头像

陈阳

教授

通信与电子工程学院      

个人资料

  • 部门: 通信与电子工程学院
  • 毕业院校: 西安电子科技大学
  • 学位: 工学博士
  • 学历: 研究生
  • 邮编: 200241
  • 联系电话: 021-33503290
  • 传真:
  • 电子邮箱: ychen@ce.ecnu.edu.cn
  • 办公地址: 闵行校区信息楼561
  • 通讯地址: 上海市闵行区东川路500号

教育经历

博士:西安电子科技大学,综合业务网理论及关键技术国家重点实验室,通信与信息系统专业(直接攻读博士学位)2009.08-2015.03

国家公派:加拿大渥太华大学,微波光子学实验室(国家公派联合培养博士生)2012.09-2014.02

本科:西安电子科技大学,通信工程学院,通信工程专业(本硕连读)2005.9-2009.07


工作经历


2017.03-至今,华东师范大学

2015.04-2017.02,上海卫星工程研究所


个人简介

2024.4实验室在SEFDM信号模拟光链路传输方面的两篇论文,Linearization for Microwave Photonic SEFDM Transmission Systems Based on Random Displacement of Constellation Points和Simultaneous ICI and SSBI suppression in microwave photonic SEFDM signal transmission links using an iterative algorithm with random displacement of constellations被光子学权威期刊Journal of Lightwave Technology和Optics & Laser Technology在线发表。相对于传统的OFDM信号,SEFDM信号通过进一步压缩子载波间隔、破坏子载波间的正交性进一步提升频谱效率,但在其解调过程中,子载波串扰将带来额外的复杂度。将SEFDM信号应用于微波光子系统中,在链路接收端,除子载波串扰外,还会存在链路非线性干扰以及信号间拍频干扰,多种复杂干扰的同时作用对接收端的信号解调带来巨大挑战。论文统筹考虑子载波串扰、非线性干扰及信号间拍频干扰,设计并优化解调算法,同时通过引入星座点随机位移的方法避免陷入局部最优,实现了接收端复杂干扰下信号的高可靠性解调,为SEFDM信号在微波光子系统中的应用进行了初步的探索。论文1链接。论文2链接。

2024.1 实验室论文Photonic Random Demodulator With Improved Performance by Compressing the PRBS Amplitude被光子学领域权威期刊IEEE Photonics Technology Letters发表,在应用于压缩感知系统的基于单调制器的微波光子随机解调器中,欠采样信号的恢复性能与PRBS码的理想程度密切相关,这往往要求PRBS码具有极大的带宽,限制了其在实际系统中的应用。针对该问题,提出了在PRBS带宽受限的情况下通过压缩PRBS幅值提升系统性能的方法,大幅降低了系统对PRBS的性能要求,为基于单调制器结构的微波光子随机解调器的实际应用提供解决方案。论文链接。

2024.1 实验室陈阳教授获中科院1区top期刊 Journal of Lightwave Technology首届杰出审稿人奖(共2人)链接

2024.1实验室论文Microwave photonic time-frequency analysis based on period-one oscillation and phase-shifted fiber Bragg grating被微波领域顶级期刊IEEE Microwave and Wireless Technology Letters在线发表。该论文率先提出了一种基于半导体激光器非线性动力学及相移光栅的微波时频二维参数分析方法,通过半导体激光器P1振荡态产生大带宽扫频光信号,利用相移光栅极窄的透射谱实现频率到时间映射,实现了10GHz的超大分析带宽和0.8us的时间分辨率。该方案为基于光学扫频加频率时间映射的微波频率测量及时频分析系统的实际实现与应用提供了一种具有潜力的低成本方案。论文链接

2023.10 美国斯坦福大学的John Ioannidis教授团队新近在爱思维尔(Elsevier)出版集团官网上发布了2023年全球各学科前2%科学家榜单,实验室陈阳教授入选全球前2%顶尖科学家“年度科学影响力排行榜”。链接

2023.10 实验室获光电测量与智能感知中关村开放实验室2023年开放基金支持(2023.10-2025.10)。

2023.10 实验室2020级硕士研究生马东同学获2022-2023学年华东师范大学研究生优秀学位论文。链接

2023.9 欢迎蒋驰(博士生)、杨芳怡(硕士生)、德妍(硕士生)、唐家璇(硕士生)加入实验室。

2023.8 实验室陈阳教授获国家自然科学基金面上项目资助(2024.01-2027.12, 53万元),将在未来四年开展新体制光子辅助微波模拟时频变换研究。

2023.8 实验室论文"Improving the Accuracy and Resolution of Filter- and Frequency-to-Time Mapping-Based Time and Frequency Acquisition Methods by Broadening the Filter Bandwidth"被微波领域顶级期刊IEEE Transactions on Microwave Theory and Techniques在线发表,该论文以采用扫频滤波加频时映射方案实现的光子辅助时间频率参数获取系统为应用背景,揭示了扫频滤波加频时映射方案所产生的电脉冲宽度与扫频速度和滤波器宽度的关系:对于每一扫频速度,存在一个最优滤波器带宽,可以获得最窄的电脉冲宽度,且扫频速度越快,该最优带宽值越大。论文通过实验验证了通过扩展滤波器带宽提高光子辅助短时傅里叶变换系统的频率分辨率以及提高光子辅助微波频率测量系统测量精度的可行性,为时间频率参数获取系统中更精确的参数获取提供了可行方案。论文链接。

2023.5 实验室博士生左鹏程、石泰峡顺利通过博士学位论文答辩。

2023.4 实验室论文“Photonics-Assisted Analog Wideband Self-Interference Cancellation for In-Band Full-Duplex MIMO Systems With Adaptive Digital Amplitude and Delay Pre-Matching”被光子学权威期刊Journal of Lightwave Technology在线发表,该论文针对带内全双工MIMO系统复杂自干扰信号的消除,提出了数字域重建模拟域消除的解决思路,并通过数字域自适应算法及遗传算法分别实现干扰延时/幅度参数的自适应匹配,为复杂应用场景下自干扰信号的消除及系统优化提供了全新解决方案。论文链接。

2023.2 实验室论文“Photonics-assisted compressed sensing radar receiver for frequency domain non-sparse signal sampling based on dictionary learning”被光子学权威期刊Optics Letters在线发表,该论文提出了一种基于字典学习的光子辅助压缩感知接收机,实现了频域非稀疏宽带雷达信号的欠采样接收,并利用欠采样接收结果实现了雷达测距功能。论文链接。

2023.1 实验室获上海航天科技创新基金项目支持(2023.1-2024.12)。

2023.1 实验室论文“Photonics-Based Short-Time Fourier Transform Without High-Frequency Electronic Devices and Equipment”被光子学权威期刊IEEE Photonics Technology Letters在线发表。课题组前期研究的基于受激布里渊散射的短时傅列变换系统需要使用高速大带宽电子扫频源,为在实际应用中降低系统成本与复杂度,该工作通过直接调制激光器工作电流,实现了无需高速电子器件与设备的短时傅里叶变换,为该系统的实际应用进行了进一步的研究与探索。论文链接。

2023.1 实验室论文“Analog Wavelet-Like Transform Based on Stimulated Brillouin Scattering”被光子学权威期刊Optics Letters在线发表,基于课题组前期在基于受激布里渊散射效应的短时傅里叶变换方面的研究基础,该工作通过时变啁啾率的快速扫频,率先报道了基于受激布里渊散射效应的类小波变换,实现了可变分辨率的电子信号二维时频分析,克服了短时傅里叶变换分析尺度固定的劣势。论文链接。

2022.12 实验室获嵩山实验室预研课题支持(2022.08-2024.08)。

2022.11 实验室马东,王实同学顺利通过硕士学位论文答辩。照片.jpg

2022.11 实验室获教育部产学合作协同育人项目支持(2022.07-2023.06)。

2022.9 实验室陈阳教授获2022 JLT Outstanding Reviewer.

2022.9 实验室陈阳教授获2022 IEEE Photonics Journal Outstanding Reviewer Award(共1人).链接.

2022.9 实验室论文“Digitally assisted photonic analog domain self-interference cancellation for in-band full-duplex MIMO systems via LS algorithm with adaptive order”被光子学权威期刊Optics Letters在线发表,该项研究率先基于微波光子技术实现了应用于带内全双工MIMO系统的复杂自干扰数字域重建、模拟域消除,并通过算法设计,实现了随多径干扰变化的自适应滤波器阶数调整,在兼顾自干扰数字域重建性能的同时平衡了算法复杂度。论文链接。

2022.9 欢迎高嘉威、林初轮同学加入实验室。

2022.6 实验室论文"Photonics-Based De-Chirping and Leakage Cancellation for Frequency-Modulated Continuous-Wave Radar System"被微波领域权威期刊IEEE Transactions on Microwave Theory and Techniques录用,该工作基于微波光子技术研究了调频连续波雷达的泄露消除问题,率先将泄露消除与雷达去啁啾处理一体化实现,并结合雷达系统的各种功能(测速、测距、成像)深入研究并讨论了该系统的性能。同时该研究所提出的系统也可以用于其他体制连续波雷达的泄露消除以及带内全双工无线系统的自干扰消除。论文链接。

2022.5 实验室论文“Short-Time Fourier Transform Based on Stimulated Brillouin Scattering”被光子学领域权威期刊IEEE/Optica J. Lightw. Technol.录用,该项研究基于受激布里渊散射效应,率先探索了色散介质无关的光域短时傅里叶变换,在超过10GHz带宽范围内实现了60MHz的动态频率分辨率,该系统高度灵活可重构,为电子信号的模拟域实时时频分析提供了可行的优秀解决方案论文链接。

2022.5 实验室论文“Linearization for Microwave Photonic OFDM Transmission Systems Using an Iterative Algorithm based on FEC Mechanism”被光子学领域权威期刊IEEE/Optica J. Lightw. Technol.录用,该项研究基于前向纠错机制和迭代算法,探索并成功实现了高非线性、低信噪比情况下微波光子链路线性度的优化提升方法,解决了现有面向微波光子链路的数字线性化方法在高非线性、低信噪比情况下性能不佳的问题。论文链接。

2022.5 祝贺实验室博士生梁丁丁同学获华东师范大学2022年“优秀博士生学术创新能力提升计划”项目立项,该同学博士在读期间已发表国内外高水平期刊论文3篇,国际会议论文1篇。报道链接

2022.4 实验室论文“Time-varying microwave photonic filter for arbitrary waveform signal-to-noise ratio improvement”被光子学权威期刊Optics Letters在线发表,该论文率先研究并实现了基于微波光子技术的时变滤波器,并成功将其应用于任意波形信号的信噪比提升,该项研究工作为通过光子模拟技术实现信号带内噪声的抑制成功进行了初步探索。论文链接

2022.2 实验室论文“Digital-Assisted Photonic Analog Wideband Multipath Self-Interference Cancellation”被光子学领域权威期刊IEEE Photonics Technology Letters录用,该论文针对带内全双工无线系统的自干扰问题,采用数字域辅助的方法针对去除强直射自干扰后的残余多径自干扰信号进行重建与模拟域消除,克服了直接重构全部自干扰信号面临的DAC动态范围限制。论文链接

2022.1 实验室承担的区域光纤通信网与新型光通信系统国家重点实验室(北京大学)开放课题顺利结题。

2021.12 实验室论文“Simplified Doppler frequency shift measurement enabled by Serrodyne optical frequency translation”被微波领域权威期刊IEEE Microwave and Wireless Component Letters录用,该论文基于Serrodyne 光学频率转换技术,采用单个双驱动MZM调制器和锯齿波参考信号,实现了超高精度和稳定度的多普勒频移测量,测量频率范围不受电子器件限制。

2021.9 欢迎李潇威、刘诗扬、张苏南、杨航四位同学加入实验室。

2021.7 实验室论文“Multi-Functional Microwave Photonic Radar System for Distance and Velocity Measurement and High-Resolution Microwave Imaging”被光子学领域权威期刊IEEE/OSA J. Lightw. Technol.录用,该论文基于微波光子技术实现了可重构线性调频信号与单载频信号的产生,并对基于该信号的微波光子雷达系统进行了功能测试,率先同时实现了目标距离和径向速度的测量以及高精度ISAR成像。

2021.7 实验室论文“Multiple radio frequency measurement with an improved frequency resolution based on stimulated Brillouin scattering with a reduced gain bandwidth”被光子学权威期刊Opt. Lett.在线发表,该论文率先将带宽缩窄的受激布里渊增益谱用于微波信号频率测量,在保证1MHz以内均方测量误差的前提下,将测量频率分辨率提高到到10MHz以内,这是使用受激布里渊散射效应实现微波频率测量所达到的最高频率分辨率。

2021.7 实验室论文“Optoelectronic Oscillator for Arbitrary Microwave Waveform Generation”被光子学领域权威期刊IEEE/OSA J. Lightw. Technol.录用,该论文在傅里叶锁模OEO产生线性调频信号的基础上,探索并揭示了傅里叶锁模OEO产生任意波形的原理,并通过实验验证了线性调频信号、非线性调频信号、跳频信号、二进制相位编码信号和四进制相位编码信号的产生,为低相噪任意波形信号的产生提供了可行的解决方案。

2021.2 实验室论文“Photonic-Enabled Doppler Frequency Shift Measurement for Weak Echo Signals Based on Opitcal Single-Sideband Mixing Using a Fixed Low-Frequency Reference”被光子学领域权威期刊IEEE/OSA J. Lightw. Technol.录用,该论文提出了一种光子辅助多普勒频移测量方法,基于光学单边带混频的原理,仅采用一个双平行马赫曾德尔调制器结合低频参考信号即可以实现高精度多普勒频移测量。

2020.12 实验室论文“High-Accuracy Multiple Microwave Frequency Measurement With Two-Step Accuracy Improvement Based on Stimulated Brillouin Scattering and Frequency-to-Time Mapping”被光子学领域权威期刊IEEE/OSA J. Lightw. Technol.录用,该论文基于受激布里渊散射和频时映射提出了一种超精度的微波频率测量方法,可以同时测量大带宽范围内的多个微波频率,频率测量误差小于1MHz。

2020.11 祝贺实验室刘佳林同学顺利通过硕士学位论文答辩。

2020.10 实验室论文“Photonic-based reconfigurable microwave frequency divider using two cascaded dual-parallel Mach Zehnder modulators”被光子学权威期刊Opt. Exp.在线发表,该论文提出了一种基于微波光子技术的微波分频器,采用该分频器可以可重构的实现对微波信号的整数或分数分频(1/2,1/3,2/3,2/5等)。

2020.9 欢迎韩墨璇、马东、王实三位同学加入实验室。

2020.8 实验室获上海市自然基金面上项目资助(2020.7-2023.6)。

2020.6 祝贺实验室第一位硕士研究生常梦旭同学顺利通过硕士学位论文答辩。毕业照1.jpg毕业照2.jpeg

2020.6 实验室获华东师范大学科研创新基金“青年教师科研能力提升计划”项目支持(2020)。

2020.5 实验室论文“A Photonic-Based Wideband RF Self-Interference Cancellation Approach With Fiber Dispersion Immunity”,被光子学领域权威期刊IEEE/OSA J. Lightw. Technol.录用,该论文提出了一种结构简单的大带宽射频自干扰消除方法,实现了超过2 GHz带宽的自干扰抑制,干扰抑制比超过20 dB,同时,该方法具有自干扰光域消除及有用接收信号抗色散传输的特点,可以适应某些应用场景下有用接收信号光纤传输的需求。

2020.4 实验室论文“Photonic-Assisted Filter-Free Microwave Doppler Frequency Shift Measurement Using a Fixed Low-Frequency Reference Signal”,被光子学领域权威期刊IEEE/OSA J. Lightw. Technol.录用,该论文提出了一种基于级联调制器结构且无需滤波器的多普勒频移测量方法,可以实现大带宽范围内信号多普勒频移的精确测量。

2020.2实验室与加拿大渥太华大学姚建平院士的合作研究成果“Photonic-Assisted RF Self-Interference Cancellation With Improved Spectrum Efficiency and Fiber Transmission Capability”,被光子学领域权威期刊IEEE/OSA J. Lightw. Technol.在线发表,该论文提出了一种应用于带内全双工无线系统的高谱效率射频自干扰光域消除方法,在进行自干扰消除的同时实现了信号的基带光学传输,有效的提高了系统频谱效率。

2020.1 实验室承担的信息光子与光通信国家重点实验室(北京邮电大学)开放课题(2018.1-2019.12)顺利结题。

2019.12 实验室获区域光纤通信网与新型光通信系统国家重点实验室(北京大学)开放课题资助(2020.1-2021.12)。

2019.11 实验室翁北粤同学顺利通过硕士论文答辩,成为实验室第一位毕业的硕士研究生。硕士论文答辩.jpg

2019.11 实验室的研究成果“A Novel Photonic-based MIMO Radar Architecture With All Channels Sharing a Single Photonic Transceiver”,被IEEE Access在线发表,该论文基于光学频率梳和光纤色散实现了对MIMO雷达收发架构的简化。

2019.10 实验室获华东师范大学青年教师科研能力提升项目支持(2019)。

2019.9 欢迎石泰峡同学和梁丁丁同学加入实验室。

2019.8 实验室获国家自然基金面上项目资助(2020.1-2023.12)。

2019.5 实验室与加拿大渥太华大学姚建平院士的合作研究成果“Simultaneous Multi-Frequency Phase-Coded Microwave Signal Generation at Six Different Frequencies Using a DP-BPSK Modulator”和“On-chip two-step microwave frequency measurement with high accuracy and ultra-wide bandwidth using add-drop micro-disk resonators”分别被IEEE/OSA J. Lightw. Technol. 和Opt. Lett. 在线发表,并被作为Editor's pick论文被Opt. Lett.亮点报道。

社会兼职

长期作为IEEE/OSA Journal of Lightwave Technology, IEEE Photonics Technology Letters, IEEE Transactions on Microwave Theory and Techniques, IEEE Photonics Journal, Optics Letter, Optics Express, IET Communications, IET Electronics Letters, Applied Optics, Optics Communications, Optical Enginnering, Microwave and Optical Technology Letters等国际期刊,以及光子学报、红外与激光工程等国内期刊的审稿人。

研究方向


研究方向:

1. 微波光子频谱感知

2. 微波光子雷达

3. 光子辅助射频自干扰消除

4. 光载无线系统

5. 微波光子信号生成


博士后:

石泰峡

出生年月: 1992年8月

研究兴趣:光子辅助自干扰消除





研究生:

在读博士研究生:


陈煜(硕博连读)

出生年月: 199512

研究兴趣:微波光子信号处理





梁丁丁(硕博连读)

出生年月: 19965

研究兴趣:微波光子雷达





在读硕士研究生:


李潇威

研究兴趣:微波光子频率测量






刘诗扬

研究兴趣:微波光子压缩感知技术






张苏南

研究兴趣:光子辅助自干扰消除






杨航

研究兴趣:光子辅助自干扰消除






林初轮

研究兴趣:微波光子频谱感知


高嘉威

研究兴趣:微波光子雷达


李国平

研究兴趣:光子辅助自干扰消除




已毕业研究生:

石泰峡(博士)

出生年月: 1992年8月

研究兴趣:光子辅助自干扰消除




左鹏程(博士)

出生年月: 1990年3月

研究兴趣:微波光子雷达,微波光子信号测量




  

韩墨璇(硕士)

研究兴趣:光子辅助自干扰消除

  




马东(硕士)

研究兴趣:微波时频参数获取




  

王实(硕士)

研究兴趣:微波光子雷达


  



刘佳林(硕士)

出生年月19967

研究兴趣:微波光子信号测量




翁北粤(硕士)

出生年月: 1994年10

研究兴趣:光子辅助自干扰消除

就业单位:中电十一所(北京)





常梦旭(硕士)

出生年月: 1993年2

研究兴趣:微波光子信号生成

就业单位:中电三十二所(上海)




招生与培养


微波光子学课题组招生信息

招生专业:通信与信息系统(学术硕士、博士)、电子与通信工程(工程硕士、博士)


课题组相关科学研究工作受国家自然科学基金青年项目、面上项目(2项)、上海市自然科学基金面上项目支持,课题组还与航天五院、八院等科研院所有相关项目合作,开展工程应用研究工作,欢迎具有通信、微波、光学等背景,并对科研工作有强烈兴趣的同学报考课题组硕士研究生及博士研究生,从事课题组相关的科学研究、工程实践、仿真实验、软件开发等工作。


课题组已毕业和即将毕业硕士生共10人(包含非全日制硕士生1人),100%有英文期刊论文发表,9人有至少1篇SCI期刊论文发表,人均发表期刊和会议论文2.4篇,SCI期刊论文1.5篇。优秀毕业生可在IEEE Transactions on Microwave Theory and Techniques,Journal of Lightwave Technology,Optics Letters,IEEE Photonics Technology Letters等微波与光子学权威期刊上发表论文。


课题组要求较严格,有push,有规范的工作时间和考核,欢迎有志从事科学与应用研究工作,并对自己有较高要求的同学报考。

开授课程

结束课程:

2023-2024秋季学期,本科生课程,信号与系统,72学时,3.5学分

2022-2023秋季学期,本科生课程,信号与系统,72学时,3.5学分

2021-2022季学期,本科生课程,信号与系统,72学时,3.5学分

2021-2022秋季学期,研究生课程,随机过程,54学时,3学分

2020-2021季学期,本科生课程,信号与系统,72学时,3.5学分

2020-2021季学期,研究生课程,无线通信,36学时,2学分

2020-2021秋季学期,研究生课程,随机过程,54学时,3学分

2020-2021秋季学期,研究生课程,微波光子学,54学时,3学分

2019-2020春季学期,本科生课程,信号与系统,54学时,3学分

2019-2020季学期,研究生课程,无线通信,36学时,2学分

2018-2019季学期,本科生课程,信号与系统,54学时,3学分


科研项目

在研:

2024.01-2027.12,国家自然基金面上项目,新体制光子辅助微波模拟时频变换技术研究

2023.10-2025.10,横向课题,微波光子XXXX与XXXX

2023.10-2025.10,光电测量与智能感知中关村开放实验室2023年开放基金

2023.01-2024.12,上海航天科技创新基金

2022.08-2024.08,嵩山实验室预研项目

2020.01-2023.12,国家自然基金面上项目,光子辅助高谱效率射频自干扰消除研究

已结题:

2020.09-2022.03,横向课题,微波光子XXXX光学处理组件

2020.07-2023.06,上海市自然基金面上项目,面向连续波雷达系统的自干扰光子数字一体化模拟消除技术研究

2020.01-2021.12,区域光纤通信网与新型光通信系统国家重点实验室(北京大学)开放课题

2020.01-2020.12华东师范大学科研创新基金“青年教师科研能力提升计划”项目

2019.01-2019.12,华东师范大学青年教师科研能力提升项目

2018.01-2019.12,信息光子学与光通信国家重点实验室(北京邮电大学)开放课题

2017.01-2019.12,国家自然基金青年基金,动态可重构大时间带宽积脉冲压缩信号光学生成研究

2017.01-2018.12,中央高校基本科研业务费








学术成果

国际期刊论文:

2024年

8.Taixia Shi, Yang Chen*, Microwave Photonic Adaptive Complex Wideband Self-Interference Cancellation Enabled by Digital Pre-modeling Search and Two-Tap Delay Adjustment[J], J. Lightw. Technol., Accepted.

7.Xiaowei Li, Taixia Shi, Dong Ma, Yang Chen*, Channelized analog microwave short-time Fourier transform in the optical domain [J], IEEE Trans. Microw. Theory Tech., Accepted.

6. Yu Chen, Yang Chen*, Simultaneous ICI and SSBI suppression in microwave photonic SEFDM signal transmission links using an iterative algorithm with random displacement of constellations [J], Opt. Laser Technol., vol. 175, pp. 110767, Aug. 2024.

5.Yu Chen, Yang Chen*, Linearization for Microwave Photonic SEFDM Transmission Systems Based on Random Displacement of Constellation Points [J], J. Lightw. Technol., vol. 42, no. 8, pp. 2735-2743, Apr. 2024.

4.Shiyang Liu, Yang Chen*, Photonic Random Demodulator With Improved Performance by Compressing the PRBS Amplitude [J], IEEE Photon. Technol. Lett., vol. 36, no. 5, pp. 329-332, Mar. 2024.

3.韩墨璇,石泰峡,张苏南,陈阳*,低复杂度数字辅助非线性自干扰光域模拟消除[J],光学学报vol.44, no. 3, pp. 0306002, Feb. 2024.

2.Sunan Zhang, Pengcheng Zuo, Yang Chen*, Microwave photonic time-frequency analysis based on period-one oscillation and phase-shifted fiber Bragg grating [J], IEEE Microw. Wirel. Technol. Lett., vol. 34, no. 1, pp. 135-138, Jan. 2024.

1.Shiyang Liu, Yang Chen*, Sub-Nyquist radar receiver based on photonics-assisted compressed sensing and cascaded dictionaries [J], Chin. Opt. Lett., vol. 22, no. 1, pp. 013902, Jan. 2024.

2023年

10.Dingding Liang, Yang Chen*, Photonics-enabled joint communication-radar system with improved detection performance and looser symbol length limitation based on resampling and phase compensation [J], Opt. Laser Technol., vol. 165, pp. 109638, Oct. 2023.

9.梁丁丁,左鹏程,陈阳*,基于光注入半导体激光器的雷达通信一体化[J],子学报,vol. 51, no. 9, pp. 2321-2329, Sept. 2023.

8.Yong Huang*, Jingjing Guo, Lizhong Jiang, Yeping Huang, Yutao Lou, Xiaowei Li, Yang Chen, and Luxin Yan, Photonics-assisted two-step microwave frequency measurement based on frequency-to-time mapping [J], Optical and Quantum Electronics, vol. 55, pp. 792, Sept. 2023.

7.Pengcheng Zuo, Dong Ma, Xiaowei Li, Yang Chen*, Improving the Accuracy and Resolution of Filter- and Frequency-to-Time Mapping-Based Time and Frequency Acquisition Methods by Broadening the Filter Bandwidth [J], IEEE Trans. Microw. Theory Tech., vol. 71, no. 8, pp. 3668-3677, Aug. 2023.

6.Hang Yang, Taixia Shi, Yang Chen*, In-band full-duplex multiband mobile fronthaul network based on analog radio-over-fiber and tandem SSB modulation [J], Appl. Opt., vol. 62, no. 24, pp. 6430-6436, Aug. 2023.

5.Taixia Shi, Yang Chen*, Photonics-Assisted Analog Wideband Self-Interference Cancellation for In-Band Full-Duplex MIMO Systems With Adaptive Digital Amplitude and Delay Pre-Matching [J], J. Lightw. Technol., vol. 41, no. 8, pp. 2393-2404, Apr. 2023.

4.梁丁丁,江利中,刘庆波,李亚军,王实,刘诗扬,陈阳*,可重构多维度探测微波光子雷达[J],空间电子技术,vol. 20, no. 1, pp. 105-114, Feb. 2023.

  Dingding Liang, Lizhong Jiang, Qingbo Liu, Yajun Li, Shi Wang, Shiyang Liu, and Yang Chen*, Reconfigurable microwave photonic radar for multi-dimensional detection [J], Space Electron. Technol., vol. 20, no. 1, pp. 105-114, Feb. 2023.

3.Shiyang Liu, Shi Wang, Taixia Shi, Yang Chen*, Photonics-assisted compressed sensing radar receiver for frequency domain non-sparse signal sampling based on dictionary learning [J], Opt. Lett., vol. 48, no. 3, pp. 767-770, Feb. 2023.

2.Pengcheng Zuo, Dong Ma, Yang Chen*, Photonics-Based Short-Time Fourier Transform Without High-Frequency Electronic Devices and Equipment [J], IEEE Photon. Technol. Lett., vol. 35, no. 2, pp. 109-112, Jan. 2023.

1.Pengcheng Zuo, Dong Ma, Yang Chen*, Analog Wavelet-Like Transform Based on Stimulated Brillouin Scattering [J], Opt. Lett., vol. 48, no. 1, pp. 29-32, Jan. 2023.

2022年

14.Zhejing Jiao*, Pengcheng Zuo, Liang Xue, Gaofang Li, Yang Chen, Microwave signal generation from a parity-time-symmetric optoelectronic oscillator with optical injection locking [J], Appl. Opt., vol. 61, no. 93, pp. 9868-9872, Nov. 2022.

13.Moxuan Han, Yang Chen*, Digitally assisted photonic analog domain self-interference cancellation for in-band full-duplex MIMO systems via LS algorithm with adaptive order [J], Opt. Lett., vol. 47, no. 18, pp. 4774-4777, Sept. 2022.

12.Taixia Shi, Dingding Liang, Moxuan Han, Yang Chen*, Photonics-Based De-Chirping and Leakage Cancellation for Frequency-Modulated Continuous-Wave Radar System [J]. IEEE Trans. Microw. Theory Tech., vol. 70, no. 9, pp. 4252-4263, Sept. 2022.

11.Pengcheng Zuo, Dong Ma, Yang Chen*, Short-Time Fourier Transform Based on Stimulated Brillouin Scattering [J], IEEE/OSA J. Lightw. Technol., vol. 40, no. 15, pp. 5052-5061, Aug. 2022.

10.Yu Chen, Yang Chen*, Linearization for Microwave Photonic OFDM Transmission Systems Using an Iterative Algorithm based on FEC Mechanism [J], IEEE/OSA J. Lightw. Technol., vol. 40, no. 15, pp. 5013-5020, Aug. 2022.

9.Dong Ma, Pengcheng Zuo, Yang Chen*, Time-Frequency Analysis of Microwave Signals Based on Stimulated Brillouin Scattering [J], Opt. Commun., vol. 516, pp. 128228, Aug. 2022.

8.Shi Wang, Dingding Liang, Yang Chen*, Photonics-Assisted Joint Communication-Radar System Based on a QPSK-Sliced Linearly Frequency-Modulated Signal [J], Appl. Opt., vol. 61, no. 16, pp. 4752-4760, Jun. 2022.

7.Yang Chen*, Taixia Shi, Simplified Doppler frequency shift measurement enabled by Serrodyne optical frequency translation [J], IEEE Microw. Wireless Compon. Lett., vol. 32, no. 5, pp. 452-455, May 2022.

6.梁丁丁,陈阳*,微波光子四倍频雷达复合信号生成及目标多维度探测 [J], 电子学报,vol. 50, no. 4, pp. 796-803, Apr. 2022.

  Dingding Liang, Yang Chen*, Frequency-Quadrupled Radar Composite Signal Generation and Multi-Dimensional Target Detection Enabled by Microwave Photonics [J]. Acta Electronica Sinica, vol. 50, no. 4, pp. 796-803, Apr. 2022.

5.Dong Ma, Yang Chen*,Time-varying microwave photonic filter for arbitrary waveform signal-to-noise ratio improvement [J], Opt. Lett., vol. 47, no. 9, pp. 2174-2177, Apr. 2022.

4.Taixia Shi, Yu Chen, Yang Chen*, Photonic-enabled radio-frequency self-interference cancellation incorporated in an in-band full-duplex radio-over-fiber system [J], Opt. Eng., vol. 63, no. 3, pp. 034108, Mar. 2022.

3.Moxuan Han, Taixia Shi, and Yang Chen*, Digital-Assisted Photonic Analog Wideband Multipath Self-Interference Cancellation [J], IEEE Photon. Technol. Lett., vol. 34, no. 5, pp. 299-302, Mar. 2022.

2.Pengcheng Zuo, Dong Ma, Qingbo Liu, Lizhong Jiang, and Yang Chen*, Photonic-assisted microwave pulse detection and frequency measurement based on pulse replication and frequency-to-time mapping [J], Appl. Opt., vol. 61, no. 7, pp. 1639-1645, Mar. 2022.

1.Taixia Shi, Moxuan Han, Yang Chen*, Photonic-assisted wideband RF self-interference cancellation with the digital domain amplitude and delay pre-matching [J], Optik, vol. 250, pp. 168343, Jan. 2022.

2021年

9.Taixia Shi, Moxuan Han, Yang Chen*,Photonic-based analog and digital RF self-interference cancellation with high spectral efficiency [J], Appl. Opt., vol. 60, no. 33, 10299-10304, Dec. 2021.

8.陈煜,石泰峡,陈阳*,带内全双工系统的线性化光子辅助自干扰消除 [J], 光子学报, vol. 50, no. 10, pp. 1006002, Oct. 2021.

  Yu Chen, Taixia Shi, Yang Chen*. Linearized Photonic-assisted Self-interference Cancellation for In-band Full-duplex Systems [J], Acta Photonica Sinica, vol. 50, no. 10, pp. 1006002, Oct. 2021.

7.Dingding Liang, Lizhong Jiang, Yang Chen*Multi-Functional Microwave Photonic Radar System for Distance and Velocity Measurement and High-Resolution Microwave Imaging [J], IEEE/OSA J. Lightw. Technol., vol. 39, no. 20, 6470-6478, Oct. 2021.

6.Yang Chen*, Pengcheng Zuo, Taixia Shi, Optoelectronic Oscillator for Arbitrary Microwave Waveform Generation [J], IEEE/OSA J. Lightw. Technol., vol. 39, no. 19, pp. 6033-6044, Oct. 2021.

5.Taixia Shi, Yang Chen*, Multiple radio frequency measurement with an improved frequency resolution based on stimulated Brillouin scattering with a reduced gain bandwidth [J], Opt. Lett., vol. 46, no. 14, pp. 3460-3463, Jul. 2021.

4.Mengxu Chang, Lizhong Jiang, Qingbo Liu, Jing Xu, Yang Chen*, Evaluation of the performance of linearly frequency modulated signals generated by heterodyning two free-running laser diodes [J] , Optoelectron. Lett., vol. 17, no. 5, pp. 266-270, May 2021.

3.Yang Chen*, Pengcheng Zuo, Taixia Shi, Yu Chen, Photonic-Enabled Doppler Frequency Shift Measurement for Weak Echo Signals Based on Opitcal Single-Sideband Mixing Using a Fixed Low-Frequency Reference [J], IEEE/OSA J. Lightw. Technol., vol. 39, no. 10, pp. 3121-3129, May 2021.

2.Jialin Liu, Taixia Shi, Yang Chen*, High-Accuracy Multiple Microwave Frequency Measurement With Two-Step Accuracy Improvement Based on Stimulated Brillouin Scattering and Frequency-to-Time Mapping [J], IEEE/OSA J. Lightw. Technol., vol. 39, no. 7, pp. 2023-2032, Apr. 2021.

1.Dingding Liang, Taixia Shi, Yang Chen*, Photonic Generation of Multi-Band Linearly Frequency-Modulated Signal Based on a Dual-Parallel MZM [J], IEEE Photon. Technol. Lett., vol. 33, no. 5, pp. 275-278, Mar. 2021.

2020年

6.Yu Chen, Pengcheng Zuo, Taixia Shi, Yang Chen*, Photonic-based reconfigurable microwave frequency divider using two cascaded dual-parallel Mach Zehnder modulators [J], Opt. Exp., vol. 28, no. 21, pp. 30797-30809, Oct. 2020.

5.Yang Chen*, A Photonic-Based Wideband RF Self-Interference Cancellation Approach With Fiber Dispersion Immunity [J], IEEE/OSA J. Lightw. Technol., vol. 38, no. 17, pp. 4618-4624, Sept. 2020.

4.Pengcheng Zuo, Yang Chen*, Photonic-Assisted Filter-Free Microwave Doppler Frequency Shift Measurement Using a Fixed Low-Frequency Reference Signal [J], IEEE/OSA J. Lightw. Technol., vol. 38, no. 16, pp.4333-4340, Aug. 2020.

3.Yang Chen*, Lizhong Jiang, Qingbo Liu, Multi-Frequency Phase-Coded Microwave Signal Generation With an Increased Number of Frequencies [J], IEEE Photon. Technol. Lett., vol. 32, no. 16, pp. 975-978, Aug. 2020.

2.Yu Chen, Pengcheng Zuo, Yang Chen*, Photonic-assisted image rejection mixer based on Hilbert transform in the optical domain using a phase-shifted fiber Bragg Grating [J], Opt. Eng., vol. 65, no. 9, pp. 063101, Jun. 2020.

1.Yang Chen* and Jianping Yao, Photonic-Assisted RF Self-Interference Cancellation With Improved Spectrum Efficiency and Fiber Transmission Capability [J], IEEE/OSA J. Lightw. Technol., vol. 38, no. 4, pp. 761-768, Feb. 2020. 

2019年

4.Yang Chen*, Beiyue Weng, Jialin Liu, A Novel Photonic-based MIMO Radar Architecture With All Channels Sharing a Single Photonic Transceiver [J], IEEE Access, vol. 7, pp. 165093-165102, 2019.

3.Yang Chen*, Weifeng Zhang, Jingxuan Liu, and Jianping Yao, On-chip two-step microwave frequency measurement with high accuracy and ultra-wide bandwidth using [J], Opt. Lett., vol. 44, no. 10, pp. 2402-2405, May 2019. (Highlighted as an Editor’s Pick)

2.Beiyue Weng, Yu Chen, Yang Chen*, Photonic-assisted wideband frequency downconverter with self-interference cancellation and image rejection [J], Appl. Opt., vol. 58, no. 13, pp. 3539-3547, May 2019.

1.Yang Chen* and Jianping Yao, Simultaneous Multi-Frequency Phase-Coded Microwave Signal Generation at Six Different Frequencies Using a DP-BPSK Modulator [J], IEEE/OSA J. Lightw. Technol., vol. 37, no. 10, pp. 2293-2299, May 2019.

2018年

9.Beiyue Weng, Mengxu Chang, Yang Chen*, Radio-frequency self-interference cancellation using a dual-drive Mach-Zehnder modulator and a fiber Bragg grating [J]. Opt. Eng., vol. 57, no. 8, pp. 083107, Aug. 2018.

8.Yang Chen*. Frequency-Doubled Microwave Signal Generation With Arbitrary Amplitude and Phase Shift [J]. IEEE Photon. J., vol. 10, no. 4, pp. 5501410, Aug. 2018. (SCI: 000439616000001)

7.Yang Chen*. Photonic Generation and Transmission of Triangular and Square Waveforms With a Large Repetition Rate Tunable Range [J]. IEEE/OSA J. Lightw. Technol., vol. 36, no. 16, pp. 3293-3301, Aug. 2018. (SCI: 000438780400019)

6.Yang Chen*, Shilong Pan. Simultaneous wideband radio-frequency self-interference cancellation and frequency downconversion for in-band full-duplex radio-over-fiber systems [J]. Opt. Lett., vol. 43, no. 13, pp. 3124-3127, Jul. 2018. (SCI: 000437279200029)

5.Yang Chen*, Shilong Pan. Photonic Generation of Tunable Frequency-Multiplied Phase-Coded Microwave Waveforms [J]. IEEE Photon. Technol. Lett., vol. 30, no. 13, pp. 1230-1233, Jul. 2018. (SCI: 000435349900017)

4.Yang Chen*. Analysis of the dual-parallel Mach-Zehnder modulator based equivalent phase modulation [J]. J. Mod. Opt., vol. 65, no. 18, pp. 2079-2085, Jul. 2018.

3.Yang Chen*. A wideband photonic microwave phase shifter with 360-degree phase tunable range based on a DP-QPSK modulator [J]. Opt. Commun., vol. 410, pp. 787-792, Mar. 2018. (SCI: 000418646100121)

2.Yang Chen*. High-Speed and Wideband Frequency-Hopping Microwave Signal Generation via Switching the Bias Points of Optical Modulator[J]. IEEE Photon. J., vol. 10, no.1. pp. 5500407, Feb. 2018. (SCI: 000426011300001)

1.Yang Chen*, Shifeng Liu, Shilong Pan*. Multi-format signal generation using a frequency-tunable optoelectronic oscillator [J]. Opt. Exp., vol. 26, no. 3, pp. 3404-3420, Feb. 2018. (SCI: 000425365900111)

2017年

2.Yang Chen*, Shilong Pan. A Frequency-Tunable Binary Phase-Coded Microwave Signal Generator With a Tunable Frequency Multiplication Factor [J]. IEEE Photon. J., vol. 9, no.6, pp. 5503715, Dec. 2017. (SCI: 000418417100001)

1.Yang Chen*, Aijun Wen, Wu Zhang. Generation of Phase-Coded Microwave Signals Through Equivalent Phase Modulation[J]. IEEE Photon. Technol. Lett., vol. 29, no. 16, pp. 1371-1374, Aug. 2017. (SCI: 000406305400024)

2010-2016年

17.Yang Chen, Aijun Wen, Yan Chen, Xiaohui Wu. Photonic generation of binary and quaternary phase-coded microwave waveforms with an ultra-wide frequency tunable range[J]. Opt. Exp., vol. 22, no. 13, pp. 15618-15625, Jun. 2014. (SCI: 000338055900047)

16.Yang Chen, Tong Shao, Aijun Wen, Jianping Yao. Microwave vector signal transmission over an optical fiber based on IQ modulation and coherent detection[J]. Opt. Lett., vol. 39, no. 6, pp. 1509-1512, Mar. 2014. (SCI: 000332943800046)

15.Yang Chen, Aijun Wen, Jianping Yao. Photonic generation of frequency tunable binary phase-coded microwave waveforms[J]. IEEE Photon. Technol. Lett., vol. 25, no. 23, pp. 2319-2322, Dec. 2013. (SCI: 000326983800012)

14.Yang Chen, Wangzhe Li, Aijun Wen, Jianping Yao. Frequency-multiplying optoelectronic oscillator with a tunable multiplication factor[J]. IEEE Trans. Microw. Theory Tech., vol. 61, no. 9, pp. 3470-3478, Sep. 2013. (SCI: 000325655900034)

13.Yang Chen, Aijun Wen, Xiaojie Yin, Lei Shang. A photonic mm-wave frequency sextupler using an integrated Mach-Zehnder modulator with three arms[J]. Fiber Integrated Opt., vol. 31, no. 3, pp. 196-207, Jun. 2012. (SCI: 000304836200005)

12.Yang Chen, Aijun Wen, Xiaojie Yin, Lei Shang, Yong Wang. Generation of frequency-doubling mm-wave signal using a novel Mach-Zehnder modulator with three arms to overcome fiber chromatic dispersion[J]. Opt. Fiber Technol., vol. 18, no. 1, pp. 1-6, Jan. 2012. (SCI: 000299319200001)

11.Yang Chen, Aijun Wen, Lei Shang, Yong Wang. A full-duplex radio-over-fiber link with 12-tupling mm-wave generation and wavelength reuse for upstream signal[J]. Opt. Laser Technol., vol. 43, no. 7, pp. 1167-1171, Oct. 2011. (SCI: 000291292800020)

10.Yang Chen, Aijun Wen, Lei Shang. Full-duplex radio-over-fiber system based on a novel octupling mm-wave generation scheme[J]. Fiber Integrated Opt., vol. 30, no. 4, pp. 231-239, Aug. 2011. (SCI: 000299467400001)

9.Yang Chen, Aijun Wen, Jingjing Guo, Lei Shang, Yong Wang. A novel optical mm-wave generation scheme based on three parallel Mach-Zehnder modulators[J]. Opt. Commun., 2011, vol. 284, no. 5, pp. 1159-1169, Mar. 2011. (SCI: 000287179500009)

8.Yang Chen, Aijun Wen, Lei Shang. Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach-Zehnder modulators[J]. Opt. Commun., 2010, vol. 283, no. 24, pp. 4933-4941, Dec. 2010. (SCI: 000284436500015)

7.Xiaojie Yin, Aijun Wen, Yang Chen, Tonggang Wang. Studies in an optical mm-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators[J]. J. Mod. Opt., 2011, 58(8): 665-673. (SCI: 000289344900005)

6.Xiaojie Yin, Aijun Wen, Yang Chen. A cost-effective full-duplex radio-over-fiber system based on frequency octupling and wavelength reuse[J]. Fiber Integrated Opt., 2011, 30(6): 347-355. (SCI: 000299467900001)

5.Ming’an Li, Aijun Wen, Yang Chen, Lei Shang, Lei Yang, Fangyan Wang. An optical millimeter-wave vector signal generation scheme by frequency quadrupling[J]. Opt. Commun., 2012, 285(24): 5429-5432. (SCI: 000311196500122)

4.Mei Yin, Aijun Wen, Yang Chen, Lei Shang. Photonic generation of high order UWB signals[J]. Optik, 2013, 124(12): 1079-1082. (SCI: 000320011300002)

3.Aijun Wen, Ming’an Li, Lei Shang, Yang Chen. A novel optical SSB modulation scheme with interfering harmonics suppressed for ROF transmission link[J]. Opt. Laser Technol., 2011, 43(7): 1061-1064. (SCI: 000291292800004)

2.Lei Shang, Aijun Wen, Bo Li, Tonggang Wang, Yang Chen, Ming’an Li. An optical mm-wave generation scheme by frequency octupling using a nested MMI[J]. Opt. Commun., 2011, 284(24): 5618-5622. (SCI: 000296687100016)

1.Lei Shang, Aijun Wen, Bo Li, Tonggang Wang, Yang Chen, Ming’an Li. A filterless optical millimeter-wave generation based on frequency octupling[J]. Optik, 2012, 123(13): 1183-1186. (SCI: 000306268200013)


国际会议报告及论文:

2023年

6.Yang Chen*, Moxuan Han, and Taixia Shi, Digitally Assisted Photonic Analog Self-Interference Cancellation for Complex Self-Interference Scenarios [C], 2023 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, Chengdu, China, Nov. 13-15, 2023. (Invited)

5.Taixia Shi, Yang Chen*, Photonics-Assisted Adaptive Analog Wideband Self-Interference Cancellation Based on Digital Pre-modeling Search and Two-Tap Delay Adjustment [C], 2023 International Topical Meeting on Microwave Photonics (MWP2023), Nanjing, China, Oct. 15-18, 2023.

4.Yang Chen*, Time-frequency transform based on frequency-to-time mapping and filtering [C], SPIE/COS Photonics Asia 2023, Semiconductor Lasers and Applications (PA102), Beijing, China, Oct. 14-16, 2023. (Invited)

3.Yu Chen, Yang Chen*, Linearization for microwave photonic SEFDM transmission systems based on an iterative algorithm [C], SPIE/COS Photonics Asia 2023, Semiconductor Lasers and Applications (PA102), Beijing, China, Oct. 14-16, 2023.

2.Yang Chen*, Channelized microwave short-time Fourier transform in the optical domain, The 14th International Conference on Information Optics and Photonics (CIOP2023), Xi’an, China, Aug. 7-10, 2023. (Invited)

1.Shiyang Liu, Yang Chen*, Mitigating the Impact of Non-ideal PRBS on Photonics-Assisted Compressive Sensing System Through Complementary PRBS and Parallel Links [C], The 14th International Conference on Information Optics and Photonics (CIOP2023), Xi’an, China, Aug. 7-10, 2023.

2022年

5.Sunan Zhang, Lizhong Jiang*, Qingbo Liu, Yong Huang, Moxuan Han, Taixia Shi, Yang Chen*, Photonics-Assisted Joint Digital and Analog Self-Interference Cancellation and De-Chirping for Continuous-Wave Radar Systems [C], China International SAR Symposium (CISS2022), Shanghai, China, Nov. 2-4, 2022.

4.陈阳,多维度可重构微波时间频率参数光子学获取 [C],第七届微波光子学技术及应用研讨会,2022826-28日,中国桂林. (特邀报告)

3.Yang Chen*, Pengcheng Zuo, Dong Ma, Short-Time Fourier Transform Based on Stimulated Brillouin Scattering [C], The 13th International Conference on Information Optics and Photonics (CIOP2022), Xi’an, China, Aug. 7-10, 2022. (Invited)

2.Hang Yang, Taixia Shi, Yang Chen*, Multi-Band Microwave Vector Signal Generation and Transmission for Mobile Fronthaul Networks [C], The 13th International Conference on Information Optics and Photonics (CIOP2022), Xi’an, China, Aug. 7-10, 2022.

1. Yang Chen*, Pengcheng Zuo, Dong Ma, Microwave time and frequency acquisition: from one dimension to two dimensions [C], The 14th International Conference on Advanced Infocomm Technology (ICAIT2022), Chongqing, China, July 8-11, 2022. (Invited)

2021年

3.Moxuan Han, Qingbo Liu, Lizhong Jiang*, Yong Huang, Yang Chen*, A Photonic Self-Interference Cancellation Approach for Continuous-Wave Radar Systems [C], China International SAR Symposium (CISS2021), Shanghai, China, Nov. 3-5, 2021.

2.Yang Chen*, Photonics-enabled microwave measurement and detection [C], The 12th International Conference on Information Optics and Photonics (CIOP2021), Xi'an, China, Jul. 23-26, 2021. (Invited)

1.Dingding Liang, Qingbo Liu, Lizhong Jiang, Dong Ma, Yang Chen*, High-stable photonics-based frequency-quadrupled LFM signal generation for radar applications [C], The 12th International Conference on Information Optics and Photonics (CIOP2021), Xi’an, China, July 23-26, 2021.

2019年

5.Yu Chen, Yang Chen*, All-Optical Image Rejection Mixer Based on Optical Hilbert Transform Using a Phase-Shifted Fiber Bragg Grating [C], 2019 Asia-Pacific Microwave Conference (APMC2019). Singapore, December 10-13rd, 2019.

4.Yang Chen* Beiyue Weng, Jialin Liu, Simplified Photonic-Assisted MIMO Radar Transceiver for Large-Scale Antenna Array [C], 2019 Asia Communications and Photonics Conference (ACP2019), Chengdu, China, November 2-5, 2019.

3.Jialin Liu, Yang Chen*, Photonic-assisted microwave spectrum sensing based on optical carrier-suppressed single-sideband modulation and coherent detection [C], Real-time Photonic Measurements, Data Management, and Processing IV, SPIE/COS Photonics Asia, Hangzhou, China, October 20-23rd, 2019.

2.Yang Chen*, Beiyue Weng, Multifunctional microwave signal generation and processing based on equivalent phase modulation [C], Real-time Photonic Measurements, Data Management, and Processing IV, SPIE/COS Photonics Asia, Hangzhou, China, October 20-23rd, 2019. (Invited).

1.Beiyue Weng, Yang Chen*, Simultaneous frequency down-conversion, self-interference cancellation, and image rejection for radio-over-fiber systems using a DP-QPSK modulator [C], International Conference on Optical Communications and Networks 2018 (ICOCN2018), Zhuhai, China, November 16-19, 2018. SPIE Conference Proceeding, Feb. 2019.

2018年

6.Mengxu Chang, Yang Chen*, Generation of Phase-Coded Microwave Signals With a Tunable Frequency Multiplication Factor [C], 2018 Asia Communications and Photonics Conference (ACP2018), Hangzhou, China, October 26-29, 2018.

5.Yang Chen*, Shilong Pan, Photonics-Assisted Radio-Frequency Self-Interference Cancellation and Fiber Transmission Using a DP-QPSK modulator [C]. 2018 International Topical Meeting on Microwave Photonics (MWP2018), Toulouse, France, October 22-25th, 2018.

4.Yang Chen*, Shilong Pan, Photonic-Assisted Multi-Frequency Phase-Coded Microwave Signal Generation [C]. 2018 IEEE Photonics Conference, Reston, VA, USA, 30 September-4 October, 2018.

3.陈阳*,常梦旭,翁北粤,基于等效相位调制的微波信号光子学生成[C],全国第18次光纤通信暨第19届集成光学学术大会,2018713-16日,中国长春。

2.翁北粤,常梦旭,陈阳*,基于双驱动马赫曾德尔调制器和光纤布拉格光栅的射频信号自干扰抵消[C],全国第18次光纤通信暨第19届集成光学学术大会,2018713-16日,中国长春。

1.Mengxu Chang, Yang Chen*, Frequency-Doubled Phase-Coded Microwave Signal Generation Based on Cascaded Modulators [C]. The fifth IEEE MTT-S International Wireless Symposium (IEEE IWS’2018), Chengdu, China, May 6-10, 2018.

2017年

2.Yang Chen*, Shilong Pan. Generation of Frequency-Tripled Binary Phase-Coded Microwave Signals Using a DP-QPSK Modulator [C]. In 2017 Asia Communications and Photonics Conference (ACP2017), Guangzhou, China, November 10-13, 2017.

1.Yang Chen*, Shifeng Liu, Shilong Pan. An Optically Tunable Frequency-Multiplying Optoelectronic Oscillator Through Equivalent Phase Modulation [C]. In 2017 International Topical Meeting on Microwave Photonics (MWP2017), Beijing, China, October 23-26th, 2017.


国家发明专利:

近年来申请国家发明专利17项,已授权14项。

10 访问

相关教师