头像

Yan Mo

Lecturer

ECNU      

About

  • Department: State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science
  • Graduate School: The Hong Kong University of Science and Technology
  • Degree: PhD
  • Academic Credentials:
  • PostCode:
  • Tel: 021-62235445
  • Fax:
  • Email:
  • Office:
  • Address:

Education

     PhD: July 2006

      Department of Chemistry, The Hong KongUniversity of Science and Technology

         Thesis:  “PartI. Quantum Dissipation Theory versus Electron Transfer Kinetics and Thermodynamics; Part II. Protein Folding Kinetics and Thermodynamics: A Mean-Field Ising Model”

         Advisor: Professor YiJing Yan (HKUST)

         Co-advisor: Professor Sheng-Hsien Lin (IMAS, Taipei)

 

      BS:  July 2001

      Department of Chemical Physics, University of Science and Technology of China


WorkExperience

08/2011 – current    East China Normal University, Shanghai, China

        Position: Lecturer

 

06/2009 – 07/2011   National Chiao Tung University, Taiwan

        Position: Postdoctoral Researcher in Department of Applied Chemistry

 

08/2008 – 05/2009  The Hong KongUniversity of Science and Technology, Hong Kong

        Position: Research Associate in Department of Chemistry

 

08/2006 – 08/2008  The University of Hong  Kong, Hong Kong

        Position: Research Associate in Department of Chemistry


Resume

Other Appointments

Research Fields

The primary focus of my current research is on developing hybrid Quantum Mechanics/Molecular Mechanics Molecular Dynamics methods for photosynthetic pigment-protein complexes using the polarized protein-specific charge scheme. The basic goal is to understand at the molecular level how the protein environment affects the excitation energy transfer through pigments in the photosynthetic systems. An accurate description of the protein environment has been developed and successfully applied to several photosynthetic systems, including Fenna−Matthews−Olson, Phycoerythrin 545, and Photosystem I. 

Another ongoing project is focused on the ultrafast dynamics behavior of water, protein side chains, polymer side chains at the air/water interface. In this work, direct interfacial molecular dynamic simulation combining with a theoretical framework of Sum Frequency Generation spectroscopy can provide a powerful tool to investigate the detailed structure of the system, dynamics of the proximal water, protein/polymer side chains, and its role in facilitating its function/biological functions.


Enrollment and Training

Course

2014  – 2020 Computational Physics for Graduate students

2021 –           Probability Theory and Statistics for undergraduate students

Scientific Research

1. National Natural Science Foundation of ChinaInvestigation of Photosynthetic Energy Transfer Dynamics;

2. National Natural Science Foundation of ChinaMolecular Mechanism Investigation of the Excitation Energy Transfer

Dynamics in Plant Photosystem Supercomplex

3.   National Natural Science Foundation of China: Attosecond dynamics of over-barrier ionization;


Academic Achievements

1.     “Theoretical Study of the Spectral Differences of the Fenna–Matthews–Olson Protein from Different Species and Their Mutants”, Z. Huai, Z. Tong, Y. Mei, and Y. Mo*, J. Phys. Chem. B 125, 8313-8324 (2021).

2.   “Accelerated Computation of Free Energy Profile at Ab Initio Quantum Mechanical/Molecular Mechanics Accuracy via a Semiempirical Reference Potential. 4. Adaptive QM/MM”, J.-N. Wang, W. Liu, P. Li, Y. Mo*, W. Hu, J. Zheng, X. Pan, Y. Shao, and Y. Mei*; J. Chem. Theory Comput., 17, 1318–1325 (2021). 

3.   “Accelerated Computation of Free Energy Profile at Ab Initio Quantum Mechanical/Molecular Mechanics Accuracy via a Semiempirical Reference Potential. 3. Gaussian Smoothing on Density-of-States”, W. Hu, P. Li*, J.-N. Wang, Y. Xue, Yan Mo*, J. Zheng, X. Pan, Y. Shao, and Y. Mei*, J. Chem. Theory Comput., 16, 6814–6822 (2020).

4.   “Reproducing the low-temperature excitation energy transfer dynamics of phycoerythrin 545 light-harvesting complex with a structure-based model Hamiltonian”Z. Tong, Z. Huai, Y. Mei, and Y. Mo*, J. Chem. Phys. 152, 135101 (2020).

5.   “Influence of the Protein Environment on the Electronic Excitation of Chromophores in the Phycoerythrin 545 Light-Harvesting Complex: A Combined MD-QM/MM Method with Polarized Protein-Specific Charge Scheme”, Z. Tong, Z. Huai, Y. Mei, Y. Mo*, J. Phys. Chem. B 123, 2040-2049 (2019). 

6.   “Hybrid QM/MM study of FMO complex with polarized protein-specific charge, X. Jia, Y. Mei, J. Z. H. Zhang,Y. Mo* Sci Rep5, 17096 (2015).

7.   “Time-dependent density functional theory for quantum transport”,  X. Zheng, G.H. Chen,  Y. Mo, S. K. Koo, H. Tian, C. Y. Yam and Y.J. Yan, J. Chem. Phys. 133, 114101 (2010).

8.   “Transient electronic dynamics of noninteracting open systems beyond linear response”, Y. Mo, X. Zheng, G. H. Chen,  and Y. J. Yan, J. Phys.: Condens. Matter 21, 355301 (2009).

9.   “Dynamic admittance of carbon nanotue-based molecular electronic devices and their equivalent electric circuit”, C. Y. Yam, Y. Mo, F. Wang X. B. Li, G. H. Chen, X. Zheng, Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard III, Nanotechnology 19, 495203 (2008).

10.  “Time-dependent density-functional theory of open systems”, X. Zheng, F. Wang, C. Y. Yam, Y. Mo, and G. H. Chen, Phys. Rev. B75, 195127 (2007).

11.  “Electron transfer theory revisited: Quantum solvation effect”, P. Han, R. X. Xu, P. Cui, Y. Mo, G. Z. He and Y. J. Yan, J. Theo & Comp. Chem5 (3): 685-92 (2006).

12.  “Kinetics and Thermodynamics of Electron Transfer in Debye Solvents: An Analytical and Nonperturbative Reduced Density Matrix Theory”, P. Han, R. X. Xu, B. Q. Li, J. Xu, P. Cui, Y. Mo, and Y. J. Yan, J. Phys. Chem. B11011438-43 (2006).

13.  “Correlation and Response Functions with non-Markovian Dissipation: A Reduced Liouville-Space Theory”, Y. Mo, R. X. Xu, P. Cui, and Y. J. Yan, J. Chem. Phys. 122, 084115(2005).

14.  “Exact Quantum Master Equation via the Calculus on Path Integrals”, R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan, J. Chem. Phys.122, 041103 (Comm.) (2005).

15.  “Atomic Force Microscopic and Theoretical Studies of Poly-Ubiquitin Proteins”, Y. L. Yeh, C. H. Chang, K. K. Liang, Y. J. Shiu, C. Su, M. Hayashi, C. L. Chyan, G. Yang, Y. Mo, Y. J. Yan, and S. H. Lin, Chem. Phys. Lett.399, 440-45 (2004).

16.   “Experimental and Theoretical Studies of Protein Folding-Unfolding”, Y. J. Shiu, C. Su, Y. L. Yeh, K. K. Liang, M. Hayashi, Y. Mo, Y. J. Yan, and S. H. Lin, J. Chin. Chem. Soc. (Taipei)51, 1161-1173 (2004).

17.  “Thermodynamics and Kinetics of Protein Folding: A Mean Field Theory”, K. K. Liang, M. Hayashi, Y. J. Shiu, Y. Mo, J. S. Shao, Y. J. Yan, and S. H. Lin, Phys. Chem. Chem. Phys. 5, 5300-5308 (2003).

18.   “Application of the Generalized Kinetic Ising Model to the Kinetics of Protein”, K. K. Liang, M. Hayashi, Y. J. Shiu, Y. Mo, J. S. Shao, Y. J. Yan, and S. H. Lin, J. Chin. Chem. Soc. (Taipei)50, 335-38 (2003).

19.  “Non-Markovian Quantum Dissipation in the Presence of External Fields”, R. X. Xu, Y. Mo, P. Cui, S. H. Lin, and Y. J. Yan, in Advanced Topics in Theoretical Chemical PhysicsProg. Theo. Chem. & Phys.12, pp.7-40, edited by J. Maruani, R. Lefebvre, and E. Brändas   (Kluwer, Dordrecht, 2003).

20.   “Influence of Dissipation on the Stimulated Raman Adiabatic Passage”, Y. Mo, R. X. Xu, and Y. J. Yan, Chin. J. Chem. Phys. 15, 237-40 (2002).


Honor

10 Visits

Related to the teacher