet formed by an engineered two-layer microcylinder of high refractive-index materials”, Optics Express 27(6), 9178-9188 (2019).

[30] Z. Wu, J. Luo, Y. Feng*, X. Guo, Y. Shen*, and Z. Li*, “Controlling 1550-nm light through a multimode fiber using a Hadamard encoding algorithm”, Optics Express 27(4), 5570-5580 (2019).

[29] Y. Huang*, Z. Zhen, Y. Shen*, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm”, Optics Express 27(2), 1310-1325 (2019).

 

2018

[28] L .Song, Y. Feng*, X. Guo, Y. Shen, D. Wu, Z. Wu, C. Zhou, L. Zhu, S. Gao, W. Liu, X. Zhang*, and Z. Li*, “Ultrafast polarization bio-imaging based on coherent detection and time-stretch techniques”, Biomedical Optics Express, 9(12), 6556-6568 (2018).

[27] J. Yang, L. Gong, Y. Shen, and L.V. Wang*, “Synthetic Bessel light needle for extended depth-of-field microscopy”, Applied Physics Letters, 113(18), 181104 (2018).

[26] A. Hemphill, Y. Shen, J. Hwang*, and L.V. Wang*, “High-speed alignment optimization of digital optical phase conjugation systems based on auto-covariance analysis in conjunction with orthonormal rectangular polynomials”, Journal of Biomedical Optics, 24(3), 1-11 (2018).

[25] Y. Huang*, Y. Shen, C. Min, and G. Veronis, “Switching photonic nanostructures between cloaking and superscattering regimes structures using phase-change materials”, Optical Materials Express, 8(6), 1672 (2018).

*       Selected for Editor’s pick.

[24] Y. Qu#, L. Li#, Y. Shen, X. Wei, T.T.W. Wong, P. Hu, J. Yao, K. Maslov, and L.V. Wang*, “Dichroism-sensitive photoacoustic computed tomography”, Optica, 5(4), 495-501 (2018).

[23] Y. Shen#, Z. Chen#, Y. He, Z. Li*, and J.T. Shen*, “Exact approach for spatiotemporal dynamics of spontaneous emissions in waveguide quantum electrodynamic systems”, Journal of the Optical Society of America B, 35, 607 (2018).

[22] Y. Liu#, Y. Shen#, H. Ruan, F.L. Brodie, T.T.W. Wong, C. Yang, and L.V. Wang*, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses”, Journal of Biomedical Optics, 23(1), 010501 (2018).

 

2017

[21] A. Hemphill, Y. Shen, Y. Liu, and L.V. Wang*, “High-speed single-shot optical focusing through dynamic turbid media using off-axis holography”,Applied Physics Letters, 111(22), 221109 (2017).

*       Selected for Editor’s pick.

[20] J. Yang#, Y. Shen#, Y. Liu, A. Hemphill, and L.V. Wang*, “Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation”, Applied Physics Letters, 111(20), 201108 (2017).

*         Selected for Editor’s pick.

*         Press coverage: Featured in Scilight of Applied Physics Letters (2017).

[19] Y. Huang*, Y. Shen, C. Min, and G. Veronis, “Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials”, Optics Express, 25(22), 27283-27297 (2017).

[18] J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Sukuzi, and L.V. Wang*, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution”, Nature communications, 8, 780 (2017).

[17] Y. He, Y. Shen, X. Feng, C. Liu*, and L.V. Wang*, “Homogenizing microwave illumination in thermoacoustic tomography by a linear-to-circular polarizer based on frequency selective surface”, Applied Physics Letters, 111(6), 063703 (2017).

[16] L. Li, L. Zhu, Y. Shen, and L.V. Wang*, “Multi-view Hilbert transformation in full-ring-transducer-array based photoacoustic computed tomography”, Journal of Biomedical Optics, 22(7), 076017 (2017).

[15] Y. Huang, Y. Shen, C. Min, S. Fan, and G. Veronis*, “Unidirectional reflectionless light propagation at exceptional points”, Nanophotonics, 6(5), 977-996 (2017).

[14] Y. Liu, C. Ma, Y. Shen, J. Shi, and L.V. Wang*, “Focusing light inside dynamic scattering tissue with millisecond digital optical phase conjugation”, Optica, 4(2), 280-288 (2017).

[13] Y. He, Y. Shen, C. Liu*, and L.V. Wang*, “Suppressing excitation effects in microwave induced thermoacoustic tomography by multi-view Hilbert transformation”, Applied Physics Letters, 110(5), 053701 (2017).

[12] Y. Shen#, Y. Liu#, C. Ma, and L.V. Wang*, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media”, Optica, 4(1), 97-102 (2017).

 

2016

[11] Y. Liu, Y. Shen, C. Ma, J. Shi, and L.V. Wang*, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media”, Applied Physics Letters, 108(23), 231106 (2016).

*       Selected for Editor’s pick.

[10] Y. Shen#, Y. Liu#, C. Ma, and L.V. Wang*, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation”, Journal of Biomedical Optics, 21(8), 085001 (2016).

[9] Y. Liu, C. Ma, Y. Shen, and L.V. Wang*, “Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media”, Optics Letters, 41(7), 1321-1324 (2016).

[8] Y. Shen#, Y. Liu#, C. Ma, and L.V. Wang*, “Focusing light through scattering media by full-polarization digital optical phase conjugation”, Optics Letters, 41(6), 1130-1133 (2016). 

 

Before 2015

[7] Y. Shen and J.T. Shen*, “Photonic Fock states scattering in waveguide QED and their correlation functions”, Physical Review A, 92, 033803 (2015).

[6] Y. Shen, L.V. Wang, and J.T. Shen*, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere”, Optics Letters, 39(14), 4120-4123 (2014).

[5] Y. Shen*, L.V. Wang, and J.T. Shen*, “Deep subwavelength optical imaging using correlated nano-torches”, Applied Physics Letters, 103(20), 201119 (2013).

[4] Y. Shen and J.T. Shen*, “Numerical investigation of Rayleigh nanoparticle sensing using a whispering-gallery-mode resonator”, Journal of the Optical Society of America B, 29(10), 2897-2900 (2012).

[3] Y. Shen, D.R. Chen, and J.T. Shen*, “Statistical theory of nanoparticle sensing using a whispering-gallery-mode resonator”, Physical Review A, 85, 063808 (2012).

[2] Y. Shen and J.T. Shen*, “Nanoparticle sensing using whispering-gallery-mode resonators: Plasmonic and Rayleigh scatterers”, Physical Review A, 85, 013801, (2012).

[1] Y. Shen, M. Bradford, and J.T. Shen*, “Single-photon diode by exploiting the photon polarization in a waveguide”, Physical Review Letters, 107, 173902 (2011).

*         Press coverage: Featured in Research Highlights of Nature Photonics 6, 4-5 (2012).


荣誉及奖励

2024年度获批上海市东方英才青年项目

2023年度 获批广东省杰青

2023年度 中国仪器仪表学会金国藩青年学子奖

2023年度“中国光学十大社会影响力事件”(Light 10

2020年度 美国光学学会杰出审稿人奖(Optica Outstanding Reviewer Award)

10 访问

相关教师