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Abstract

Sample surveys are widely used to obtain information about totals, means, medians, and other pa-

rameters of finite populations. In many applications, similar information is desired for subpopulations

such as individuals in specific geographic areas and socio-demographic groups. Often, the surveys

are conducted at national or similarly high levels. The random nature of the probability sampling can

result in few sampling units from many subpopulations that are not considered at the design stage. It

is difficult to estimate the parameters of these subpopulations (small areas) with satisfactory precision

and to evaluate the accuracy of the estimates. In the absence of direct information, statisticians resort

to pooling information across small areas via suitable model assumptions and administrative archives

and census data. In this paper, we propose three estimators of small area quantiles for populations

admitting a linear structure with normal error distributions or error distributions satisfying a semipara-

metric density ratio model (DRM). We study the asymptotic properties of the DRM-based method and

find it to be root-n consistent. Extensive simulation studies reveal the properties of the three methods

under various possible populations. The DRM-based method is found to be significantly more effi-

cient when the error distribution is skewed; otherwise, its efficiency is comparable to that of the other

methods.
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1 Introduction

Sample surveys are widely used to obtain information about totals, means, medians, and other parame-

ters of finite populations. In many applications, similar information is desired for subpopulations such as

individuals in specific geographic areas and socio-demographic groups. The estimation of finite subpop-

ulation parameters is referred to as the small area estimation problem (Rao 2003). While the geographic

areas may not be small, there is often a shortage of direct information for individual areas. Often, the

surveys are conducted at national or similarly high levels. The random nature of the probability sampling

can result in few sampling units from many subpopulations that are not considered at the design stage. It

is difficult to estimate the parameters of these subpopulations with satisfactory precision and to evaluate

the accuracy of the estimates.

Because of the scarcity of direct information from small areas, reliable estimates are possible only if

indirect information from other areas is available and effectively utilized. This leads to a common thread

of “borrowing strength.” Statisticians also seek auxiliary information from sources such as administrative

archives and census data to obtain an indirect estimate for the subpopulation parameter. This estimate

may then be combined “optimally” with the direct estimate if available.

Pioneering work on small area estimation includes Fay and Herriot (1979), Prasad and Rao (1990),

and Lahiri and Rao (1995). Research in this area has received increasing attention from both the public

and private sectors (Fay and Herriot 1979; Schaible 1993; Kriegler and Berk 2010). The number of

publications on this topic is increasing (Pfeffermann 2002, 2013; Jiang and Lahiri 2006; Ghosh et al.

2008; Jiang et al. 2010; Jiongo et al. 2013). Most studies focus on estimating small area means.

In sample surveys, the population distribution and quantiles are also important parameters of interest.

There are many papers devoted to their efficient estimation in various situations, such as Chambers and

Dunstan (1986), Francisco and Fuller (1991), Wang and Dorfman (1996), and Chen and Wu (2002). Re-
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cently, small area quantile estimations have also drawn substantial attention; see Tzavidis and Chambers

(2005), Chambers and Tzavidis (2006), Molina and Rao (2010), and Chaudhuri and Ghosh (2011). A

more detailed review will be given in Section 2.

In this paper, we propose three estimators of small area quantiles for populations admitting a linear

structure with normal error distributions or error distributions satisfying a semiparametric density ratio

model (DRM). In Section 3, we motivate and develop the new methods. In Section 4, we present the-

oretical properties of the DRM-based quantile estimators. They are found to be root-n consistent under

some generic conditions; the technical proofs are given in the supplementary material. In Section 5,

extensive simulation studies reveal properties of the three methods for various possible populations. The

DRM-based method is found to be significantly more efficient when the error distribution is skewed;

otherwise, its efficiency is comparable to that of the other methods. We end the paper with a summary

and discussion.

2 Literature review

The nested-error (unit level) regression model (NER) of Battese, Harter, and Fuller (1988) has been

widely adopted in the literature for small area estimation. Consider the situation where the population is

composed of m` 1 small areas, and nk sampling units are obtained from the kth area (k “ 0, 1, 2, . . . ,m).

Under this model, the univariate response value and its vector covariates on these sampling units satisfy

yk j “ xτk jβ` vk ` εk j, (1)

where vk denotes an area-specific random effect and εk j is a random error. The homogeneous NER

model assumption includes vk „ Np0, σ2
bq, εk j „ Np0, σ2q, and that they are independent of each other

and the covariates xk j. The assumption εk j „ Np0, σ2q can be relaxed by allowing an area-specific σ2

(heterogeneous NER or HNER) or replacing the normality by a semiparametric setting.

3



Under this model, the d1-variate regression coefficient β is common across the small areas. Hence,

samples from all the areas contain its information, and they are pooled to estimate β. When the overall

sample size n “
řm

k“0 nk is large, its estimator β̂ has high precision. Suppose the population covariate

means X̄k are known from, say, administrative records. Sensible indirect estimates of the population

means Ȳk (of Y) would be ˆ̄Yk “ X̄τ
kβ̂. Direct estimates of Ȳk, such as the regression estimator ȳk`pX̄k´

x̄kqβ̂ in obvious notation, can be combined to improve the efficiency. The specifics will be given later.

The above model places assumptions on yk j. Another commonly used model (Fay and Herriot 1979)

places assumptions on the area-level estimators in the form of ˆ̄Yk “
ř

j wk jyk j{
ř

j wk j incorporating the

survey design. At this stage, we downplay the importance of the design and do not explain the design

weights wk j and other issues. They will be part of our future development.

In some applications, conditional quantiles rather than expectations of Y given x are of interest. The

following quantile regression model is a useful platform:

PpY ď xτβq|X “ xq “ q

for each q P p0, 1q. Clearly, xτβq provides another useful way to characterize the relationship. To save

space, we cite only the ground-breaking paper Koenker and Bassett (1978) from an extensive literature

on regression quantiles.

The regression quantile function xτβ may be regarded as a solution to minEtρqpY ´ Xτβq|Xu with

a specific M-function ρqp¨q. Additional considerations lead to the use of a generic ρqp¨q and hence the

M-quantiles proposed by Breckling and Chambers (1988). Chambers and Tzavidis (2006) further ex-

tended the use of M-quantile models to small area estimation. In general, the qth M-quantile of the

conditional distribution of Y is denoted xτβψpqq, where the subscript ψ denotes the specific M-function

in the definition.

In the context of small area estimation, each unit with value x j, y j has a q j value such that y j “
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xτjβψpq jq. Let the average q j value over small area k be θk. Chambers and Tzavidis (2006) suggested that

θk reflects the random fluctuation of small area k. Hence, the cumulative distribution function (cdf) of y

of small area k may be estimated by

F̂kptq “ N´1
j

“

ÿ

jPsk

Ipyk j ď tq `
ÿ

jPrk

Ipxk jβψpθ jq ď tq
‰

where sk and rk are sets of observed and unobserved units in small area k. The unknown βψp¨q is fitted

over the whole data set. The small area quantiles are estimated accordingly.

The M-quantile-based approaches have been successfully employed in applications; see Tzavidis and

Chambers (2005) and Tzavidis et al. (2007). At the same time, they have some obvious limitations. First,

one must have all the values of x in order to compute F̂k. Second, the estimation is done by predicting

all the unobserved y values in the population. The empirical cdf based on the predicted values can be

inconsistent if the lost randomness in the prediction is not restored (Chen, Rao, and Sitter, 2000). We are

curious about the conditions under which the M-quantile-based quantile estimators are consistent.

Molina and Rao (2010) and Chaudhuri and Ghosh (2011) are two other important developments

in quantile estimation. Molina and Rao (2010) postulated a parametric joint distribution of ys and yr

(or the transformed response) where s and r stand for sets of observed and unobserved units in the

population. Once the joint distribution is estimated optimally, the conditional distribution of yr given ys

becomes available. The authors suggested sampling from this distribution to make up the unobserved

yr. The approach works well for small sample means and the cumulative distribution function if we

regard Ipyk j ď tq as a transformed response. The quantile estimation is a byproduct. Chaudhuri and

Ghosh (2011) proposed a method that contains a substantial nonparametric component. However, this

component is only for the posterior distribution of the parameters in a full parametric model on y. The

posterior quantiles of y in small areas are used as estimates. Because of this, their method is in fact fully

parametric.
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3 Proposed methods

Model (1) has a built-in mechanism for small area quantile estimation. Let Gk be the cumulative distri-

bution function of εk j. It can be seen that

Ppyk j ď yq “ EtPpεk j ď y´ νk ´ xk jβu|νk, xk ju

“ EtGkpy´ νk ´ xk jβqu.

Hence, the population distribution of this small area is given by

Fkpyq “ N´1
k

Nk
ÿ

j“1

Gkpy´ νk ´ xk jβq

where Nk denotes the area population size.

For any α P p0, 1q, define the α-quantile of Fk as ξk “ ξk,α “ infty : Fkpyq ě αu. Let F̂kpyq be an

estimate of Fkpyq. The corresponding small area quantile is estimated as

ξ̂k “ ξ̂k,α “ infty : F̂kpyq ě αu. (2)

Therefore, the small area quantile estimation problem becomes a cdf estimation problem.

3.1 Estimation under normality

Let σ̃2, σ̃2
b, and β̃ be the MLEs of σ2, σ2

b, and β under the assumption that the error distributions are

normal with equal variance across the small areas. Denote γ̃k “ nkσ̃
2
b{pσ̃

2 ` nkσ̃
2
bq. An empirical best

linear unbiased prediction (EBLUP) for the small area mean is given by

˜̄Yk “ X̄τ
kβ̃` γ̃kpȳk ´ x̄τkβ̃q “ X̄τ

kβ̃` γ̃kν̂k. (3)

Remark: because β̃ is MLE, it is not strictly unbiased but the terminology (E)BLUP sticks. Note the

shrinkage factor γ̃k for the random effect νk in the small area mean estimation. Let Φp¨q be the cdf of the
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standard normal. Substituting Φp¨{σq for Gkp¨q and so on in Fkpyq leads to

Fkpyq “ N´1
k

Nk
ÿ

j“1

Φ
`

ty´ pxk j ´ X̄kq
τβ̃´ ȳku{σ̃

˘

.

Its sample version, taking (3) into consideration, is our first cdf estimator:

F̃kpyq “
1
nk

nk
ÿ

j“1

Φ

´

ty´ pxk j ´ x̄kq
τβ̃´ ˜̄Yku{σ̃

¯

. (4)

By relaxing the equal area-specific error variance assumption, Jiang and Nguyen (2012) proposed an

HNER model in which the area-specific variance of εk j is σ2
k and that of νk is γσ2

k . The corresponding

EBLUP is given by

˘̄Yk “ X̄τ
kβ̆`

nkγ̆

1` nkγ̆
pȳk ´ x̄τkβ̆q (5)

where β̆ and so on are MLEs under HNER. This leads to our second normal-model-based cdf estimator:

F̆kpyq “
1
nk

nk
ÿ

j“1

Φ

´

ty´ pxk j ´ x̄kq
τβ̆´ ˘̄Yku{σ̆k

¯

. (6)

The corresponding small area quantile estimators will be referred to as the NER and HNER quantile

estimators. Both are completely dependent on the normality assumption. Because of this, they were

initially dismissed by the authors for the purpose of quantile estimation. Instead, the focus was on a

semiparametric approach for estimating Gk, to be discussed in the next subsection. To our surprise,

the performance of the NER- and HNER-based small area quantile estimations is satisfactory when the

normality assumption holds, and it remains competitive when the model assumption is mildly violated.

3.2 Estimation under DRM

We now develop a third approach under a relaxed model assumption. We impose a DRM (Anderson

1979) on Gk, for k “ 1, 2, . . . ,m,

logtdGkptq{dG0ptqu “ θτkqptq, (7)
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with a prespecified d2-variate function qptq and an area-specific tilting parameter θk. We require the

first element of qptq to be one, so the first element of θk is a normalization parameter. The baseline

distribution G0ptq is left unspecified, and qptq could be chosen to be p1, tqτ. The nonparametric G0 has

flexibility, while the parametric tilting factor θτkqptq enables effective “strength borrowing” between small

areas. Let us also emphasize that any G j may be regarded as a baseline distribution because

logtdGkptq{dG jptqu “ pθk ´ θ jq
τqptq. (8)

The only effect of the choice is to introduce a parameter transformation: θ1k “ θk ´ θ j. The DRM is

flexible, as is indicated by its inclusion of normal, Gamma, and other distribution families.

Unlike NER or HNER, the EL quantile estimates are linked to G0, which will be made nonparametric

here. An efficient nonparametric estimate of G0, when available, results in efficient quantile estimates for

all the small areas. At the same time, since it is nonparametric, with a proper choice of qptq this approach

is likely robust to some degree of model mis-specification.

Empirical likelihood estimate of Gk

Consider an artificial situation where we have all the values of tεk j : j “ 1, 2, . . . , nku, k “ 0, . . . ,m,

from a DRM. These observations are the basis for inference on Gk. Following Owen (1988, 2001) or Qin

and Lawless (1994), we confine the form of the candidate G0 to G0ptq “
ř

k, j pk jIpεk j ď tq, where Ip¨q is

the indicator function and the summation
ř

k, j is shorthand for
řm

k“0

řnk
j“1. The support of G0 includes

all εk j, not just those with k “ 0. This fact underlies the strength-borrowing strategy. In this setting, we

have pk j “ dG0pεk jq and dGkpεi jq “ pi j exptθτkqpεi jqu, k “ 0, 1, . . . ,m, where the θk are all d2-variate

unknown parameters. In other words, Gkptq is confined to the form

Gkptq “
ÿ

i, j

pi j exptθτkqpεi jquIpεi j ď tq. (9)

Clearly, θ0 “ 0 in the above expression. Because εk j follows Gkptq, it contributes to the likelihood only
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through dGkpεk jq. The empirical likelihood (EL) is given by

LnpG0,G1, . . . ,Gmq “
ź

k, j

dGkpεk jq “
`

ź

k, j

pk j
˘

¨ exp
“

ÿ

k, j

tθτkqpεk jqu
‰

where the parameter θ and the pk j’s satisfy pk j ě 0 and for all k “ 0, 1, . . . ,m,

ÿ

i, j

pi j exptθτkqpεi jqu “ 1. (10)

Note that the above summation is over i, j because k is reserved as the identity of the kth small area here.

We will revert to k, j wherever possible.

Maximizing `npθ,G0q with respect to G0 under the constraints (10) results in fitted probabilities (Qin

and Lawless, 1994)

p̂k j “ n´1
t1`

m
ÿ

l“1

λlrexptθτl qpεk jqu ´ 1su´1 (11)

and the profile EL, up to an additive constant,

˜̀npθq “ ´
ÿ

k, j

logt1`
m
ÿ

l“1

λlrexptθτl qpεk jqu ´ 1su `
ÿ

k, j

tθτkqpεk jqu

with pλ1, λ2, ..., λmq being the solution to

ÿ

i, j

exptθτkqpεi jqu ´ 1
1`

řm
l“1 λlrexptθτl qpεi jqu ´ 1s

“ 0

for k “ 1, . . . ,m. The stationary point of ˜̀npθq coincides with that of a dual form of the empirical

log-likelihood function (Kezioua and Leoni-Aubina 2008):

˘̀npθq “ ´
ÿ

k, j

log
“

m
ÿ

r“0

ρr exptθτrqpεk jqu
‰

`
ÿ

k, j

θτi qpεk jq, (12)

with ρr “ nr{n, r “ 0, 1, . . . ,m.

For point estimation, it is simpler to work with ˘̀npθq, which is convex and free from constraints. Once

the values of εk j are provided, we can easily find the maximum point, which serves as the maximum EL
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estimate of θ. It is then used to compute the fitted values defined by (11) with λl replaced by ρl. We

subsequently obtain the estimator Ĝk and other parameters of interest via the invariance principle.

This approach first appears in Qin and Zhang (1997), Qin (1998), Zhang (1997), and others. In

particular, the properties of the quantile estimators are discussed by Zhang (2000) and Chen and Liu

(2013). For small area quantile estimation, however, we do not directly observe εk j. This difficulty is

resolved by replacing these values by residuals obtained by fitting (1).

Parameter estimation for sampled small areas

Suppose we have independent samples representing m ` 1 small areas: pyk j, xk jq for k “ 0, 1, . . . ,m

and j “ 1, . . . , nk. Under this model in which the distribution of y (or that of ε) is unspecified, we may

minimize
ÿ

k, j

pyk j ´ νk ´ xτk jβq
2

with respect to νk and β to obtain ν̂k “ ȳk ´ x̄τkβ̂ with

β̂ “ t
ÿ

k, j

pxk j ´ x̄kq
τ
pxk j ´ x̄kqu

´1
t
ÿ

k, j

pxk j ´ x̄kq
τ
pyk j ´ ȳkqu, (13)

where x̄k and ȳk are sample means over small area k. The residuals of this fit are given by

ε̂k j “ yk j ´ ȳk ´ pxk j ´ x̄kq
τβ̂. (14)

We then treat tε̂k j : j “ 1, 2, . . . , nku as samples from DRM and apply the EL method of Section 3.2.

Remark: Normality-based NER or HNER would have shrunk the predicted values of νk. This shrink-

age will be postponed into the construction of F̂k instead of occurring prematurely in Ĝk.

Let `npθq denote the log EL function (12) with εk j replaced by ε̂k j. We define the maximum EL

estimator of θ by θ̂ “ argmax`npθq and accordingly define the estimators

Ĝkptq “
ÿ

i, j

p̂i j exptθ̂
τ

kqpε̂i jquIpε̂i j ă tq (15)
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with the convention θ̂0 “ 0 and p̂i j “ n´1t1 `
řm

l“1 ρlrexptθ̂
τ

l qpε̂i jqu ´ 1su´1. This leads to EL-DRM-

based cdf estimation, with some choice of ˆ̄Y:

F̂kpyq “ n´1
k

nk
ÿ

j“1

Ĝkpy´ pxk j ´ x̄kq
τβ̂´ ˆ̄Ykq. (16)

The corresponding small area quantile estimators will be referred to as EL estimators.

An authentic choice of ˆ̄Yk is the regression estimator ȳk`pX̄k´ x̄kqβ̂. This choice amounts to utilizing

ν̂k without shrinkage, and it was adopted in the first version of this paper. To better line up with the NER

and HNER quantiles, we choose an NER-based ˜̄Y in the simulation. The difference between the two

choices is negligible.

Because the basis of Ĝ0 (or equivalently any Gk) is on all n observations, the estimation is reliable.

The estimation of the amount of tilting θk between them is largely done through direct observations. The

low precision does not seem to cause serious damage in the estimation of Fk.

4 Properties of the EL quantile estimation

For each k, the covariates txk j, j “ 1, 2, . . . , nku are iid with a finite mean and a nonsingular and finite

covariance matrix Vk. The error terms tεk j : j “ 1, 2, ¨ ¨ ¨ , nku are iid samples, independent of the

covariates, with conditional variance σ2
k . The pure residuals εk j form m ` 1 samples from populations

with distribution function Gk satisfying (7). Let the total sample size n “
ř

k nk Ñ 8, and assume

ρk “ nk{n remains a constant (or within an n´1 range) as n increases. Let β̂ and θ̂ be defined by (13).

Theorem 1. Assume the general setting just presented in this section. Let Vx “
řm

k“0 ρkVk. As

n Ñ 8, we have
?

npβ̂ ´ βq d
ÝÑ Np0,Σβq, where d

ÝÑ denotes convergence in distribution and Σβ “

V´1
x p

ř

k ρkVkσ
2
kqV

´1
x .
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For ease of exposition of the next theorem, we introduce some notation. For k “ 0, 1, . . . ,m, let

hpx; θq “
m
ÿ

k“0

ρk exptθτkqpxqu; hkpx; θq “ ρk exptθτkqpxqu{hpx; θq.

Clearly, 0 ă hk ă 1 for all k. Let hpx; θq “ th0px; θq, . . . , hmpx; θquτ and define an pm ` 1q ˆ pm ` 1q

matrix

Hpx; θq “ diagthpx; θqu ´ hpx; θqhτpx; θq.

We will use hpx;
‚
xq and hpx;

‚

θq for the partial derivatives of h with respect to x and θ respectively.

When θ “ θ˚, the true value of θ, we may drop θ˚ in hpx; θ˚q and denote it as hpxq. Lastly, we use dḠpxq

for hpx; θ˚qdG0pxq in the integrations.

Theorem 2. Assume the conditions of Theorem 1. Furthermore, the population distributions Gk satisfy

DRM (7) with true parameter value θ˚, and
ş

hpt; θqdG0 ă 8 in a neighborhood of θ˚. Also assume

that the components of qptq are linearly independent with the first element being one, they are twice

differentiable, and there exist a function ψptq and c0 ą 0 such that

sup
t:|t´u|ďc0

t}qptq}}qp
‚‚

t q} ` }qptq}}qp
‚

tq}2
u ď ψpuq (17)

for all u with
ş

ψpuqdḠpuq ă 8. Then as n goes to infinity,
?

npθ̂ ´ θ˚q d
ÝÑ Np0,Ωq where Ω is given

in (A.10) in the supplementary material.

The assumption that
ş

hpt; θqdG0ptq ă 8 in a neighborhood of θ˚ implies the existence of the moment

generating function of qptq and therefore all its finite moments. Note that our log EL is

`npθq “
ÿ

k, j

rθτkqpε̂k jq ´ logthpε̂k j; θqus. (18)

Since the first component of qptq is equal to one, the condition in (17) implies

sup
t:|t´u|ďc0

}qp
‚‚

t q} ` }qp
‚

tq}2
ď ψpuq for all u. (19)
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Therefore, for all tk, ju, when we approximate θ̂
τ

kqpε̂k jq´ logthpε̂k j; θ̂qu by their first-order Taylor expan-

sions at pεk j; θ˚q, the summation of the remainders is of the order opp1q. Combining this with the proof of

Theorem 2.1 of Chen and Liu (2013) immediately leads to the root-n consistency of θ̂. This observation

alleviates the burden of proof.

We next examine the asymptotic properties of the proposed small area quantile estimators, which we

call EL quantiles for short.

Theorem 3. Assume the conditions of Theorem 2. Suppose in addition that the Gkptq have smooth and

bounded density functions, and Fkpyq has positive density at ξk. Then the EL quantile in (2) is root-n

consistent. That is, ξ̂k ´ ξk “ Oppn´1{2q.

5 Simulation study

In this section, we use simulation to demonstrate the performance of the small area quantile estimators.

Ideally, we should compare the new methods with all existing methods including those of Chambers and

Tzavidis (2006), Molina and Rao (2010), and Chaudhuri and Ghosh (2011). As pointed out earlier, the

M-quantile method is possible only if all the covariates are observed. All of them are computationally

involved, which introduces substantial obstacles in their independent implementation. Because of this,

we limit our simulation to four quantile estimators. One is the “Direct” estimator based on the empirical

quantiles. The other three are the quantiles of (4) and (6) (NER and HNER for short) and the EL quantiles.

In the simulation, we examine the 5%, 25%, 50%, 75%, and 95% small area quantile estimations.
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5.1 Simulation settings

The first task of the simulation is to create finite populations. We consider the following two models for

the general structure of the population:

yk j “ xτk jβ` νk ` εk j, (A)

yk j “ xτk jβ` 0.4 logp1` xτk jxk j{100q ` νk ` εk j. (B)

Model (A) contains a linear structure between the response variable y and the predetermined covari-

ate vector x. Model (B) contains in addition a nonlinear structure that helps us to examine the model

robustness of the quantile estimators.

To ensure a high level of authenticity, we use real survey data (to be presented in the next subsection)

as the blueprint for other details of the finite populations:

1. sample Nk “ 1000 three-dimensional xk j values without replacement from the real survey data,

k “ 0, 1, . . . 19;

2. let βτ0 “ p0.021, 0.024, 0.070q, the fitted value from the real survey data;

3. generate νk from Np8, 1q and from Np8, 4q to mimic the real-data fit.

Next, we specify the error distribution, that of εk j. We sampled εk j from

(i) Np0, 1q;

(ii) normal mixture 0.5Np´µk{6, 1q ` 0.5Npµk{6, 1q;

(iii) normal mixture 0.1Np´µk{2, 1q ` 0.9Npµk{18, 1q;

(iv) normal mixture 0.9Np´µk{18, 1q ` 0.1Npµk{2, 1q;

(v) fitted residuals based on the real survey data after inflation by a factor of 1.15.
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Note that only one of the above five error distributions is employed for each finite population created.

Choice (i) matches the NER model assumption; (ii) is non-normal but symmetric; (iii) and (iv) are skewed

in opposite directions; and (v) is from real data. The shape of the distribution in (v) is close to that of the

skewed distribution in (iii).

To induce heterogeneity while avoiding too much human intervention, we generated µk in (ii)–(iv)

from a uniform distribution on the interval r4.5, 6s. Another factor is the signal-to-noise ratio, i.e., the

proportion of the within-small-area variation explained by the linear structure xβ. We generated finite

populations with β “ 1.0β0, 1.25β0, and 1.5β0. These choices set the signal-to-noise ratios to around

30%, 50%, and 70%. Some choices may still appear unnatural due to our desire to enforce similar σ2

values and so on across the populations or subpopulations after the other parameter values have been

chosen. Once a finite population is generated/created, the small area population quantiles are computed

and regarded as target parameters for the inference.

The combination of 2 model structures (A and B), 5 types of error distribution, 3 scales in β, and 2

choices for the νk-generating distribution leads to 60 finite populations. These are further compounded

with 2 sample sizes, n “ 200 and n “ 1000. From these results, we will present six sets by omitting the

results with β “ 1.5β0 and νk „ Np8, 4q and so on.

With N “ 1000 repetitions, we drew random samples of size n without replacement from the finite

population and estimated the parameters. We did not completely follow simple random sampling without

replacement at the population level. To avoid the possibility that some small areas have very few sampled

units, we drew n ´ 40 units randomly at the population level and allocated an additional 2 units in each

small area. We need nk ě 2 to properly estimate θk . This plan is not convenient in a real-world situation.

However, it does not distort our comparison of the methods and prevents ad hoc adjustments. In real-

world applications, one may have to set small areas with nk ă 2 aside and treat them separately.

We experimented with many choices of qptq in the DRM and eventually settled on q1ptq “ p1, tqτ and
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q2ptq “ p1, sign-rootptqqτ. The corresponding EL quantiles will be referred to as EL(1) and EL(2). These

two basis functions are not “true.” The choices are motivated by the general overall performance in terms

of “model robustness.” Let ξ̂p jq
k be a generic quantile estimate in the jth repetition. We report the average

mean squared error (amse), defined to be

amse “ tNpm` 1qu´1
m
ÿ

k“0

N
ÿ

j“1

pξ̂
p jq
k ´ ξkq

2.

When the model does not match the population, bias can inflate the size of amse. For this reason, we also

report the average absolute biases:

abias “ pm` 1q´1
m
ÿ

k“0

ˇ

ˇN´1
N
ÿ

j“1

ξ̂
p jq
k ´ ξk

ˇ

ˇ.

Because it fixes the finite population and average over repeated implementations of the sampling

plan, the amse is a criterion for design-based analysis. Many of our theoretical results are for model-

based analysis. Based on pilot simulation trials, the amse comparisons do not change from one basis to

another. Design-based simulation avoids the substantial computational burden of repeatedly generating

large finite populations and computing their parameter values. This harmless compromise saves a great

deal of computation.

5.2 Simulation results

Tables 1–6 present the simulated amse and abias values under Models (A) and (B) with the error distri-

butions (i)–(v) for the five quantile estimators. Recall that EL(1) and EL(2) are EL quantiles with two

choices of the basis function: q1ptq “ p1, tqτ and q2ptq “ p1, sign-rootptqqτ.

Across all six tables and the omitted results, we observe that our three methods have an amse that is

substantially lower than that of the Direct method. This is an indication that the strategy of “strength-

borrowing” works. When the error distribution is homogenous normal (i), NER generally has a noticeable
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lower amse. The superiority of NER under (“incorrect”) model (B) is still noticeable but more moderate;

see Tables 4–6. EL is a close second under error distribution (i).

Let us now focus on the performance under error distribution (ii): non-normal but symmetric with

mild heterogeneity. It is clear that both Direct and HNER lose out. NER and EL(2) now take turns at

having the lowest amse. EL(1) is in a respectable third place. HNER remains the last, but its performance

is close to that of the other methods in many instances. The nonlinear structure of (B) inflates the amse

of all the methods.

Next, we move to the results for the populations with other error distributions: they are all skewed.

NER remains largely competitive for 50% quantile estimation and occasionally has good performance

for 5% quantile estimation (for instance, Model A (iv, v)). The two EL quantiles are routinely the best.

For Model (A) error distribution (iii), the amse values of the ELs are 0.307 and 0.278, compared with

0.708 and 1.326 for NER and HNER. HNER generally has the highest amse , although there are a few

exceptions (Model A (iv) for the 25% quantile). Of the two EL quantiles, EL(1) works better in most

cases under the skewed error distributions (iii)–(v).

Table 2 contains results parallel to those in Table 1, where the population regression coefficient vector

is inflated by a factor of 1.25. This change increases the signal of the linear structure and improves the

precision of all the statistical methods. However, it also increases the scale of y and therefore those of

the subpopulation quantiles. We cannot easily quantify the effect of this change. However, we find that it

has no effect on the relative performance of the five quantiles.

Increasing the sample size in general reduces both the bias and the variance of point estimators.

Tables 1 and 3 are the same except for different sample sizes: n “ 200 and n “ 1000. In Table 3 we see

a substantially reduced amse in all the methods. The level of reduction is, however, not uniform. Direct

and the ELs are clear winners under error distributions (iii)–(v). This is because NER and HNER are

constructed based on normality, so they are likely inconsistent in an asymptotic sense. Their biases do
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not become zero even if the sample size increases to infinity. In the simulations, the abias values of NER

and HNER do not decrease as fast as those of the EL methods.

Model (B) differs from Model (A) by having a nonlinear structure. This structure “invalidates” all the

methods except the Direct method. Tables 4, 5, and 6 give the results for model B corresponding to Tables

1, 2, and 3. The nonlinear population structure hurts EL(1), EL(2), NER, and HNER indiscriminately.

However, the discussions from Model (A) remain applicable.

Bias can be a major factor in the amse. The superior performance of the ELs compared with NER

or HNER under error distributions (iii)–(v) is attributable to their lower biases (except for some 5%

quantiles). Model (B) contains an additive nonlinear structure compared to Model (A). The EL methods

are semiparametric, and we expected that this flexibility would make them stronger competitors under

mild structural mis-specification. Our simulation results do not seem to support this conjecture.

A more streamlined summary is as follows.

1. When the error distribution is normal or non-normal but symmetric, EL(1), EL(2), and NER have

the lowest amse. NER is marginally the best.

2. If the error distribution is skewed to the left (right), then the 5% (95%) quantile is the hardest to

estimate with good precision. Excluding this quantile, the EL quantiles have a substantially lower

amse.

3. Suppose the results in Table 1 are typical. The reduction of amse from NER to EL(1) is 44% on

average over (iii)–(v) after excluding the nonperforming 5% quantiles of (iii) and (v) and the 95%

quantile of (iv). That is, EL(1) outperforms by a large margin.

4. The nonlinear population structure prescribed by Model (B) hurts EL(1), EL(2), NER, and HNER

indiscriminately. It does not alter their relative performance.
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5. Increasing the importance of the linear structure, from β0 to 1.25β0 or 1.5β0 (this case omitted),

does not alter the relative performance of these quantile estimators.

6. The EL methods benefited the most from an increased sample size.

7. When the error distribution is skewed to the left as in (iii) and (v), the amse for estimating 5% is

very large. When it is skewed to the right as in (iv), the 95% quantile is the hardest to estimate.

These results can be explained by the lower value of the density functions.

8. Bias plays a larger role in NER and HNER in terms of the amse when the sample size increases.

This points to the model dependence of these two methods.

A straightforward summary is: NER works best and the EL methods are comparable when the er-

ror distribution is normal or nearly normal. The EL methods outperform significantly when the error

distribution is skewed.

5.3 Simulation based on real data

Finite populations created based on statistical models are inevitably artificial. We wish to study our

method on a population that is closer to the real world. For this reason, we downloaded the data set

Survey of Labour and Income Dynamics (SLID) provided by Statistics Canada (2014) from the University

of British Columbia library data centre. According to the readme file, this survey complements traditional

survey data on labour market activity and income with an additional dimension: the changes experienced

by individuals over time.

We are grateful to Statistics Canada for making the data set available, but we do not address the

original goal of the survey here. Instead, we use it to create a realistic finite population to study the

effectiveness of our small area quantile estimator.
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The data set contains 147 variables and 47705 sampling units. We keep 6 of the 147 variables, i.e.,

total income (ttin), gender (gender), age (age), years of experience (yrx), number of weeks employed

(tweek), and education level (edu). More precise definitions are not necessary here. We remove any

units containing missing values in these six variables as well as those with ttin ď 0. The problem of

estimating the proportion of zeroes in a population is a research topic by itself and is not the focus of this

paper. Their removal makes the population easy to handle without compromising the authenticity that

we wish to establish. The resulting data set contains 35488 sampling units.

We ignore the sampling plan under which this data set was obtained. Instead, we examine how well

our proposed small area quantile estimators perform if we sample from this “real” population. We first

create 10 age groups composed of individuals whose ages are in the following intervals:

r0, 20q r20, 25q r25, 30q r30, 35q r35, 40q r40, 45q r45, 50q r50, 55q r55, 60q r60, 8q

Each age group is then divided into male and female subpopulations. This forms a finite population

with 20 small domains (i.e., small areas) based on age–gender combinations. The sizes of these small

domains are as follows.

Male 1231 1525 1372 1337 1469 1536 1866 1890 1920 3089

Female 1200 1433 1449 1504 1497 1695 2053 2019 1944 3459

We regard logp1 ` ttinq as the response variable and use yrx, tweek, and edu as covariates. The

small area 5%, 25%, 50%, 75%, and 95% population quantiles are depicted in Figure 1 for males and

females separately. We use simulation to evaluate how well they are estimated by our three methods. We

report the results for n “ 200 and n “ 1000 in Table 7.

We first notice that the 5% quantile is the hardest to estimate with good precision. This is because the

error distribution is skewed toward the left. This density function has lower densities at lower quantiles.

The variance of a quantile estimator is generally inversely proportional to the size of the density function.
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Hence, all the methods have a large amse compared with the amse at other quantiles. Overall, HNER is

the worst if Direct is not counted. None of the other methods stand out.

For the other four quantiles, EL(1) has the lowest amse and EL(2) is a close second. The improvement

of the EL methods over NER or HNER is substantial. For the median estimation, the amse values of NER

are 40% (n “ 200) and 180% (n “ 1000) higher than those for EL(1). The comparisons for the other

quantiles (excluding 5%) are just as sharp.

Because the data set is not generated from a model with a linear structure, we believe that increasing

the sample size should reduce the variance of all the estimators significantly but have a smaller effect

on the biases. However, the biases of the EL quantiles should be reduced to a larger degree because of

their flexible nonparametric error distribution assumption. This is the case for the 25%, 50%, and 75%

quantile estimations. We observe a 65% reduction in bias for EL(1) compared with merely 20% for NER.

The changes in the biases of the 5% and 95% quantile estimations are small.

In Figure 2, we depict the the small area median estimates of EL(1) and NER when n “ 200. The

y-axis has been transformed to ttin, the total income (presumably in Canadian dollar). For each small

area, we draw a box where the top, middle, and bottom lines are 90th, 50th, and 10th percentiles of 1000

median estimates of EL(1) and NER respectively. The true values of the small area (age–gender group)

medians are marked by stars. We find that all the EL(1) boxes contain the true small area medians, but

two NER boxes fail for two small areas. The EL(1) boxes are generally shorter, with the stars located

closer to the middle line.

Based on these results, we conclude that the EL quantiles outperform NER and HNER by a large

margin for this population where the error distribution is skewed (based on logp1` ttinq).
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6 Conclusions and discussion

We have developed three methods for small area quantile estimation. All of them are based on a linear

regression model at the unit level. The first two are based on a normal error distribution, and the third is

based on a semiparametric DRM via empirical likelihood.

All three methods are helpful compared to a direct estimator constructed through the area-specific

empirical distributions. In particular, the EL quantile estimators are semiparametric, and their perfor-

mance is satisfactory over a broad range of error distributions. When the error distribution is skewed, the

EL quantiles are by far the best. The NER quantile estimator is surprisingly resistant to mild violation

of the normality assumption. The performance of the HNER quantile estimator is less satisfactory in the

examples we investigated.

In theory, the EL quantiles are consistent only when the observations are independent. Independence

is approximately satisfied when the sample fraction is low. There are no practical obstacles to the appli-

cation of the new methods to data collected via complex sampling plans, although we need to work on a

solid justification.

In statistical practice, it is generally desirable to be able to assess the precision of an estimator through

a good MSE estimation. For the EL quantile this is likely to be a challenging task. We plan to discuss the

MSE issue in a future paper.

This paper raises more questions than it has answered. In particular, the theory totally ignores ran-

domness due to the probability sampling plan or the population structure. In addition, the EL approach

should have a built-in smoothing mechanism on the estimation of θk across the small areas. The asymp-

totic results based on a fixed number of small areas are merely placebos. All these shortcomings are

serious but should be overcome by our continued efforts.
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Supplemantary material

The supplementary material presents the proofs of Theorems 1–3.
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Table 1: amse and abias of small area quantile estimators (Model A, n “ 200, β “ β0).

amse abias

Error α Direct EL(1) EL(2) NER HNER Direct EL(1) EL(2) NER HNER
5% 0.588 0.157 0.152 0.133 0.264 0.173 0.150 0.147 0.111 0.176
25% 0.264 0.109 0.103 0.100 0.129 0.086 0.085 0.083 0.073 0.099

(i) 50% 0.195 0.107 0.100 0.099 0.100 0.022 0.082 0.080 0.079 0.080
75% 0.220 0.115 0.109 0.106 0.119 0.071 0.092 0.092 0.087 0.077
95% 0.455 0.145 0.141 0.126 0.231 0.149 0.142 0.142 0.119 0.111

5% 0.436 0.192 0.166 0.147 0.216 0.169 0.144 0.142 0.127 0.143
25% 0.236 0.156 0.117 0.124 0.136 0.054 0.103 0.101 0.128 0.139

(ii) 50% 0.302 0.182 0.120 0.117 0.118 0.061 0.086 0.085 0.090 0.093
75% 0.238 0.175 0.130 0.156 0.168 0.032 0.139 0.134 0.198 0.211
95% 0.243 0.150 0.130 0.126 0.201 0.141 0.097 0.095 0.092 0.100

5% 1.662 0.307 0.278 0.708 1.326 0.478 0.351 0.304 0.733 0.817
25% 0.603 0.110 0.136 0.243 0.372 0.258 0.092 0.090 0.341 0.299

(iii) 50% 0.135 0.093 0.116 0.174 0.179 0.036 0.102 0.100 0.248 0.239
75% 0.084 0.099 0.118 0.111 0.060 0.028 0.090 0.089 0.078 0.090
95% 0.144 0.117 0.132 0.336 0.291 0.090 0.104 0.107 0.448 0.335

5% 0.339 0.163 0.179 0.249 0.229 0.150 0.113 0.113 0.322 0.233
25% 0.152 0.096 0.116 0.123 0.066 0.082 0.084 0.085 0.126 0.092

(iv) 50% 0.112 0.092 0.115 0.138 0.134 0.016 0.082 0.082 0.157 0.166
75% 0.518 0.105 0.131 0.275 0.390 0.236 0.097 0.098 0.384 0.346
95% 1.980 0.437 0.354 1.032 1.840 0.683 0.451 0.379 0.918 1.038

5% 1.762 0.283 0.288 0.258 0.672 0.125 0.263 0.258 0.240 0.249
25% 0.360 0.100 0.119 0.165 0.264 0.151 0.115 0.117 0.224 0.164

(v) 50% 0.144 0.087 0.105 0.125 0.127 0.027 0.104 0.104 0.157 0.146
75% 0.132 0.098 0.114 0.114 0.086 0.052 0.100 0.100 0.108 0.096
95% 0.293 0.142 0.156 0.272 0.279 0.078 0.166 0.165 0.347 0.192
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Table 2: amse and abias of small area quantile estimators (Model A, n “ 200, β “ 1.25β0).

amse abias

Error α Direct EL(1) EL(2) NER HNER Direct EL(1) EL(2) NER HNER
5% 0.703 0.190 0.185 0.165 0.285 0.177 0.158 0.156 0.127 0.181
25% 0.314 0.113 0.107 0.104 0.132 0.099 0.088 0.086 0.078 0.098

(i) 50% 0.220 0.108 0.101 0.100 0.102 0.027 0.080 0.077 0.075 0.077
75% 0.239 0.119 0.113 0.110 0.121 0.073 0.089 0.089 0.085 0.075
95% 0.474 0.152 0.148 0.134 0.233 0.146 0.140 0.140 0.117 0.105

5% 0.591 0.238 0.209 0.177 0.240 0.194 0.156 0.155 0.138 0.156
25% 0.285 0.154 0.115 0.120 0.132 0.089 0.087 0.086 0.098 0.108

(ii) 50% 0.316 0.179 0.120 0.121 0.122 0.065 0.092 0.092 0.102 0.105
75% 0.270 0.182 0.135 0.159 0.170 0.044 0.137 0.132 0.192 0.203
95% 0.271 0.162 0.141 0.132 0.204 0.150 0.103 0.101 0.081 0.098

5% 1.574 0.266 0.254 0.542 1.069 0.363 0.300 0.267 0.586 0.655
25% 0.650 0.129 0.156 0.217 0.347 0.252 0.095 0.094 0.283 0.246

(iii) 50% 0.178 0.098 0.121 0.183 0.191 0.056 0.106 0.105 0.260 0.247
75% 0.100 0.108 0.127 0.116 0.068 0.028 0.094 0.093 0.082 0.095
95% 0.158 0.129 0.144 0.325 0.283 0.095 0.106 0.108 0.426 0.323

5% 0.482 0.224 0.240 0.226 0.217 0.188 0.134 0.134 0.231 0.165
25% 0.222 0.108 0.128 0.135 0.080 0.111 0.098 0.099 0.145 0.115

(iv) 50% 0.138 0.096 0.119 0.131 0.125 0.024 0.076 0.077 0.129 0.141
75% 0.498 0.112 0.139 0.258 0.367 0.219 0.096 0.097 0.352 0.320
95% 1.979 0.456 0.375 0.982 1.753 0.662 0.463 0.389 0.873 0.990

5% 1.771 0.285 0.293 0.268 0.652 0.097 0.251 0.246 0.221 0.230
25% 0.425 0.112 0.131 0.166 0.263 0.165 0.125 0.126 0.211 0.158

(v) 50% 0.175 0.092 0.109 0.130 0.135 0.035 0.108 0.109 0.168 0.153
75% 0.149 0.105 0.121 0.117 0.091 0.049 0.099 0.098 0.101 0.096
95% 0.309 0.155 0.169 0.271 0.277 0.091 0.168 0.168 0.334 0.180
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Table 3: amse and abias of small area quantile estimators (Model A, n “ 1000, β “ β0).

amse abias

Error α Direct EL(1) EL(2) NER HNER Direct EL(1) EL(2) NER HNER
5% 0.141 0.033 0.032 0.031 0.048 0.087 0.067 0.065 0.063 0.060
25% 0.048 0.022 0.021 0.021 0.025 0.015 0.035 0.033 0.031 0.034

(i) 50% 0.038 0.022 0.020 0.020 0.020 0.010 0.027 0.026 0.027 0.027
75% 0.042 0.023 0.022 0.021 0.024 0.016 0.039 0.039 0.039 0.029
95% 0.105 0.030 0.029 0.028 0.045 0.081 0.067 0.067 0.065 0.041

5% 0.104 0.034 0.029 0.027 0.035 0.080 0.048 0.047 0.058 0.059
25% 0.039 0.024 0.018 0.023 0.025 0.014 0.028 0.028 0.070 0.070

(ii) 50% 0.051 0.030 0.019 0.022 0.022 0.016 0.029 0.028 0.061 0.062
75% 0.044 0.027 0.019 0.037 0.039 0.015 0.032 0.033 0.132 0.132
95% 0.040 0.025 0.022 0.024 0.033 0.043 0.034 0.033 0.065 0.066

5% 0.292 0.032 0.033 0.273 0.346 0.094 0.082 0.062 0.485 0.493
25% 0.072 0.017 0.023 0.084 0.104 0.038 0.033 0.025 0.249 0.244

(iii) 50% 0.022 0.013 0.017 0.060 0.061 0.009 0.026 0.027 0.204 0.203
75% 0.016 0.015 0.019 0.017 0.009 0.007 0.028 0.030 0.027 0.022
95% 0.031 0.018 0.021 0.173 0.168 0.039 0.037 0.038 0.389 0.373

5% 0.083 0.033 0.037 0.089 0.084 0.060 0.055 0.055 0.246 0.238
25% 0.027 0.015 0.019 0.025 0.015 0.016 0.025 0.026 0.077 0.072

(iv) 50% 0.019 0.014 0.018 0.035 0.034 0.006 0.019 0.018 0.128 0.130
75% 0.034 0.015 0.020 0.112 0.131 0.024 0.025 0.027 0.301 0.297
95% 0.335 0.044 0.043 0.539 0.636 0.067 0.129 0.110 0.695 0.709

5% 0.580 0.123 0.120 0.118 0.178 0.253 0.240 0.225 0.208 0.160
25% 0.058 0.020 0.026 0.075 0.098 0.027 0.047 0.055 0.216 0.198

(v) 50% 0.024 0.015 0.020 0.041 0.042 0.009 0.027 0.031 0.141 0.136
75% 0.023 0.022 0.026 0.030 0.018 0.011 0.055 0.058 0.088 0.044
95% 0.079 0.052 0.056 0.181 0.157 0.083 0.152 0.151 0.362 0.300
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Table 4: amse and abias of small area quantile estimators (Model B, n “ 200, β “ β0).

amse abias

Error α Direct EL(1) EL(2) NER HNER Direct EL(1) EL(2) NER HNER
5% 1.003 0.299 0.293 0.265 0.380 0.204 0.220 0.218 0.185 0.226
25% 0.441 0.132 0.126 0.122 0.152 0.140 0.097 0.095 0.097 0.107

(i) 50% 0.263 0.114 0.107 0.106 0.110 0.026 0.080 0.079 0.078 0.079
75% 0.257 0.130 0.124 0.120 0.130 0.072 0.090 0.088 0.084 0.076
95% 0.487 0.171 0.167 0.154 0.251 0.152 0.132 0.133 0.115 0.115

5% 0.966 0.380 0.347 0.285 0.345 0.262 0.229 0.229 0.197 0.199
25% 0.397 0.160 0.123 0.131 0.143 0.135 0.077 0.078 0.085 0.082

(ii) 50% 0.354 0.176 0.121 0.125 0.128 0.065 0.088 0.088 0.103 0.107
75% 0.302 0.200 0.151 0.177 0.189 0.051 0.159 0.153 0.210 0.221
95% 0.282 0.184 0.163 0.152 0.225 0.153 0.107 0.106 0.095 0.107

5% 1.608 0.237 0.236 0.415 0.843 0.209 0.223 0.209 0.381 0.432
25% 0.816 0.209 0.237 0.234 0.372 0.233 0.184 0.182 0.271 0.253

(iii) 50% 0.256 0.121 0.143 0.214 0.228 0.081 0.148 0.146 0.305 0.288
75% 0.111 0.126 0.146 0.129 0.087 0.023 0.111 0.108 0.099 0.118
95% 0.160 0.152 0.167 0.343 0.304 0.098 0.113 0.115 0.432 0.331

5% 0.882 0.421 0.436 0.289 0.303 0.279 0.307 0.305 0.157 0.187
25% 0.401 0.157 0.179 0.189 0.137 0.176 0.158 0.159 0.234 0.198

(iv) 50% 0.174 0.106 0.130 0.123 0.115 0.032 0.072 0.073 0.099 0.103
75% 0.476 0.125 0.150 0.253 0.353 0.200 0.088 0.087 0.330 0.302
95% 2.047 0.493 0.416 0.966 1.715 0.672 0.488 0.420 0.853 0.960

5% 1.933 0.403 0.412 0.389 0.757 0.151 0.318 0.316 0.277 0.322
25% 0.590 0.158 0.176 0.196 0.288 0.194 0.159 0.158 0.242 0.179

(v) 50% 0.230 0.104 0.122 0.147 0.155 0.047 0.114 0.115 0.192 0.173
75% 0.164 0.123 0.139 0.131 0.106 0.045 0.109 0.109 0.114 0.107
95% 0.319 0.187 0.201 0.310 0.298 0.093 0.190 0.190 0.370 0.197
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Table 5: amse and abias of small area quantile estimators (Model B, n “ 200, β “ 1.25β0).

amse abias

Error α Direct EL(1) EL(2) NER HNER Direct EL(1) EL(2) NER HNER
5% 1.229 0.406 0.399 0.364 0.472 0.254 0.267 0.265 0.236 0.262
25% 0.542 0.148 0.141 0.137 0.166 0.164 0.099 0.097 0.104 0.106

(i) 50% 0.301 0.122 0.115 0.113 0.118 0.034 0.086 0.084 0.084 0.085
75% 0.276 0.141 0.134 0.129 0.139 0.073 0.090 0.089 0.084 0.078
95% 0.507 0.187 0.182 0.168 0.260 0.161 0.132 0.132 0.111 0.107

5% 1.214 0.488 0.453 0.379 0.432 0.312 0.273 0.273 0.243 0.235
25% 0.493 0.172 0.135 0.144 0.157 0.160 0.085 0.086 0.090 0.080

(ii) 50% 0.384 0.177 0.124 0.129 0.131 0.061 0.087 0.088 0.099 0.103
75% 0.329 0.211 0.162 0.186 0.197 0.054 0.158 0.152 0.206 0.217
95% 0.309 0.202 0.181 0.166 0.235 0.162 0.106 0.104 0.088 0.103

5% 1.727 0.266 0.266 0.444 0.836 0.196 0.225 0.218 0.319 0.364
25% 0.916 0.250 0.280 0.248 0.392 0.232 0.202 0.205 0.266 0.256

(iii) 50% 0.317 0.134 0.156 0.226 0.245 0.098 0.153 0.152 0.312 0.293
75% 0.132 0.143 0.162 0.142 0.103 0.026 0.116 0.113 0.110 0.128
95% 0.173 0.170 0.185 0.345 0.308 0.099 0.116 0.118 0.418 0.321

5% 1.140 0.557 0.572 0.373 0.393 0.325 0.357 0.356 0.203 0.236
25% 0.532 0.193 0.216 0.222 0.175 0.212 0.182 0.184 0.263 0.229

(iv) 50% 0.212 0.117 0.140 0.126 0.117 0.038 0.075 0.077 0.097 0.095
75% 0.474 0.136 0.161 0.254 0.349 0.191 0.084 0.084 0.312 0.286
95% 2.067 0.517 0.439 0.963 1.691 0.667 0.504 0.438 0.843 0.948

5% 2.064 0.475 0.486 0.465 0.823 0.185 0.348 0.348 0.296 0.337
25% 0.709 0.187 0.205 0.214 0.306 0.218 0.169 0.170 0.247 0.182

(v) 50% 0.275 0.116 0.134 0.159 0.170 0.063 0.122 0.124 0.203 0.182
75% 0.184 0.138 0.154 0.142 0.119 0.041 0.111 0.111 0.113 0.110
95% 0.333 0.204 0.219 0.319 0.308 0.098 0.191 0.191 0.364 0.194
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Table 6: amse and abias of small area quantile estimators (Model B, n “ 1000, β “ β0).

amse abias

Error α Direct EL(1) EL(2) NER HNER Direct EL(1) EL(2) NER HNER
5% 0.264 0.066 0.064 0.064 0.077 0.145 0.107 0.107 0.107 0.106
25% 0.079 0.031 0.029 0.029 0.033 0.026 0.058 0.056 0.057 0.054

(i) 50% 0.049 0.024 0.022 0.022 0.022 0.011 0.042 0.040 0.042 0.041
75% 0.051 0.027 0.026 0.026 0.028 0.018 0.048 0.048 0.048 0.045
95% 0.110 0.043 0.042 0.042 0.060 0.090 0.087 0.087 0.093 0.075

5% 0.251 0.092 0.086 0.078 0.084 0.113 0.135 0.134 0.141 0.144
25% 0.063 0.029 0.023 0.026 0.027 0.026 0.048 0.048 0.058 0.060

(ii) 50% 0.061 0.029 0.020 0.026 0.026 0.022 0.038 0.039 0.077 0.078
75% 0.056 0.033 0.025 0.041 0.043 0.012 0.053 0.054 0.133 0.135
95% 0.043 0.038 0.034 0.034 0.043 0.048 0.062 0.061 0.089 0.086

5% 0.368 0.040 0.042 0.107 0.151 0.198 0.107 0.092 0.191 0.192
25% 0.176 0.057 0.061 0.071 0.093 0.064 0.112 0.109 0.189 0.186

(iii) 50% 0.038 0.023 0.027 0.081 0.084 0.017 0.069 0.070 0.244 0.242
75% 0.021 0.023 0.028 0.025 0.018 0.010 0.056 0.059 0.062 0.059
95% 0.032 0.033 0.036 0.186 0.178 0.039 0.073 0.075 0.396 0.380

5% 0.215 0.114 0.118 0.084 0.079 0.090 0.179 0.178 0.127 0.130
25% 0.069 0.030 0.035 0.056 0.045 0.033 0.076 0.077 0.167 0.157

(iv) 50% 0.029 0.019 0.024 0.026 0.023 0.008 0.043 0.046 0.067 0.069
75% 0.033 0.023 0.028 0.107 0.121 0.020 0.057 0.058 0.276 0.273
95% 0.399 0.065 0.058 0.472 0.567 0.078 0.153 0.135 0.634 0.648

5% 0.548 0.136 0.133 0.137 0.187 0.231 0.249 0.231 0.223 0.199
25% 0.110 0.043 0.049 0.082 0.097 0.040 0.110 0.111 0.216 0.173

(v) 50% 0.038 0.020 0.025 0.053 0.054 0.012 0.044 0.048 0.168 0.161
75% 0.029 0.030 0.035 0.037 0.023 0.010 0.077 0.079 0.106 0.065
95% 0.079 0.073 0.076 0.206 0.165 0.075 0.176 0.175 0.388 0.303
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Figure 1: Small area population quantiles of the SLID data.
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Figure 2: EL(1)/NER small area median estimation of the SLID population (n=200).
‹: small area median; top, middle, and bottom lines: 90th, 50th, and 10th percentiles.
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Table 7: amse and abias of small area quantile estimators based on real data.

amse abias

n α Direct EL(1) EL(2) NER HNER Direct EL(1) EL(2) NER HNER
5% 1.765 0.453 0.442 0.421 0.649 0.195 0.417 0.408 0.397 0.365
25% 0.340 0.099 0.103 0.173 0.196 0.179 0.208 0.209 0.340 0.251

200 50% 0.095 0.054 0.058 0.077 0.078 0.030 0.128 0.129 0.188 0.184
75% 0.078 0.048 0.053 0.057 0.074 0.032 0.094 0.094 0.101 0.138
95% 0.185 0.076 0.081 0.224 0.289 0.060 0.135 0.138 0.393 0.260

5% 0.655 0.263 0.257 0.259 0.283 0.296 0.358 0.344 0.336 0.300
25% 0.041 0.037 0.041 0.105 0.111 0.030 0.150 0.153 0.286 0.266

1000 50% 0.017 0.013 0.016 0.036 0.037 0.007 0.054 0.057 0.149 0.147
75% 0.015 0.017 0.020 0.024 0.020 0.010 0.056 0.059 0.088 0.064
95% 0.048 0.053 0.056 0.204 0.205 0.067 0.173 0.174 0.413 0.371
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