头像

赵静

副研究员

计算机科学与技术学院      

个人资料

  • 部门: 计算机科学与技术学院
  • 毕业院校: 华东师范大学
  • 学位: 博士
  • 学历: 博士研究生
  • 邮编: 200062
  • 联系电话:
  • 传真:
  • 电子邮箱: jzhao@cs.ecnu.edu.cn
  • 办公地址: 理科大楼B909
  • 通讯地址: 上海市中山北路3663号华东师范大学理科大楼B909

教育经历

2011年~2016年    华东师范大学(硕博连读)

2007年~2011年    华东师范大学(获学士学位)


工作经历

2016年至今    华东师范大学    任助理研究员、副研究员


个人简介

模式识别与机器学习团队负责人



招收类型:硕士/博士研究生

博士名额已满~
欢迎申报研究组2026年硕士研究生!




欢迎关注公众号


社会兼职

上海市计算机学会人工智能专委会秘书长

SCI期刊International Journal of Machine Learning and Cybernetics (JMLC)、Neurocomputing副编辑

Information Fusion, IEEE Transactions on Intelligent Transportation System, Neurocomputing, Neural Processing Letter, Intelligent Data Analysis等国际期刊审稿人


研究方向

研究方向:多模态机器学习

主要应用:自动驾驶、医学诊断、多模态翻译

招生与培养

开授课程

本科生课程:概率论与数理统计、模式识别与机器学习、可信机器学习

研究生课程:高级机器学习、模式识别与机器学习

出版教材《模式识别与机器学习》(孙仕亮、赵静,清华大学出版社,2020)

科研项目

主持国家自然科学基金青年项目

主持上海市自然科学基金面上项目

主持上海市扬帆计划人才项目

主持上海市晨光计划人才项目

参与国家自然科学基金面上项目

参与上海市人工智能科技支撑专项


学术成果

2024

[1]        Zhenbo Huang, Shiliang Sun, Jing Zhao. Reward-free offline   reinforcement learning - Optimizing behavior policy via action exploration. Knowledge-Based Systems. 2024.(中科院一区)(通讯)

[2]        Jing Zhao. Zengyu Qiu, Huiqin Hu, Shiliang Sun.   HWLane: HW-Transformer for Lane Detection. IEEE Transactions on Intelligent   Transportation Systems (2024) (中科院一区)(CCF A类)(一作)

[3]      Kaitao Chen,   Shiliang Sun, Jing Zhao: CaMIL:   Causal Multiple Instance Learning for Whole Slide Image Classification. AAAI   2024: 1120-1128CCF A类)

2023

[4]        Ding, Chaoyue, Shiliang Sun, and Jing Zhao *. MST-GAT: A   multimodal spatial–temporal graph attention network for time series anomaly   detection. Information Fusion 89 (2023): 527-536. (中科院一区)(通讯)

[5]        Shaofan Liu, Shiliang Sun, Jing Zhao *: Fair Transfer   Learning with Factor Variational Auto-Encoder. Neural Process. Lett. 55(3):   2049-2061 (2023)(通讯)

[6]        Shiliang Sun, Jing Zhao *, Minghao Gu,   Shanhu Wang: Variational Hybrid Monte Carlo for Efficient Multi-Modal Data   Sampling. Entropy 25(4): 560 (2023)(通讯)

[7]        Chaoyue Ding, Jing Zhao *, Shiliang Sun.   Concept Drift Adaptation for Time Series Anomaly Detection via Transformer.   Neural Processing Letters (2022): 1-21. (通讯)

[8]        Wenbo Dong, Shiliang Sun *, Jing Zhao, Nan Zhang: Knowledge graph   relation reasoning with variational reinforcement network. Inf. Fusion 100:   101900 (2023)(中科院一区)

[9]        Zhenbo Huang, Shiliang Sun *, Jing Zhao, Liang Mao: Multi-modal   policy fusion for end-to-end autonomous driving. Inf. Fusion 98: 101834   (2023)(中科院一区)

[10]     Shiliang Sun *; Jingjing Fei; Jing Zhao; Liang Mao; Multi-view   Collaborative Gaussian Process DynamicalSystems, Journal of Machine Learning   Research, 2023, 241-32. CCF A类)

2022

 

[11]     Qiu, Zengyu, Jing Zhao *, and Shiliang   Sun *. MFIALane: Multiscale Feature   Information Aggregator Network for Lane Detection. IEEE Transactions on   Intelligent Transportation Systems (2022). (中科院一区)(共同通讯)(CCF A类)

[12]     Jing Zhao, Zengyu Qiu, Shiliang Sun *: Multi-view   multi-label active learning with conditional Bernoulli mixtures. Int. J.   Mach. Learn. Cybern. 13(6): 1589-1601 (2022) (一作)

[13]     Shiliang Sun, Jing Zhao*, Ziang Dong. Conditional random fields for   multiview sequential data modeling.IEEE Transactions on Neural Networks and   Learning Systems     SCI, (2022)(中科院一区) (通讯)(CCF A类)

[14]     Yujia Li, Shiliang Sun, Jing Zhao*: TiRGN: Time-Guided Recurrent Graph   Network with Local-Global Historical Patterns for Temporal Knowledge Graph   Reasoning. IJCAI 2022: 2152-2158(通讯)(CCF A类)

[15]     Tao Hu, Shiliang Sun, Jing Zhao, Dongyu Shi: Enhancing Unsupervised Domain Adaptation   via Semantic Similarity Constraint for Medical Image Segmentation. IJCAI   2022: 3071-3077

[16]     Ping Huang, Jing Zhao, Shiliang Sun *, Yichu Lin. (2022). Knowledge enhanced   zero-resource machine translation using image-pivoting. Applied Intelligence,   1-13.

[17]     Chaoyue Ding, Shiliang Sun*, Jing Zhao: Multi-Modal Adversarial   Example Detection with Transformer. IJCNN 2022: 1-7

[18]     Tao Zhang, Shiliang Sun*, Jing Zhao: Robust Cross-Modal   Retrieval by Adversarial Training. IJCNN 2022: 1-8

[19]     Yi Zhang, Jing Zhao*, Shiliang Sun. Diverse Machine Translation   with Translation Memory. IJCNN 2022: 1-8. (通讯)

[20]     Shiqi Guo, Yumeng Si, Jing Zhao*Abstractive   Summarization Model with Adaptive Sparsemax. NLPCC (1) 2022: 810-821(通讯)

[21]     Zengyu Qiu, Jing Zhao*, Shiliang Sun. Enhancing Robustness of   Lane Detection through Dynamic Smoothness. ICAUS, 2022(通讯)

2021

[22]     Lidan Wu, Daoming Zong, Shiliang Sun, Jing Zhao*: A Sequential   Contrastive Learning Framework for Robust Dysarthric Speech Recognition.   ICASSP 2021: 7303-7307 CCF B类)(通讯)

[23]     Chaoyue Ding, Shiliang Sun, Jing Zhao*: Multi-Task   Transformer with Input Feature Reconstruction for Dysarthric Speech   Recognition. ICASSP 2021: 7318-7322 CCF B类)(通讯)

[24]     Zehui Cao#,   Jing Zhao#, Shiliang Sun*: Stick-Breaking   Dependent Beta Processes with Variational Inference. Neural Process. Lett.   53(1): 339-353 (2021)(CCF C类期刊) (共同一作)

[25]     Jing Zhao, Yi Zhang, Shiliang Sun*, Haiwei Dai:   Variational Beta Process Hidden Markov Models with Shared Hidden States for   Trajectory Recognition. Entropy 23(10): 1290 (2021) (中科院三区)(一作)

[26]     Shiqi Guo, Jing Zhao*, Shiliang Sun: Resilient Abstractive   Summarization Model with Adaptively Weighted Training Loss. IJCNN 2021: 1-8 CCF C类)(通讯)

[27]     Xiao Liu, Jing Zhao, Shiliang Sun*, Huawen Liu, Hao Yang: Variational   multimodal machine translation with underlying semantic alignment. Inf.   Fusion 69: 73-80 (2021)(中科院一区)

[28]     Daoming Zong, Shiliang Sun*, Jing Zhao: ASHF-Net: Adaptive   Sampling and Hierarchical Folding Network for Robust Point Cloud Completion.   AAAI 2021: 3625-3632CCF A类)

2020

[29]     Jing Zhao, Shiliang Sun*, Huijuan Wang,   Zehui Cao: Promoting active learning with mixtures of Gaussian processes.   Knowl. Based Syst. 188 (2020) (中科院一区)(一作)(CCF A类)

[30]     Shiliang Sun, Zehui Cao, Han Zhu, Jing Zhao*: A Survey of   Optimization Methods From a Machine Learning Perspective. IEEE Trans. Cybern.   50(8): 3668-3681 (2020) (中科院一区)(通讯)(CCF A类)

[31]     Yueyue Hu, Shiliang Sun, Xin Xu, Jing Zhao*: Multi-View   Deep Attention Network for Reinforcement Learning (Student Abstract). AAAI   2020: 13811-13812CCF A类)(通讯)(CCF A类)

[32]     Xiao Liu, Jing Zhao*, Shiliang Sun: Bayesian Adversarial Attack   on Graph Neural Networks (Student Abstract). AAAI 2020: 13867-13868 CCF A类)

(通讯)(CCF A类)

[33]     Jing Zhao, Xiao Liu, Shaojie He, Shiliang Sun*: Probabilistic   inference of Bayesian neural networks with generalized expectation   propagation. Neurocomputing 412: 392-398 (2020) (中科院二区)(一作)

[34]     Yueyue Hu, Shiliang Sun*, Xin Xu, Jing Zhao: Attentive multi-view   reinforcement learning. Int. J. Mach. Learn. Cybern. 11(11): 2461-2474 (2020) (中科院二区)

[35]     Han Zhu, Jing Zhao*, Shiliang Sun: Multi-view Deep Gaussian   Process with a Pre-training Acceleration Technique. PAKDD (2) 2020: 299-311CCF C类)(通讯)

2019

[36]     Ziang Dong, Jing Zhao*, Shiliang Sun: A Conditional Random Fields Based   Framework for Multiview Sequential Data Modeling. ICONIP (5) 2019: 698-706CCF C类)(通讯)

2018

[37]J. Wang, J. Zhao*, S. Sun and D. Shi. Intelligent educational data   analysis with Gaussian processes. Proceedings of the 25th International   Conference on Neural Information Processing (ICONIP), pp. 353-362, 2018. (CCF   C类会议)(通讯)

[38]J. Fei, J. Zhao#, S. Sun* and Yan Liu. Active learning methods with   deep Gaussian processes. Proceedings of the 25th International Conference on   Neural Information Processing (ICONIP), pp. 473-483, 2018. (CCF C类会议)(共同一作)

[39]J. Chen#, S. Sun#J. Zhao*. Multi-label active learning with conditional   Bernoulli mixtures. Proceedings of the 15th Pacific Rim International   Conference on Artificial Intelligence (PRICAI), pp. 954-967, 2018. (CCF C类会议)(通讯)

2017

[40]J. Zhao, X. Xie, X. Xu, S. Sun*. Multi-view learning overview: Recent progress and new   challenges. Information Fusion (IF), 38: 43-54, 2017. (SCI一区期刊, IF6.639ESI高被引论文,Top 1%)(一作)(CCF A类)

[41]H. Wang# and J.   Zhao# and Z. Tang and S. Sun*. Educational and non-educational text   classification based on deep Gaussian processes. Proceedings of the 24th   International Conference on Neural Information Processing (ICONIP), pp.   415-423, 2017. (CCF C类会议)(共同一作)

[42]C. Luo, S. Sun, J. Zhao*. Variational hidden conditional random fields   with beta processes. Proceedings of the 13th International Conference on   Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp.   1887-1893, 2017. (EI会议)(通讯)

2016

[43]J. Zhao and S. Sun#*. Variational   dependent multi-output Gaussian process dynamical systems. Journal of Machine   Learning Research (JMLR), 17: 1-36, 2016. (SCI期刊, CCF A类期刊,IF:5)(共同一作)(CCF A类)

[44]J. Zhao and S. Sun*. High-order Gaussian process dynamical models   for traffic flow prediction. IEEE Transactions on Intelligent Transportation   Systems (TITS), 17: 2014-2019, 2016. (SCI一区期刊, IF:3.724)(中科院一区)(一作)(CCF A类)

[45]M. Yin#J. Zhao#, S. Sun*. Key course selection for academic early warning   based on Gaussian processes. The 17th International Conference on Intelligent   Data Engineering and Automated Learning (IDEAL), pp. 240-247, 2016. (EI会议)(共同一作)

2015

[46] J. Zhao and S. Sun*. Revisiting Gaussian process dynamical models.   In Proceedings of the 24th International Joint Conference Artificial Intelligence   (IJCAI), pp. 1047-1053, 2015. (CCF A类会议)(一作)(CCF A类)

[47]S. Sun* and J. Zhao and J. Zhu. A review   of Nyström methods for large-scale machine learning. Information Fusion (IF),   26:36-48, 2015. (SCI一区期刊,IF4.353)

[48]S. Sun* and J. Zhao and Q. Gao.   Modeling and recognizing human trajectories with beta process hidden Markov models.   Pattern Recognition (PR), 48: 2407-2417, 2015. (SCI一区期刊,IF:3.399)

2014

[49]J. Zhao and S. Sun*. Variational dependent multi-output Gaussian   process dynamical systems. In Proceedings of the 17th International   Conference of Discovery Science (DS), 8777: 350-361, 2014. (EI会议)(一作)

 

授权发明专利:

[1]     孙仕亮;戴海威;赵静..一种基于变分BP-HMM的人的行为轨迹识别方法

[2]     孙仕亮;刘啸;赵静;张楠. 基于变分推理和多任务学习的多模态机器翻译方法

[3]     赵静;邱增玉;孙仕亮. 一种基于主动学习多视图多标签分类器的构建方法

[4]     张楠;孙仕亮;赵静.基于缺失图重构和自适应近邻的不完整多视图聚类方法

[5]     孙仕亮;刘禹含;赵静. 一种蛋白质知识图谱向量化方法

[6]     赵静;林奕初;张艺;孙仕亮. 一种运用辅助记忆的多样性机器翻译方法

[7]     孙仕亮;丁超越;赵静. 基于对抗训练的半监督CT图像分割方法

[8]     孙仕亮;赵静;张涛;张庆久. 一种基于提示学习的跨模态检索对抗防御方法

[9]     赵静;孙仕亮;李宇佳. 一种基于关系自适应网络的小样本时态知识图谱补全方法

[10]孙仕亮;余梦然;赵静;毛亮. 一种面向扰动奖励的深度强化学习对抗防御方法

[11]赵静;胡惠琴;孙仕亮;王振超. 一种基于分割点和双特征增强的车道线检测方法及系统

[12]孙翊铭;赵静. 一种基于时序自适应卷积与注意力机制的目标跟踪方法

 

 

 


荣誉及奖励

2023 上海市自然科学二等奖(2/4)

2023 中国自动化学会科学技术奖一等奖(3/5)

2023 上海市计算机学会科学技术奖一等奖(2/5)

2023 华东师范大学教学成果奖一等奖(1/3

2023 华东师范大学研究生优秀教材奖(2/2

2023 华东师范大学三八红旗手

2022 华东师范大学教学成果二等奖(3/7

2021 上海市计算机学会教学成果奖二等奖(1/4

2019 上海市人工智能优秀综述论文一等奖

10 访问

相关教师