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Abstract In this paper, we consider how to yield a robust empirical likelihood esti-
mation for regression models. After introducing modal regression, we propose a novel
empirical likelihood method based on modal regression estimation equations, which
has the merits of both robustness and high inference efficiency compared with the
least square based methods. Under some mild conditions, we show that Wilks’ the-
orem of the proposed empirical likelihood approach continues to hold. Advantages
of empirical likelihood modal regression as a nonparametric approach are illustrated
by constructing confidence intervals/regions. Two simulation studies and a real data
analysis confirm our theoretical findings.
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1 Introduction

It is well-known that the ordinary least squares estimator (LSE) is the most efficient
estimator of the regression coefficient in linear regression models when the noise fol-
lows a normal distribution. However, departure of the error distribution from normality
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412 W. Zhao et al.

may severely reduce the efficiency of the LSE, particularly when the errors are heavy-
tailed and/or including outliers. One remedy is to remove influential observations from
the least-square fit. Another approach, termed robust regression, is to replace the least
square loss criterion by outlier-resistant loss criteria in the estimation procedure. Con-
sidering that outliers are often genuine data in certain circumstances such as income
analysis, procedures like robust regressions, which accommodate rather than directly
remove the outliers, will be more efficient.

Suppose we have a simple random sample {(yi , xi ) : i = 1, 2, . . . , n} from the
following classical linear regression model

yi = xT
i β + εi , (1)

where xi = (xi1, . . . , xip)
T ,β = (β1, . . . , βp)

T ∈ R
p and the noise εi , independent of

xi , are i.i.d. random variables with mean zero. Robust regression estimators, introduced
by Huber (1981), were obtained by minimizing

∑n
i=1 ρ(θ; xi ) with respect to θ , where

ρ is a loss function. There are three popular robust regression estimators in the literature
with different choices of loss function. The loss criterion ρ(x) = |x | leads to the
median regression estimation which is a special case of quantile regression (Koenker
and Bassett 1978). The other two choices of ρ(·), i.e. Huber loss and Tukey bisquare
loss, corresponds to two Huber’s robust estimators (Huber 1981). In particular, if
the loss function is chosed to be the log-likelihood function, we obtain the usual
maximum likelihood estimator. The above three estimators are also referred as M-
type robust estimators. Unfortunately, the median estimator may lose efficiency when
there are no outliers or the error distribution is normal; Also it may not be unique
since the loss function ρ(x) = |x | is not strictly convex. Huber’s robust estimators
have high efficiency if an optimal transitional point is available; it is rather difficult to
adaptively choose such an optimal transitional point in practice (Rousseeuw and Leroy
1987). Robust regression estimation also gains many developments in recent years,
including composite quantile regression (Zou and Yuan 2008), convex combinations
of the L1 and L2 loss criteria with flexible weights (Chen et al. 2010), rank-based
estimation methods (Johnson and Peng 2008), and Modal regression (Yao and Li
2013; Yao et al. 2012).

We have two main goals in this paper, both of which are motivated by Yao and
Li’s (2013) modal regression. The first goal is to propose a new modal regression after
investigating the properties of modal regression estimation method. Yao and Li (2013)
showed that the convergence rate of the modal regression coefficient estimator is slower
than root-n, where n is the sample size. Under different conditions, we find that this
rate can still be root-n if we take the involved bandwidth h as a constant. In doing so,
the asymptotical variance of the modal regression coefficient estimator will depend
on h, which can be further regarded as a tuning parameter. A data-driven method is
provided to estimate the optimal bandwidth which minimizes the asymptotical variance
of the modal regression coefficient estimator. Since the resulting estimation procedure
has the same form as Yao and Li’s (2013) method, we still call it modal regression
estimation (MRE), although the two methods are different in essence. Our simulation
results indicate that the MRE not only has very good robustness for data sets containing
outliers or having a heavy-tail error distribution, but also is as asymptotically efficient
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Empirical likelihood based modal regression 413

as least-square-based method when there are no outliers or the error distribution follows
a normal distribution.

As the second goal of the paper, we propose an empirical likelihood (EL; Owen
1991) based modal regression method to construct confidence regions/intervals or test
hypotheses for the regression coefficients. The aforementioned regression methods
usually focus on point estimation. Apart from point estimation, confidence regions
or intervals of regression coefficients are also important to evaluate the goodness of
estimation methods. The EL is an efficient nonparametric likelihood tool that has
a number of nice properties (Owen 1988, 1990, 1991). For example, it is flexible
in incorporating auxiliary information; the EL ratio statistic usually has a chisquare
limiting distribution; and the EL based confidence regions have data-driven shapes,
etc. For a more thorough review on EL, we refer the reader to Owen (2001), Chen
and Keilegom (2009), Wei et al. (2012), Zi et al. (2012) and references therein. In
this paper, we show that the EL ratio based on modal regression estimation equation
still follows a chisquare limiting distribution. Given the robustness to outliers of the
modal regression and the estimation efficiency of the EL, we expect the resulting EL
based modal regression to be robust and efficient when applied to test hypotheses and
construct confidence regions. By simulation study, we find that the confidence intervals
(regions) based on the proposed method are shorter (smaller) than those based on least
square methods when the error follows non-normal distributions.

The rest of the paper is organized as follows. In Sect. 2, we review the modal
regression, and study the asymptotical normality of the modal regression estimator
taking the bandwidth h as a constant. An adaptive optimal bandwidth is presented for
practical purpose. In Sect. 3, we propose the EL based modal regression estimation
method for the regression coefficient. A nonparametric Wilks theorem for such an EL
ratio statistic is proved. Simulation studies and a real data analysis are provided in
Sects. 4 and 5, respectively. Section 6 concludes. For clarity, all technical proofs are
deferred in the Appendix.

2 Modal regression

2.1 Modal regression estimation

We begin by briefly reviewing the background and mathematical foundation of modal
regression. Mean, median and mode are three important numerical characteristics of
distribution. Mode, the most likely value of a distribution, has wide applications in
astronomy, biology and finance, where the data is often skewed or contains outliers.
Compared with mean, mode has the advantage of robustness, which means that it is
resistent to outliers. Moreover, since modal regression focuses on the relationship for
the majority of data and summaries the “most likely” conditional values, it can provide
more meaningful point prediction and larger coverage probability for prediction than
others when the data is skewed or contains outliers.

For model (1), modal regression Yao and Li (2013) estimates the modal regression
parameter β by maximizing
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Qh(β) ≡ 1

n

n∑

i=1

φh

(
yi − xT

i β
)

, (2)

where φh(t) = h−1φ(t/h), φ(t) is a kernel density function and h is a bandwidth,
determining the degree of robustness of the estimator. As noted by Yao and Li (2013)
and Yao et al. (2012), the MRE method usually produces robust estimates due to the
nature of mode. When the error distribution is symmetric and has only one mode at
the center, then mean regression, median regression and modal regression all estimate
the same regression coefficient. For example, we may choose φ(t) to be the standard
normal density function or the Gaussian kernel.

Here is the justification for the claim that the object function (2) can be used to
estimate the modal regression. Consider the case that only the intercept β = βc

is involved in linear regression (1). Then the object function Qh(β) defined in (2)
reduces to

Qh(βc) ≡ 1

n

n∑

i=1

φh (yi − βc) . (3)

which can be regarded as a kernel estimate of the density function of y at y = βc.
Therefore, the maximizer of (2) is the mode of the kernel density function based on
y1, . . . , yn . As n → ∞ and h → 0, the mode of kernel density function will converge
to the mode of the distribution of y under certain conditions (Parzen 1962).

In contrast to other estimation methods, modal regression treats −φh(·) as a loss
function, which is a special M-type robust regression mentioned in Sect. 1. Since
modal regression can estimate the “most likely” conditional values, it can provide
more robust and efficient estimation than other existing methods. Lee (1989) used the
uniform kernel and Epanechnikov kernel for φ(·) to estimate the modal regression,
respectively. However, their estimators are of little practical use because the object
function is non-differentiable and its distribution is intractable. Scott (1992) men-
tioned the modal regression, but little methodology is given on how to implement it
in practice. Recently, Yao and Li (2013) suggested using the Gaussian kernel for φ(·)
and developed MEM algorithm to compute modal estimators for linear models. Yao
et al. (2012) investigated the estimation problem in nonparametric regression using
the method of modal regression, and obtained a robust and efficient estimator for the
nonparametric regression function. Their estimation procedure is very convenient to
implement for practitioners and the result is encouraging for many non-normal error
distributions. In addition, Yu and Aristodemou (2012) studied modal regression from
Bayesian perspective.

2.2 Theoretical property

In this subsection, we first take the bandwidth as a constant and establish the asymp-
totical normality of the proposed modal regression estimator (MRE). The limiting
variance of the MRE is found dependent of h. We recommend an optimal bandwidth
by minimizing the limiting variance.
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The desirable property of the MRE estimator is achieved under certain assumptions
on both the error and the kernel function φ. Here we assume that the errors εi ’s in
model (1) are independent and identically distributed (iid), and that the underlying
kernel function φ(·) together with the error distribution satisfies

(C1) E(φ′
h(ε)) = 0, F(h) ≡ E(φ′′

h (ε)) < 0 and G(h) ≡ E(φ′
h(ε)2) is finite for any

h > 0;
(C2) There exists c > 0 such that E{ρh,c(ε)} < ∞, where ρh,c(ε) = supy:|y−ε|<c

|φ′′′
h (y)|.

Remark 1 Assumption (C1) is a general assumption for modal regression. See Yao
and Li (2013) and Yao et al. (2012). Condition (C2) is used to control the magnitude of
the remainder in a third-order Taylor expansion of Qh(β). See Eq. (18). The condition
F(h) < 0 ensures that there exists a local maximizer of Qh(β), while the condition
E{φ′

h(ε)} = 0 guarantees the consistency of this local maximizer, the proposed esti-
mator of β. Conditions (C1) and (C2) are satisfied if both the error density function
and φ(·) are symmetric and the error has a unique mode. More specifically, when
conditions (C1) and (C2) hold, the estimated function based on modal regression is
generally the same for mean regression, although the MRE are more robust to outliers.
In applications, these conditions will roughly be satisfied if the residual histogram of
our modal regression is roughly hell-shaped or has only one mode. We may first apply
the MRE method, and then check whether the residuals have this property.

Theorem 1 Suppose {(yi , xi ) : i = 1, 2, . . . , n} are iid observations from model (1)
where β = β0, the error εi and the covariate xi are independent, and (εi , xτ

i )’s are iid
with finite covariance matrix. For fixed bandwidth h > 0, if the error distribution and
φ satisfy conditions (C1) and (C2), then there exists a local maximizer β̂ of Qh(β)

in (2) such that
√

n(β̂ − β0)
d−→ N (0,�), where

d−→ stands for convergence in
distribution and � = {G(h)/F2(h)}�−1 with � = Cov(xi ) positive definite.

A Proof of Theorem 1 is given in the Appendix. If Var(εi ) = σ 2, the asymptotic
variance of the least square estimator (LSE) is equal to σ 2�−1. This together with
Theorem 1 implies that the asymptotic relative efficiency of the MRE over the LSE
is r(h) = σ 2 F2(h)/G(h). Theoretically, the larger the asymptotic relative efficiency
is, the better the former estimator is. If we take h as a tuning parameter for choosing
a good MRE, an ideal choice of this tuing parameter is

hopt = arg max
h

r(h) = arg max
h

F2(h)/G(h). (4)

This bandwidth gives the best MRE estimator compared with the LSE from the
viewpoint of asymptotical variance. A distinct property of hopt from the usual band-
width in nonparameter regression is that this hopt depends not on the sample size n
but only on the error distribution and the first two derivatives of φ.
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2.3 Bandwidth selection

Bandwidth plays an important role in order to obtain the robust estimation. We provide
a bandwidth selection method for the practical use of the MRE. Following the idea of
Yao et al. (2012), we first estimate F(h) and G(h) by

F̂(h) = 1

n

n∑

i=1

φ′′
h (ε̂i ) and Ĝ(h) = 1

n

n∑

i=1

{
φ′

h(ε̂i )
}2

, (5)

respectively, where ε̂i = yi − xT
i β̃ and β̃ is estimated based on some robust pilot

estimates, such as the lease absolute deviation (LAD) estimator or the rank-based
estimator (Johnson and Peng 2008). We recommend choosing the bandwidth to be

h̃opt = arg min
h

{F̂(h)}2/Ĝ(h). (6)

A quick method of solving this minimization problem is the grid search method.
As done by Yao et al. (2012), we may choose the possible grids points to be h =
0.5σ̂ × 1.02 j (0 ≤ j ≤ k) for k = 50 or 100, where σ̂ 2 = 1

n

∑n
i=1 ε̂2

i .

3 Empirical likelihood based modal regression

In this section, we propose empirical likelihood based modal regression to construct
confidence regions for the regression coefficients.

From (2), we can define an auxiliary random vectors (Qin and Lawless 1994)

ξi (β) = xiφ
′
h(yi − xT

i β), i = 1, . . . , n. (7)

Note that E{ξi (β0)} = 0 where β0 is the true parameter value. According to the
empirical likelihood principle, we define the empirical likelihood ratio function of β

to be

Ln(β) = sup

{
n∏

i=1

(npi )

∣
∣
∣pi ≥ 0,

n∑

i=1

pi = 1,

n∑

i=1

piξi (β) = 0

}

. (8)

Given β, if {(p1, . . . , pn) : pi ≥ 0,
∑n

i=1 pi = 1,
∑n

i=1 piξi (β) = 0} is an
empty set, the likelihood ratio Ln(β) will have no definition. In this situation, Chen et
al.’s (2008) adjusted empirical likelihood is likely the most straightforward and natural
remedy to this dilemma, although the convention defines Ln(β) to be zero.

Otherwise Ln(β) is well-defined and can be re-expressed as

Ln(β) =
n∏

i=1

{
1 + λT

β ξi (β)
}−1

, (9)
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where λβ is the solution to

1

n

n∑

i=1

ξi (β)

1 + λT
β ξi (β)

= 0. (10)

Accordingly the empirical log-likelihood ratio function is defined as

ln(β) =: log{Ln(β)} = −
n∑

i=1

log
{

1 + λT
β ξi (β)

}
. (11)

A feasible and efficient algorithm is needed for the computation of ln(β) if one intends
to apply the empirical likelihood method. The convex duality method given in Owen
(2001, pp. 60–63) can serve this purpose, and it is also adopted in our simulation study.

As expected, we find that when β takes its true value β0, the empirical log-likelihood
ratio −2ln(β0) still follows a limiting chi-square distribution. This result is summa-
rized in the following theorem.

Theorem 2 Assume the same conditions as Theorem 1. As n tends to infinity, we have

− 2ln(β0)
d−→ χ2

p, (12)

where χ2
p is the chi-square distribution with p degrees of freedom.

According to Theorem 2, the empirical likelihood ratio −2ln(β0) is asymptotically
pivotal; it can be used not only to test the hypothesis H0 : β = β0, but also to con-
struct confidence regions for β. Specifically, a modal-regression-empirical-likelihood
(MREL) based confidence region with confidence level (1 − α) is given by

CMREL(β) =
{
β : −2ln(β) ≤ χ2

p,1−α

}
,

where χ2
p,1−α is the (1 − α)-quantile of the χ2

p distribution. Theorem 2 implies that
CMREL(β) constitutes a confidence region for β with asymptotically correct coverage
probability 1 − α.

4 Simulation study

In this section, we provide simulation results to study the finite-sample properties of
the proposed MRE and MREL methods and compare them with existing methods. The
proposed MREL method is convenient to be used for confidence interval/region con-
struction, while it reduces to the MRE method when point estimation of the regression
coefficient is of interest and the bandwidth is fixed.

We generated data-sets from two models, under which point estimation and inter-
val/region estimation are the respective focuses. Simulation results are computed based
on 1000 random samples with the sample size being 50, 100 and 150, respectively.
Confidence level is set to be 95 % when confidence interval/region is of interest.
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4.1 Example 1

The main goal of this example is to examine the robustness and efficiency of the
proposed modal regression estimator (MRE). Let the true regression model be

yi = β0 + xi1β1 + xi2β2 + xi3β3 + εi , i = 1, . . . , n,

where the covariates xi = (xi1, xi2, xi3)
T follows a three-dimensional normal dis-

tribution N (0, �) with unit marginal variance and correlation 0.5. The true value of
the regression coefficient is β = (β0, . . . , β3)

T = (1.5, 2,−1.2, 0)T . The error εi is
independent of xi . We consider six different error distributions: (1) standard normal
distribution, N (0, 1); (2) t-distribution with degree of freedom 3, t (3); (3) standard
Laplace distribution, Lp(0, 1); (4) mixture of two normal distributions, 0.9N (0, 1) +
0.1N (0, 102); (5) mixture of normal-χ2(5) distribution, 0.9N (0, 1) + 0.1χ2(5); (6)
mixture of three normal distributions, 0.8N (0, 1) + 0.1N (−10, 1) + 0.1N (10, 1).
Throughout the paper, we choose and recommend the kernel function φ to be the stan-
dard normal density function in our MRE method. It can be verified that the conditions
of Theorem 1 are all satisfied by all the above error distributions except case (5). We
include case (5) in our simulation to investigate the robustness of the proposed MRE
method.

For illustration and comparison, we also take the following methods into consid-
eration: least square estimate (LSE), the least absolute deviance estimate (LAD), the
composite quantile regression with 9 quantiles (CQR, Zou and Yuan 2008) and the rank
regression estimate (RRE, Johnson and Peng 2008). For each method, we report the
mean square error (MSE) of the estimate β̂, i.e., MSE = (β̂ −β)T (β̂ −β)/p. In order
to evaluate the prediction performance of the fitted model, we generated a test sample,
e.g. {(ytest

i , xtest
i ) : i = 1, . . . , 200}, in each simulation, and computed the mean

absolute prediction error (MAPE),
∑200

i=1 |ytest
i − ŷtest

i |/200 with ŷtest
i = (xtest

i )T β̂.
The mean and standard error of MSE and MAPE over 1000 replications are reported
in Table 1.

From Table 1, we have the following observations. For a given error distribution,
the performances of MRE become better and better when the sample size increases.
In the case of normal error, as long as the sample size is not too small, the MRE is
better than other three robust methods, and it seems to perform almost as well as LSE.
And for the Laplace distribution, it is well known that the LAD is the best estimator,
nevertheless, the performance of MRE is very close to LAD. For the other four error
distributions, it is obvious that MRE outperforms the rest four methods even in case
(5) where the conditions in Theorem 1 are not satisfied.

Furthermore, it is worth mentioning that the performances of MRE are significantly
better than the others for the three mixture error distributions. Here is a possible reason
for this observation. The mixtures can be viewed as populations containing outliers.
When data contains severely departed outliers, the modal regression puts more weight
on the “most likely” data around the true value, which leads to robustness and efficiency
of the proposed MRE.
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Table 1 Mean and standard error of MSE and MAPE

n Method MSE MAPE MSE MAPE

N (0, 1) t (3)

50 LSE 0.0300 (0.0246) 0.8314 (0.0507) 0.0959 (0.1541) 1.1942 (0.1378)

LAD 0.0468 (0.0392) 0.8498 (0.0595) 0.0619 (0.0575) 1.1671 (0.1106)

MRE 0.0347 (0.0312) 0.8371 (0.0572) 0.0565 (0.0532) 1.1617 (0.1087)

CQR 0.0321 (0.0268) 0.8336 (0.0513) 0.0550 (0.0483) 1.1608 (0.1068)

RRE 0.0352 (0.0282) 0.8393 (0.0522) 0.0502 (0.0406) 1.1574 (0.1035)

100 LSE 0.0147 (0.0122) 0.8159 (0.0454) 0.0432 (0.0630) 1.1388 (0.1022)

LAD 0.0220 (0.0180) 0.8240 (0.0481) 0.0278 (0.0238) 1.1242 (0.0956)

MRE 0.0155 (0.0128) 0.8167 (0.0455) 0.0236 (0.0198) 1.1201 (0.0942)

CQR 0.0155 (0.0124) 0.8168 (0.0456) 0.0239 (0.0199) 1.1207 (0.0939)

RRE 0.0168 (0.0136) 0.8175 (0.0454) 0.0237 (0.0198) 1.1274 (0.0947)

150 LSE 0.0092 (0.0072) 0.8101 (0.0429) 0.0302 (0.0492) 1.1359 (0.1025)

LAD 0.0144 (0.0108) 0.8162 (0.0444) 0.0184 (0.0148) 1.1243 (0.0974)

MRE 0.0096 (0.0076) 0.8105 (0.0432) 0.0161 (0.0131) 1.1216 (0.0969)

CQR 0.0097 (0.0077) 0.8106 (0.0431) 0.0162 (0.0129) 1.1220 (0.0968)

RRE 0.0108 (0.0085) 0.8115 (0.0435) 0.0158 (0.0128) 1.1197 (0.0945)

Lp(0, 1) 0.9N (0, 1) + 0.1N (0, 102)

50 LSE 0.0628 (0.0538) 1.0742 (0.0837) 0.3400 (0.4176) 1.7893 (0.3138)

LAD 0.0474 (0.0443) 1.0592 (0.0816) 0.0576 (0.0522) 1.5740 (0.2135)

MRE 0.0505 (0.0479) 1.0624 (0.0826) 0.0404 (0.0362) 1.5574 (0.2109)

CQR 0.0476 (0.0392) 1.0596 (0.0792) 0.0520 (0.0473) 1.5705 (0.2137)

RRE 0.0454 (0.0405) 1.0545 (0.0792) 0.0517 (0.0518) 1.5638 (0.2120)

100 LSE 0.0295 (0.0261) 1.0392 (0.0736) 0.1627 (0.1616) 1.6531 (0.2322)

LAD 0.0196 (0.0185) 1.0251 (0.0707) 0.0271 (0.0224) 1.5331 (0.2032)

MRE 0.0217 (0.0209) 1.0301 (0.0714) 0.0179 (0.0156) 1.5233 (0.2024)

CQR 0.0212 (0.0185) 1.0300 (0.0713) 0.0226 (0.0190) 1.5281 (0.2029)

RRE 0.0203 (0.0182) 1.0253 (0.0749) 0.0226 (0.0191) 1.5333 (0.2083)

150 LSE 0.0188 (0.0159) 1.0260 (0.0720) 0.1009 (0.0965) 1.6130 (0.2232)

LAD 0.0122 (0.0108) 1.0177 (0.0711) 0.0179 (0.0151) 1.5347 (0.2116)

MRE 0.0137 (0.0117) 1.0198 (0.0715) 0.0121 (0.0102) 1.5289 (0.2116)

CQR 0.0136 (0.0114) 1.0200 (0.0712) 0.0146 (0.0122) 1.5317 (0.2114)

RRE 0.0127 (0.0109) 1.0178 (0.0707) 0.0145 (0.0114) 1.5344 (0.1946)

0.9N (0, 1) + 0.1χ2(5) 0.8N (0, 1) + 0.1N (−10, 1) + 0.1N (10, 1)

50 LSE 0.1825 (0.1705) 1.3571 (0.1660) 0.6410 (0.5468) 3.0728 (0.3626)

LAD 0.0637 (0.0560) 1.2695 (0.1282) 0.0860 (0.0914) 2.7239 (0.2702)

MRE 0.0466 (0.0428) 1.2573 (0.1258) 0.0447 (0.0914) 2.6897 (0.2662)

CQR 0.0710 (0.0643) 1.2698 (0.1280) 0.2270 (0.2327) 2.8660 (0.3274)

RRE 0.0541 (0.0460) 1.2576 (0.1264) 0.0947 (0.1234) 2.7103 (0.2674)

100 LSE 0.1205 (0.0874) 1.3054 (0.1340) 0.3044 (0.2481) 2.8884 (0.2974)

LAD 0.0333 (0.0255) 1.2382 (0.1217) 0.0373 (0.0323) 2.6916 (0.2638)

123



420 W. Zhao et al.

Table 1 continued

n Method MSE MAPE MSE MAPE

0.9N (0, 1) + 0.1χ2(5) 0.8N (0, 1) + 0.1N (−10, 1) + 0.1N (10, 1)

MRE 0.0217 (0.0171) 1.2317 (0.1225) 0.0192 (0.0160) 2.6759 (0.2636)

CQR 0.0412 (0.0330) 1.2397 (0.1208) 0.1342 (0.1153) 2.8025 (0.2889)

50 LSE 0.1825 (0.1705) 1.3571 (0.1660) 0.6410 (0.5468) 3.0728 (0.3626)

LAD 0.0637 (0.0560) 1.2695 (0.1282) 0.0860 (0.0914) 2.7239 (0.2702)

MRE 0.0466 (0.0428) 1.2573 (0.1258) 0.0447 (0.0914) 2.6897 (0.2662)

CQR 0.0710 (0.0643) 1.2698 (0.1280) 0.2270 (0.2327) 2.8660 (0.3274)

RRE 0.0541 (0.0460) 1.2576 (0.1264) 0.0947 (0.1234) 2.7103 (0.2674)

100 LSE 0.1205 (0.0874) 1.3054 (0.1340) 0.3044 (0.2481) 2.8884 (0.2974)

LAD 0.0333 (0.0255) 1.2382 (0.1217) 0.0373 (0.0323) 2.6916 (0.2638)

MRE 0.0217 (0.0171) 1.2317 (0.1225) 0.0192 (0.0160) 2.6759 (0.2636)

CQR 0.0412 (0.0330) 1.2397 (0.1208) 0.1342 (0.1153) 2.8025 (0.2889)

RRE 0.0283 (0.0228) 1.2396 (0.1232) 0.0384 (0.0368) 2.6793 (0.2591)

150 LSE 0.1009 (0.0588) 1.2873 (0.1255) 0.2031 (0.1637) 2.8025 (0.2770)

LAD 0.0243 (0.0185) 1.2259 (0.1214) 0.0245 (0.0200) 2.6638 (0.2620)

MRE 0.0155 (0.0121) 1.2213 (0.1215) 0.0122 (0.0102) 2.6527 (0.2621)

CQR 0.0322 (0.0228) 1.2285 (0.1198) 0.1137 (0.0956) 2.7669 (0.2870)

RRE 0.0204 (0.0156) 1.2310 (0.1208) 0.0246 (0.0218) 2.6657 (0.2720)

The bold numbers correspond to the smallest value for each model setup in terms of MSE or MAPE

Overall, the performance of MRE is desirable and its efficiency gain is more promi-
nent when the data set contains outliers.

4.2 Example 2

We now study the performance of the MREL confidence interval/regions. The usual
normality-based least square method (LS) and least square based empirical likelihood
method (LSEL; Owen 1991) are also taken into consideration for comparison.

Consider the following model

yi = xi1β1 + xi2β2 + 0.5εi ,

where β = (β1, β2)
T = (2, 1)T . The covariates (xi1, xi2) follows a bivariate normal

distribution with mean zero. Both xi1 and xi2 have univariate variance and their cor-
relation coefficient is 0.8. We generated errors from four distributions: N (0, 1), t (3),
Lp(0, 1) and 0.9N (0, 1) + 0.1N (0, 102). The simulation results are summarized in
Table 2 and Fig. 1.

Remark 2 When only β1 is of interest, the MREL confidence interval of β1 can
be constructed through the profile empirical log-likelihood function ln(β1) =
supβ2

ln(β1, β2). Similar to usual parametric likelihood, if β10 is the true value of
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Table 2 Simulated coverage probabilities (CP) of confidence intervals (regions) for β1, β2, and (β1, β2)T

and the average lengths (AL) of confidence intervals from three different approaches at nominal level 0.95,
where LS denotes the confidence intervals (regions) obtained using least square normal asymptotic method

n Parameter Method LS LSEL MREL LS LSEL MREL

N (0, 1) t (3)

50 β1 CP 0.9480 0.9290 0.8900 0.9430 0.8980 0.8640

AL 0.4739 0.4558 0.4942 0.7665 0.7489 0.5894

β2 CP 0.9550 0.9360 0.9000 0.9460 0.9080 0.8890

AL 0.4736 0.4577 0.4865 0.7649 0.7450 0.5743

(β1, β2) CP 0.9430 0.9150 0.8950 0.9410 0.8790 0.9030

100 β1 CP 0.9390 0.9350 0.9240 0.9390 0.9250 0.9180

AL 0.3277 0.3235 0.3307 0.5460 0.5580 0.4109

β2 CP 0.9450 0.9360 0.9220 0.9430 0.9230 0.9250

AL 0.3276 0.3238 0.3278 0.5447 0.5606 0.4123

(β1, β2) CP 0.9470 0.9440 0.9230 0.9400 0.9070 0.9130

150 β1 CP 0.9510 0.9420 0.9360 0.9460 0.9310 0.9420

AL 0.2682 0.2682 0.2709 0.4494 0.4634 0.3368

β2 CP 0.9430 0.9410 0.9430 0.9460 0.9330 0.9330

AL 0.2680 0.2686 0.2709 0.4500 0.4603 0.3379

(β1, β2) CP 0.9480 0.9460 0.9470 0.9430 0.9100 0.9430

Lp(0, 1) 0.9N (0, 1) + 0.1N (0, 102)

50 β1 CP 0.9370 0.8540 0.9490 0.9530 0.8680 0.9370

AL 1.8198 1.7735 0.6593 1.7744 1.7155 0.6603

β2 CP 0.9410 0.8420 0.9450 0.9510 0.8650 0.9400

AL 1.8332 1.7833 0.6649 1.7714 1.7242 0.6487

(β1, β2) CP 0.9220 0.7840 0.9250 0.9480 0.7930 0.9360

100 β1 CP 0.9410 0.8810 0.9470 0.9490 0.8900 0.9590

AL 1.2687 1.3014 0.4467 1.2817 1.3198 0.4517

β2 CP 0.9430 0.8830 0.9490 0.9560 0.8890 0.9350

AL 1.2714 1.3209 0.4498 1.2780 1.3287 0.4443

(β1, β2) CP 0.9490 0.8050 0.9390 0.9410 0.8610 0.9370

150 β1 CP 0.9480 0.9250 0.9600 0.9510 0.8990 0.9390

AL 1.0446 1.0932 0.3659 1.0384 1.0698 0.3616

β2 CP 0.9350 0.8990 0.9490 0.9410 0.9020 0.9500

AL 1.0488 1.1197 0.3631 1.0400 1.0924 0.3624

(β1, β2) CP 0.9510 0.8550 0.9490 0.9490 0.8850 0.9390

β1, then −2ln(β10) has a χ2
1 limiting distribution as n → ∞. Accordingly a natural

MREL confidence interval is given by

CMREL(β1) =
{
β1 : −2ln(β1) ≤ χ2

1,1−α

}
.
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(a) (b)

(c) (d)

Fig. 1 95 % confidence regions for three different methods in one simulation when sample size n = 50: LS
(blue dot dash line); LSEL (black dash line); MREL (red solid line), where asterisk stands for true value of
(β1, β2)T , circle and diamond denotes least square estimate and modal regression estimate, respectively.
(Color figure online)

The construction of CMREL(β2) is similar. In Table 2, we also report the marginal
confidence interval CMREL(β1) and C MREL(β2)

For a given error distribution, we see that the coverage probability of MREL gets
closer and closer to the nominal level as n increases; meanwhile the average lengths
of confidence intervals for single parameter become shorter and shorter.

In the case of normal error, the differences among the three methods are small.
In particular, the performance of MREL is as well as the least square based methods
when the sample size n is large. For the case of non-normal distributions, the average
lengths of confidence intervals (regions) for MREL are obviously shorter (smaller)
than the other two. It is worth mentioning that the interval length of MREL is only
about one third to that of the LS and LSEL when the error follows a mixture normal
distribution.

In addition, the coverage probability of LSEL deviates significantly from the nom-
inal level for the three non-normal error distributions when the sample size is small,
and it grows very slowly as the sample size increases.

In summary, the MREL has priority over the LS and LSEL methods when the sample
size is large in terms of both coverage probability and interval length or region volume.
The coverage precision of the MREL confidence interval/region needs improving
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Fig. 2 95 % confidence regions for three different methods: LS (blue dot dash line); LSEL (black dash line);
MREL (red solid line), where circle and asterisk denote the point estimates of LSE and MRE, respectively.
(Color figure online)

particularly in the case of small sample sizes. The adjusted empirical likelihood of
Chen et al. (2008) and Liu and Chen (2010) or the bootstrap method can serve this
purpose

Remark 3 We take the MREL confidence regions in Fig. 2 for example, to illustrate
how we computed the confidence boundary given a data-set. The first step is to compute
the center, the MRE β̂ of β. Then along any line through the center, two points meeting
with the confidence boundary can be found. All points on the confidence boundary
will be obtained after we work for all lines. This can be done conveniently in polar
coordinate. It is clear that theoretically this method applies to confidence regions of
any dimension.

5 Real data analysis

In this section, we apply the proposed method to the analysis of the Education Expen-
diture Data (Chatterjee and Price 1977). This data set consists of 50 observations from
50 states, one for each state. It has been analyzed by Yao et al. (2012) using non-
parametric modal regression. We take the per capita expenditure on public education
in a state as the response variable yi , and take the number of residents per thousand
residing in urban areas in 1970 as covariate xi . And we consider fitting the data by the
following linear model

yi = β0 + β1xi + εi , i = 1, . . . , 50. (13)

In this example, an obvious outlier is that from Hawaii with a very high per capita
expenditure on public education compared with other states. The confidence intervals
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Table 3 95 % interval estimates
for education expenditure data

Method LS LSEL MREL

β0 (1.1870, 2.7125) (1.3098, 3.1904) (1.1246, 2.0327)

β1 (0.0230, 0.2495) (−0.0268, 0.2291) (0.1156, 0.2551)

Table 4 Coverage probability
of the confidence region
(interval) based on 2000
bootstrap resampling

Method LS LSEL MREL

(β0, β1) 0.9485 0.9010 0.9120

β0 0.9575 0.9635 0.9105

β1 0.9440 0.9495 0.9220

for β0 and β1 respectively based on the LS, LSEL and MREL methods were computed
and presented in Table 3. The confidence regions based on the three methods are
displayed in Fig. 2. (Here, to alleviate the magnitude difference between the two
estimates β̂0 and β̂1 using the original data, we divide both response variable yi and
covariate xi by 100 for each observation, and then use (13) to fit the transformed data.)

As we can clearly see from Table 3 and Fig. 2, the confidence interval (region)
obtained by MREL is shorter (smaller) than the least square based methods, which
show that the confidence region obtained by modal regression empirical likelihood
not only has the advantage of data-driven nonparametric approach but also is robust
to outliers.

To further test the credibility of the confidence region (interval), we also calculated
the coverage probability (given in Table 4) of the confidence region/interval based on
2000 bootstrap resamples. As we can see from Table 4, compared with the nominal
coverage 95 %, both the two empirical likelihood based methods is not that satisfactory.
The bootstrap method and the adjusted empirical likelihood mentioned in Sect. 4.2
can be used to improve the coverage precision.

The comparison of confidence region volume is not fair if the confidence regions
under comparison have rather different coverage probabilities. For fair comparison,
we calibrate the LS, LSEL and MREL with not their limiting distributions but the
empirical distributions based on the 2000 bootstrap statistics. Take the MREL for
example. Let β̂ denote the MREL estimate based on the original data-set, and l∗j (β̂)

( j = 1, 2, . . . , 2000) be the 2000 bootstrap MREL ratio statistics. We shall take the
1900th statistic l∗(1900)(β̂) as the 95 % quantile of the MREL method.

All confidence regions/intervals are re-compuated, and presented in Fig. 3 and
Table 5. It is clear from Fig. 3 that the MREL confidence region for (β0, β1) is sig-
nificantly smaller than those based on the LS and LSEL. When only one component
of (β0, β1) is of interest, we find from Table 5 that all the MREL confidence intervals
are much shorter than those based on the LS and LSEL. These observations provide
strong evidence for the priority of the MREL.

6 Concluding remarks

In this paper, in order to make inference about the regression coefficient of a linear
regression model, we first investigate the properties of the modal regression with a fixed

123



Empirical likelihood based modal regression 425

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

β
0

β 1

Fig. 3 Confidence regions based on 2000 bootstrap sampling for three different methods: LS (blue dot dash
line); LSEL (black dash line); MREL (red solid line), where circle and asterisk denote the point estimate
of LSE and MRE, respectively. (Color figure online)

Table 5 The confidence
interval based on 2000 bootstrap
resampling

Method LS LSEL MREL

β0 (1.1859, 2.7136) (1.2267, 3.4541) (1.0896, 2.0651)

β1 (0.0205, 0.2520) (−0.0614, 0.2421) (0.1108, 0.2608)

bandwidth, then propose an empirical likelihood estimation approach based on modal
regression estimation equation. It has been shown that the proposed estimator is more
robust and efficient than the least square based methods for many non-normal error
distributions or data containing outliers. Though our current research is focusing on
linear regression, the framework can be extended to nonparametric or semi-parametric
models, such as single-index models, partially linear models and semi-varying coef-
ficient models. In addition, with high-dimensional covariates in regression models,
sparse modeling is often considered superior, it is also interesting to consider robust
penalized empirical likelihood based on modal regression, which can be taken as a
future research topic.
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Appendix

Proof of Theorem 1

Proof We first prove the root-n consistency of β̂, i.e., ‖β̂ − β0‖ = Op(n−1/2). It is
sufficient to show that for any given  > 0, there exists a large constant C such that
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P

{

sup
‖v‖=C

Qh(β0 + n−1/2v) < Qh(β0)

}

≥ 1 − , (14)

where the function Qh(·) is defined in (2).
For any vector v with length C , by the second-order Taylor expansion, we have

nQh

(
β0 + n−1/2v

)
− nQh(β0)

=
n∑

i=1

{
φh

(
εi − n−1/2xT

i v
)

− φh(εi )
}

= −
n∑

i=1

φ′
h(εi )n

−1/2xT
i v +

n∑

i=1

1

2
φ′′

h (εi )
(

n−1/2xT
i v

)2

−
n∑

i=1

1

6
φ′′′

h (ξi )
(

n−1/2xT
i v

)3

≡ I1 + I2 + I3, (15)

where ξi lies between εi and εi − n−1/2xT
i v.

We study respectively the magnitudes of I1, I2 and I3. Let An=∑n
i=1 φ′

h(εi )n−1/2xi .
It follows from condition (C1) and E(φ′

h(ε)) = 0 that,

Var (An)=E
{
φ′

h(εi )
}2 Var(xi ) = G(h)�. (16)

The finiteness of Var(xi ) and G(h) = E(φ′(ε)2) implies that

max
1≤i≤n

∣
∣
∣φ′

h(εi )n
−1/2xi

∣
∣
∣ = op(1). (17)

Then by central limit theorem, we have for fixed C that An
d−→ N (0, G(h)�), and

therefore I1
d−→ N (0, G(h)vT �v).

For I2, with the strong law of large numbers, we have I2 = 1
2 F(h)vT �v + o(1),

where F(h) is defined in condition (C1).
About I3, we find that

|I3| ≤
∣
∣
∣
∣
∣

n∑

i=1

1

6
φ′′′

h (ξi )(n
−1/2xT

i v)2

∣
∣
∣
∣
∣
· max

1≤i≤n

(
|xT

i v|/√n
)

≤
∣
∣
∣
∣
∣

1

6n

n∑

i=1

ρh,c(εi )(xT
i v)2

∣
∣
∣
∣
∣
· max

1≤i≤n

(‖xi‖/√n
) ‖v‖. (18)
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Condition (C2) implies that 1
6n

∑n
i=1 ρh,c(εi )(xT

i v)2 = Op(1). It then follows from
the fact that max1≤i≤n(‖xi‖/√n) = op(1) that

I3 = Op(1) · op(1) · Op(1) = op(1).

Overall, we obtain that for any v with ‖v‖ = C ,

nQh(β0 + n−1/2v) − nQh(β0) = −AT
n v + (1/2)F(h)vT �v + δn

with δn = op(1). The fact −AT
n v

d−→ N (0, G(h)vT �v) implies that for any  > 0
and any nonzero v, there exists K > 0 such that

P
(∣
∣
∣AT

n v

∣
∣
∣ < K

√
G(h)vT �v

)
> 1 − .

Thus with probability 1 − , it holds that

nQh

(
β0 + n−1/2v

)
− nQh(β0) ≤ K

√
G(h)vT �v + (1/2)F(h)vT �v + δn .

Note that F(h) < 0. Clearly, when n and C are both large enough,

K
√

G(h)vT �v + (1/2)F(h)vT �v + δn < 0.

In summary, for any  > 0, there exists C > 0 such that for v = C , nQh(β0 +
n−1/2v) − nQh(β0) is negative with probability at least 1 − . Thus, (14) holds. That
is, with the probability approaching 1, there exists a local maximizer hatβ such that
‖β̂ − β0‖ = Op(1/

√
n).

We turn to proving the asymptotical normality of β̂. Denote γ̂ = β̂ − β0, then γ̂

satisfies the following equation

0 = 1

n

n∑

i=1

xiφ
′
h(εi − xT

i γ̂ )

= 1

n

n∑

i=1

xi

{

φ′
h(εi ) − φ′′

h (εi )xT
i γ̂ + 1

2
φ′′′

h (ε∗
i )

(
xT

i γ̂
)2

}

� J1 + J2γ̂ + J3, (19)

where ε∗
i lies between εi and εi − xT

i γ̂ . We have shown that

√
n J1

d−→ N (0, G(h)�), J2
p−→ F(h)�.

Meanwhile the fact γ̂ = Op(n−1/2) and condition (C2) implies that J3 = op(1).
Thus Eq. (19) implies γ̂ = −J−1

2 J1 + op(1). Since the bandwidth h is a constant not
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depending on n, by Slutsky’s theorem, we have

√
n(β̂ − β0) = √

nγ̂
d−→ N (0,�−1){G(h)/F2(h)}.

�
The following lemma is needed to prove Theorem 2.

Lemma 1 Under the conditions of Theorem 1, the λβ0 in (10) satisfies ‖λβ0‖ =
Op(n−1/2).

Proof Denote λβ0 = ζu0 with u0 a unit vector and ζ = ‖λβ0‖. Define matrix �n(β) =
n−1 ∑n

i=1 ξi (β)ξ T
i (β) and Z = max1≤i≤n ‖ξi (β0)‖. It follows from the definition of

λβ0 that

0 = uT
0

n

n∑

i=1

ξi (β0)

1 + ζuT
0 ξi (β0)

= uT
0

n

n∑

i=1

ξi (β0) − ζ

n

n∑

i=1

{uT
0 ξi (β0)}2

1 + ζuT
0 ξi (β0)

≤ uT
0

n

n∑

i=1

ξi (β0) − ζ

1 + ζ Z

1

n

n∑

i=1

(uT
0 ξi (β0))

2

= uT
0

n

n∑

i=1

ξi (β0) − ζ

1 + ζ Z
uT

0 �n(β0)u0,

which implies

ζ

{

uT
0 �n(β0)u0 − Z

uT
0

n

n∑

i=1

ξi (β0)

}

≤ uT
0

n

n∑

i=1

ξi (β0). (20)

By the Cauchy–Schwarz inequality and law of large numbers, we have

∣
∣
∣
∣
∣

uT
0

n

n∑

i=1

ξi (β0)

∣
∣
∣
∣
∣
≤

∥
∥
∥
∥
∥

1

n

n∑

i=1

ξi (β0)

∥
∥
∥
∥
∥

= Op(n
−1/2). (21)

This together with Eq. (17) gives

Z
uT

0

n

n∑

i=1

ξi (β0) = op(1). (22)

Condition (C1) and law of large numbers implies �n
p−→ G(h)�, which means that

there exists c > 0 such that P(uT
0 �nu0 > c) → 1 as n → ∞.

Furthermore, since n−1/2 ∑n
i=1 ξi (β0)

d−→ N (0,�), we find that ‖λβ0‖ =
Op(n−1/2). �
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Proof of Theorem 2

Proof Let yi = λT
β0

ξi (β0). It follows from Lemma 1 that

max
1≤i≤n

|yi | ≤ ‖λβ0‖ max
1≤i≤n

|ξi (β0)| = Op(n
−1/2)op(n

1/2) = op(1),

which implies that the upcoming Taylor expansion is valid. Applying the second-order
Taylor expansion on (1 + yi )

−1 for i from 1 to n, we obtain from Eq. (10) that

λβ0 = {�n(β0)}−1 1

n

n∑

i=1

ξi (β0) + {�n(β0)}−1rn(β0), (23)

where rn(β0) = (1/n)
∑n

i=1 ξi (β0)(1 + δ∗
i )−1{λT

β0
ξi (β0)}2 and δ∗

i lies between 0
and yi . Clearly max1≤i≤n |δ∗

i | = op(1). Therefore

|rn(β0)| ≤ max
1≤i≤n

‖ξi (β0)‖(1 − max
1≤i≤n

|δ∗
i |)−1λT

β0
�n(β0)λβ0

= op(n
1/2)Op(n

−1) = op(n
−1/2).

Thus we have

λβ0 = {�n(β0)}−1 1

n

n∑

i=1

ξi (β0) + op(n
−1/2). (24)

Similarly, by the third-order Taylor expansion on log(1 + yi ) for all i , we have

−2l(β0) = 2
n∑

i=1
λT

β0
ξi (β0) −

n∑

i=1

{
λT

β0
ξi (β0)

}2

+ 2
3

n∑

i=1

{
λT

β0
ξi (β0)

}3
(1 + η∗

i )−3
(25)

where ηi lies between 0 and yi . It can be verified that

∣
∣
∣
∣
∣

n∑

i=1

{
λT

β0
ξi (β0)

}3
(1 + η∗

i )−3

∣
∣
∣
∣
∣

≤ max
1≤i≤n

∣
∣
∣λT

β0
ξi (β0)

∣
∣
∣

(

1 − max
1≤i≤n

|η∗
i |

)−3

nλT
β0

�n(β0)λβ0

= op(1) · Op(1) = op(1).

Furthermore, by incorporating Eq. (24), we have

− 2l(β0) =
{

n−1/2
n∑

i=1

ξi (β0)

}T
{
�n(β0)

}−1

{

n−1/2
n∑

i=1

ξi (β0)

}

+ op(1). (26)
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Since ξi (β0) = xiφ
′
hεi , it follows from conclusion of Lemma 1 that as n → ∞,

{

n−1/2
n∑

i=1

ξi (β0)

}T
{
�n(β0)

}−1

{

n−1/2
n∑

i=1

ξi (β0)

}
d−→ χ2

p,

which immediately implies −2l(β0)
d−→ χ2

p. This completes the proof. �
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