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Adaptive Nonparametric Comparison
of Regression Curves

CHANGLIANG ZOU, YUKUN LIU, ZHAOJUN WANG,
AND RUNCHU ZHANG

LPMC and School of Mathematical Sciences, Nankai University,
Tianjin, China

We propose a new test for comparison of two regression curves, which integrates
generalized likelihood ratio (GLR) statistics (Fan et al., 2001) with the data-driven
criterion of selecting the smoothing parameter proposed by Guerre and Lavergne
(2005). The local linear nonparametric estimator is used to construct the GLR
statistic. We prove that the corresponding test statistic is asymptotically normal and
free of nuisance parameters and covariate designs under the null hypothesis. The
test adapts to the unknown smoothness of the difference between two regression
functions and can detect local alternatives converging to the null hypothesis at
rate �ln ln n/n�−

4
9 . The wild bootstrap technique is used to approximate the critical

values of the test for small samples. A simulation study is conducted to investigate
the finite sample properties of the new adaptive test and to compare it with some
other available procedures in the literature. The simulation results demonstrate the
sensitivity and robustness of the proposed approach.

Keywords Comparison of two regression curves; Data-driven criterion;
Generalized likelihood ratio; Local linear smoother; Wild bootstrap.

Mathematics Subject Classification Primary 62G07; Secondary 62G09.

1. Introduction

The comparison of two (or more) regression curves is a widely discussed issue. In
many cases of practical interest, we have a sample of ni observations in the form
��yij� xij�� j = 1� � � � � ni�, i = 1� � � � � k with

yij = fi�xij�+ �ij� j = 1� � � � � ni� i = 1� � � � � k�

where xij’s are independent covariate variables with positive density �i having
a common support 	, and for i = 1� � � � � k, �ij �j = 1� � � � � ni� are independent
random errors with mean zero and variance 
i�xij�. We are interested in testing the
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1300 Zou et al.

hypothesis

H0 � f1 = · · · = fk versus H1 � fi �= fj for some i� j ∈ �1� � � � � k�� (1)

Many efforts have been devoted to this problem in a nonparametric setting in
the literature. Earlier work focused on common designs (equal sample sizes and
design points), such as Delgado (1993), Hall and Hart (1990), King et al. (1991),
Young and Bowman (1995), etc. Some tests were proposed in Hall et al. (1997),
Kulasekera (1995), and Kulasekera and Wang (1997) for the hypothesis (1) which
applied under the assumption of unequal designs. Two tests based on weighted L2

distance and marked empirical processes, respectively, were proposed in Dette and
Munk (1998) and Neumeyer and Dette (2003). Dette and Neumeyer (2001) proved
asymptotic normality of three different test statistics under the null hypothesis and
local and fixed alternatives in the case of unequal designs and heteroscedasticity. A
good and recent review on this topic can be found in Neumeyer and Dette (2003).

In this article, we propose a new test procedure based on the generalized
likelihood ratio (GLR) statistics. It was demonstrated in Fan et al. (2001) that a
class of the GLR statistics based on some appropriate nonparametric estimators are
asymptotically of distribution free and have �2-distributions under null hypotheses
for a variety of useful models. Our fundamental test statistic is derived by means
of GLR for two-samples nonparametric regression model problem. Taking into
account different variances of individual curves, we appropriately modify the
GLR procedure and obtain the resulting test statistic with asymptotically normal
distribution (�2-distribution in generalized sense) and free of nuisance parameters
(variances) and covariate designs under the null hypothesis. This test method
depends upon the smoothing technique and hence the power and level are sensitive
to the choice of bandwidth. To overcome this shortcoming, we combine this testing
method with a data-driven criterion of selecting the smoothing parameter proposed
by Guerre and Lavergne (2005) recently. Guerre and Lavergne’s (2005) method
differs from most often-used adaptive rate-optimal lack-of-fit tests (specification
tests) in the spirit of the maximum approach (see Fan, 1993; Hart, 1997; Horowitz
and Spokoiny, 2001), and relies on a specific criterion tailored for testing statistics.
By integrating GLR test and Guerre and Lavergne’s (2005) criterion of selecting
smoothing parameter, we finally obtain a test statistic which is still asymptotically
normal and free of nuisance parameters and covariate designs under the null
hypothesis. We further study the large-sample properties of the proposed testing
procedure under alternatives and theoretically address the issue why such an
adaptive test is useful for our considered hypothesis (1). A simulation study
demonstrates the sensitivity and robustness of the proposed approach for the small
sample sizes, and shows the superior power properties over a competing test in a
variety of cases.

In the next section, we start by describing our testing methodology in the case
of comparing two curves, and then state the main asymptotic results and give
some discussions on the links and difference between the proposed procedure and
other available approaches in the literature. In Sec. 3, we investigate the finite
sample properties of the proposed approach and perform a comparison with some
alternative procedures. A real example from semiconductor manufacturing is used
to demonstrate the method. The proofs are given in the Appendix.
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Comparison of Regression Curves 1301

2. Methodology

2.1. Testing Procedure

To ease the exposition and facilitate the technical arguments, we elaborate on
introducing test method for comparing two regression functions in the case of
homoscedasticity within each curve. Suppose we have a sample of n = n1 + n2

observations in the form ��y1j� x1j�� j = 1� � � � � n1� and ��y2j� x2j�� j = 1� � � � � n2� with

yij = fi�xij�+ �ij� j = 1� � � � � ni� i = 1� 2�

It is assumed that within each curve the errors are identically distributed with mean
zero and 
2

i , but the distributions of 
−1
1 �1j and 
−1

2 �2j may be different. We are
interested in testing the hypothesis

H0 � f1 = f2 versus H1 � f1 �= f2� (2)

To motivate and derive the testing statistic, similar to Fan et al. (2001), we
suppose that both the �1j and �2j come from normal distribution firstly (only to
motivate our proposed method and is not necessary in asymptotic theory and
practical use; see Secs. 2.2 and 3). According to this assumption on the errors, the
logarithm of the likelihood function is given by

2∑
i=1

[
−ni ln

(√
2
i

)
− 1

2
2
i

ni∑
j=1

(
yij − fi�xij�

)2 ]
� (3)

To develop model specification test, Fan et al. (2001) proposed replacing
the unknown functions under nonparametric alternative by some reasonable
nonparametric estimators. Here, we need to use nonparametric smoothing
estimators under both the null hypothesis and alternative since hypothesis (2) is fully
nonparametric.

Under H1, following Fan et al. (2001), we can construct a local linear estimators
for each curve using the corresponding sample. Say for i = 1� 2,

f̂i�h�x� =
ni∑
j=1

Wi�j�x�yij� (4)

where

Wi�j�x� = Ui�j�x�
/ ni∑

j=1

Ui�j�x��

Ui�j�x� = Kh�xij − x�
[
mi�2�x�− �xij − x�mi�1�x�

]
�

mi�l�x� =
1
ni

ni∑
j=1

�xij − x�lKh�xij − x�� l = 1� 2�

and Kh�·� = K�·/h�/h with K being a symmetric probability density function and h
a bandwidth.
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1302 Zou et al.

Under H0, taking into account the different variances in the two curves and
utilizing the pooled samples, an ideal local linear estimator is given by

f̂0�h�x� =
2∑

i=1

ni∑
j=1

W
�i�
0�j�x�yij� (5)

where

W
�i�
0�j�x� = U

�i�
0�j�x�

/ 2∑
i=1

ni∑
j=1

U
�i�
0�j�x��

U
�i�
0�j�x� =

1


2
i

Kh�xij − x�
[
m0�2�x�− �xij − x�m0�1�x�

]
�

m0�l�x� =
1
n

2∑
i=1

1


2
i

ni∑
j=1

�xij − x�lKh�xij − x��

To complete the esimtator (5), we replace the two unknown parameters 
2
1 and 
2

2

by the following simple but consistent nonparametric estimators (Hall and Marron,
1990)


̂2
i =

1
ni

ni∑
j=1

�yij − f̂i�h�xij��
2 i = 1� 2� (6)

where f̂i�h�x� are defined in (4).
By plugging in the nonparametric estimators of the curves and maximizing the

likelihood over the parameters 
2
i ’s, we get the generalized log-likelihood functions

under H0 and H1, respectively:

l0�h� = −
2∑

i=1

��ni/2� ln�2�+ �ni/2� ln�RSS0�i/ni�+ ni/2��

l1�h� = −
2∑

i=1

��ni/2� ln�2�+ �ni/2� ln�RSSi/ni�+ ni/2��

where RSS0�i =
∑ni

j=1�yij − f̂0�h�xij��
2 and RSSi =

∑ni
j=1�yij − f̂i�h�xij��

2. Now, the
generalized likelihood ratio statistic is

Th = −2�l0�h�− l1�h�� =
2∑

i=1

ni�lnRSS0�i − lnRSSi�� (7)

Obviously, a large Th leads to rejection of the null hypothesis.

Remark 2.1. By Taylor Expansion, it is easy to verify that

Th ≈
2∑

i=1

[
RSS0�i −RSSi

]
/
2

i �
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Comparison of Regression Curves 1303

Thus, from the viewpoint of asymptotics, Th has a similar form to the test statistic
based on the difference of variance estimators (Dette and Neumeyer, 2001). It was
demonstrated that the latter statistic has excellent finite sample properties and is
often remarkably more powerful than other tests in the literature. The test statistic
Th has two distinctive features. On the one hand, the asymptotical distribution of
Tn is free of nuisance parameters 
2

i ’s and covariate designs under H0, as will be
shown in Proposition 2.1. On the other hand, since we use the local linear smoother,
a term of order nh4 involving the covariate designs in asymptotic expansions of
Th under H0 will vanish. The virtue of these features are two-fold. Theoretically
speaking, Th not only allows us to conveniently integrate the method of selecting h
(at least from the asymptotic viewpoint; see Guerre and Lavergne, 2005) because its
asymptotic null-distribution is free of nuisance parameters, but also yields relatively
simple asymptotic quantities under H1 so that it can be straightforward to analysis
the power function and verify the effectiveness of the proposed adaptive data-based
procedure. Our simulation indicates that when the error distributions of the two
curves are different, Th has more robust and sensitive performance than Dette and
Neumeyer’s (2001) test statistic. See Secs. 2.2 and 3 for detailed discussions.

Now, we turn to combining the GLR test statistic (7) with Guerre and
Lavergne’s (2005) method of selecting the smoothing parameter h. Consider a set
of admissible smoothing parameters �n as the following geometric grid:

�n = �hj = hmaxa
−j � hj ≥ hmin� j = 0� � � � � Jn�� (8)

where 0 < hmin < hmax, and a > 1. In this case, Jn ≤ loga�hmax/hmin�.
Following Guerre and Lavergne (2005), we select h as

h̃ = argmax
h∈�n

��Th − �h�− �Th0
− �h0

�− �nvh�h0��

where �n > 0 is a chosen penalty parameter, �h is the mean of Th, and v2h�h0 the
variance of Th − Th0

conditionally on the covariates of the pooled sample. The
proposed testing statistic is

T̃ = �Th̃ − �h̃�/vh0� (9)

where v2h is the variance of Th conditionally on the covariates of the pooled sample.

Remark 2.2. Here, we make several remarks on choosing �n, a, hmax, and hmin

in (9). Theoretically speaking, these quantities should satisfy certain conditions to
obtain the corresponding asymptotic results; see Sec. 2.2 for detailed discussion.
Based on simulations, we observe that performance of the proposed approach is
hardly affected by these parameters, which is consistent with the findings in Guerre
and Lavergne (2005). By both theoretical arguments and numerical studies, we
recommend using the choices that 1 < a < 2, �n = 2�5

√
ln�Jn + 1�, Jn could be 4,

5, or 6, hmax = M�max�n1� n2��
−1/5, and hj = hmax�

−j
n , for j = 1� � � � � Jn, where 0�5 ≤

M ≤ 2 is a constant.

Remark 2.3. In the definition of Th, we assumed the equality of all bandwidths,
which substantially simplifies the asymptotic results and their proofs. Actually,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
a
s
t
 
C
h
i
n
a
 
N
o
r
m
a
l
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
3
:
0
9
 
2
7
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



1304 Zou et al.

in practice it seems to be more reasonable to choose different bandwidths for
f̂1�h�x�� f̂2�h�x�, and f̂0�h�x�, respectively, according to the sample size of the
corresponding sample. This is a topic of ongoing research.

Remark 2.4. Note that Kulasekera and Wang (1997) proposed a method of
selecting smoothing parameters by maximizing the empirical power to obtain the
optimal power in tests of regression curves. Their method is somewhat related to
Neyman-type smooth tests for lack-of-fit. However, how to utilize their method to
select h for the GLR statistic Th remains challenge because it is not easy to estimate
the power function of Th accurately; see Theorem 2.2 in Sec. 2.2. Compared with the
maximizing method, the Guerre and Lavergne’s (2005) selecting criterion has some
nice features. First, the criterion favors a baseline statistic under H0 which results
in an asymptotic normal distribution of T̃ , the same as that for �Th0

− �h0
�/vh0 .

Hence, this data-based smoothing parameters will not inflate the size of test; see
Proposition 2.1 and Theorem 2.1 below. Second, this selection procedure allows us
to use vh0 in T̃ , which yields the increase in power at no cost of size of test from an
asymptotic point.

To complete the testing procedure, it’s necessary to evaluate the quantities
�h, v

2
h, and v2h�h0 . However, these quantities are too complicated to be obtained.

Moreover, even we know their explicit forms (functions of design points and
unknown parameters), we still need to estimate them when we apply the above
testing procedure. So we suggest using the following data-driven method to evaluate
these quantities. Let

Wk =
(
Wk�j�xki�

)
nk×nk

� W�k�l�
0 =

(

̂l


̂k

W
�l�
0�j�xki�

)
nk×nl

� k� l = 1� 2�

WH0
h =

(
W�1�1�

0 W�1�2�
0

W�2�1�
0 W�2�2�

0

)
� WH1

h =
(
W1 0
0 W2

)
�

Vh = WH1
h + �WH1

h �′ − �WH1
h �′WH1

h −WH0
h − �WH0

h �′ + �WH0
h �′WH0

h �

where Wk�j�xki� are defined in (4). Then, the proposed consistent data-driven
estimators of �h, v

2
h, and v2h�h0 are given by

�̂h =
n∑

i=1

V
�ii�
h � v̂2h = 2

n∑
i=1

n∑
j=1

[
V

�ij�
h

]2
�

v̂2h�h0 = 2
n∑

i=1

n∑
j=1

[
V

�ij�
h − V

�ij�
h0

]2
�

where V
�ij�
h denotes the �i� j� element of the matrix Vh. The validity of these

estimators will be stated in Sec. 2.2. Our limited simulations demonstrate that
for small or moderate samples, the test statistic T̃ based on the above estimators
performs better than that based on the corresponding asymptotic quantities.

Formally, the proposed test is

Reject H0 if T̂ ≥ z�� (10)
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Comparison of Regression Curves 1305

where T̂ is T̃ with �h, v
2
h, and v2h�h0 replaced by their estimators �̂h, v̂

2
h, and v̂2h�h0 ,

respectively, and z� is the �1− �� quantile of the standard normal distribution.

Remark 2.5. In the case of comparing m regression functions, one can conveniently
mimic the foregoing procedure of two curves and derive the corresponding test
statistics. All the results shown in Sec. 2 can be generalized to the multiple curves
case.

Remark 2.6. The preceding testing methodology can also be extended to the case
of heteroscedasticity within each curve. One can modify the local linear smoother
(5) by using a neighboring variance estimator to replace the global ones (6). For
instance, the estimator given in Sec. 2.5 of Horowitz and Spokoiny (2001) or the
estimator (3.6) in Guerre and Lavergne (2005) can be used.

2.2. Main Results

In this section, we study the asymptotic behavior of the proposed test. To be clear,
a set of conditions for the results stated later are presented.

Conditions

(C1) The density functions �1 and �2 are bounded away from 0 and have
bounded derivatives. Their common support 	 is bounded and compact.

(C2) f1�·� and f2�·� have s-order Lipschitz continuous second derivatives for
some real s > 0.

(C3) The function K�t� is symmetric and bounded. Further, the functions
t3K�t� and t3K′�t� are bounded and

∫
t2iK�t�dt < �, for i = 1� 2� � � � .

(C4) E�	�11	4� < � and E�	�21	4� < �.

(C5) The bandwidth h satisfies that h → 0, nh3 → � and nh
9
2+s → 0, where

s = min�s� 5/2�.

(C6) The penalty sequence �n is of order
√
2 ln ln n.

Remark 2.7. Condition C1 implies that the density functions are positive, which
ensures that the denominators of f̂1�h�x�, f̂2�h�x�, and f̂0�h�x� are, with high
probability, bounded away from 0. For the fixed design case, we can impose
the assumption given in Dette and Neumeyer (2001) to replace Condition C1
and the arguments in the proof of theorems still hold. This condition is not the
weakest possible. In fact, for Proposition 2.1 and Theorem 2.1, we only require
�1 and �2 are Lipschitz continuous. Conditions C2 and C3 are commonly used
smoothness condition. Condition C4 is necessary in asymptotic theory. Note that in
this condition, the normality of the errors is not needed. Considering the range of h
given by Condition C5, we restrict the set �n of bandwidths as defined in (8) with

hmax = O�n− 2
9−s1� hmin = O�n− 1

3+s2��

where s1 and s2 are two positive constants so that hmax and hmin satisfy Condition
C5. Condition C6 assures �n diverges fast enough in order to obtain the asymptotic
null distribution of T̂ . Obviously, the conditions imposed here are mild.
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1306 Zou et al.

Next, we begin by studying the asymptotic behavior of the GLR test statistic
Th under H0.

Proposition 2.1. Suppose Conditions C1–C5 hold. Then, under H0,

�Th − �̌h�/
̌h

�−→ N�0� 1��

where

�̌h =
2			
h

(
K�0�− 1

2

∫
K2�t�dt

)

̌2
h =

8			
h

∫ (
K�t�− 1

2

∫
K ∗ K�t�

)2

dt�

The asymptotic null distribution of Th is independent of the nuisance parameters

2
i and the densities �i. Furthermore, using a scale constant rK = 1

2
K�0�− 1

2

∫
K2�t�dt∫

�K�t�− 1
2

∫
K∗K�t��2dt

,

we can see rKTh

a∼ �2rK�h , where
a∼ means approximation in a generalized sense (see

Fan et al., 2001). Hence, this proposition can be seen as a generalization of Wilks
phenomenon unveiled by Fan et al. (2001) to the two-samples case.

Remark 2.8. Note that, in Fan et al. (2001), the asymptotic conditional mean
contains three additional terms: the asymptotically normal variables Rn10 and Rn20,
and a constant Rn30 which is related to the second derivatives of the regression
functions. The term Rn30 vanishes in Proposition 2.1 because under H0, the
expansion of Th yields two asymptotically equal Rn30-type bias terms for l0�h� and
l1�h�. This is a special feature in using GLR test for comparing the curves. We
also prove that �Rn10 − Rn20�-type terms of Th is asymptotically negligible under
a slight modification of smoothness in Fan et al. (2001). See Lemma A.3 in the
Appendix. The similar arguments can be applied for this term in Fan et al. (2001).
Hence, as a by-product, we argue that in Theorem 5 of Fan et al. (2001), the
assumption imposed on the bandwidth can be relaxed to some extent. To be specific,
we only require nh

9
2+s → 0 compared with nh

9
2 → 0 in Fan et al. (2001). This

requirement guarantees that the asymptotic distribution of the GLR statistic does
not depend on any stochastically bounded variables; and it may avoid under-
smoothing and include the optimal bandwidth O�n− 1

5 � of nonparametric estimating
regression function fi�·�, as long as the smoothness of curves satisfies Condition C2.

The next proposition investigates the asymptotic behavior of Th under local
alternatives. Denote

� = n1/n� ��x� = f2�x�− f1�x�� �1 =
∫

K�t�t2dt�

�2 = 8			
∫ (

K�t�− 1
2

∫
K ∗ K�t�

)2

dt�

d1�x� = ��1�x�/

2
1� d2�x� = �1− ���2�x�/


2
2�

�0�u� = d1�u�+ d2�u�� �� =
∫

�−1
0 �u�d1�u�d2�u��

2�u�du�
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Comparison of Regression Curves 1307

B�x� = �1
2
�−1
0 �x��f ′′

1 �x�d1�x�+ f ′′
2 �x�d2�x��+ �−3

0 �x�

· �d′
1�x�d2�x�− d1�x�d

′
2�x����

′�x��0�x�− ��x�� ′
0�x���

�1 =
∫

B2�u��0�u�du� �2 =
�21
4

∫
��f ′′

1 �u��
2d1�u�+ �f ′′

2 �u��
2d2�u��du�

Proposition 2.2. Suppose Conditions C1–C5 hold and �1 < M1 and �2 < M2 for some
constants M1 and M2.

(i) If nh�� → M for some constant M , then under H1,[
Th − �̌h − n�� + nh4��2 − �1�

]
/

√

̌2
h + 4n��

�−→ N�0� 1��

(ii) GLR test Th can detect local alternative with rate �� = Op�n
− 8

9 � using h = O�n− 2
9 �,

provided �� > h4��2 − �1�.

Based on this proposition, we can see that Kulasekera and Wang’s (1997)
maximizing empirical power function method is rather difficult to be applied for
GLR test as many unknown functions need to be estimated. The complication of
power function of Th arises partially from uncommon covariate designs and the use
of local linear smoother.

Remark 2.9. From result (i) of Proposition 2.2, we observe that the asymptotic
power of the test statistics Th depends not only on the difference f2 − f1, but
also on the first and second derivatives of regression functions. The term nh4��2 −
�1� intuitively explains why appropriately choosing a smoothing parameter h will
gain increase in power of test. In particular, a smaller h is usually more effective
in detecting the sharp or oscillating difference in the local area (corresponds to
larger �2 − �1) and a larger h performs better when the difference is flat or smooth
(corresponds to smaller �2 − �1). This motivates the use of adaptive selection method
in conducting the GLR test; see Theorem 2.2 and the discussion that follows.

The next proposition establishes the validity of the data-based estimators �̂h, v̂
2
h,

and v̂2h�h0 .

Proposition 2.3. Suppose Conditions C1–C5 hold. Then �̂h = �h + op�h
−1/2�, v̂2h =

v2h + op�h
−1�, and v̂2h�h0 = v2h�h0 + op�h

−1�.

We now present a theorem to establish the null distribution of the proposed
adaptive GLR test statistics T̂ .

Theorem 2.1. Suppose Conditions C1–C6 hold. If �n > �1+ c�
√
2 ln Jn for some c> 0,

then

T̂
�−→ N�0� 1��

According to Theorem 2.1, the proposed test has bounded asymptotic critical
values which significantly differs from the empirical smoothing parameter selection
procedure given in Kulasekera and Wang (1997).
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1308 Zou et al.

Theorem 2.2 below considers the consistency of T̂ under local alternatives.

Theorem 2.2. Suppose Conditions C1–C6 hold and �1 < M1 and �2 < M2 for some
constants M1 and M2. The test (10) at least has the asymptotic power

�

[
n8/9��

(
�n�

1/2
2

8��2 − �1�

)1/9

− 9
8
�n�

1/2
2

]
�

and thus is consistent when

�� ≥ c��2 − �1�
1/9

(
�n�

1/2
2

n

)8/9

�

provided c > 0 is large enough.

In the proof of Theorem 2.2, we can find that to attain the above asymptotic
power, the order of “optimal” h is

min
{
hmax�

[
�n�

1/2
2

n��2 − �1�

]2/9}
� (11)

Thus, the data-based test (10) adapts to different magnitudes of �2 − �1, a function
that indicates the smoothness of individual curves themselves and local difference
between the two curves. As a consequence, the test (10) has a more robust and
sensitive power than the test based on Th with a pre-chosen bandwidth does. For
instance, consider the local alternative of rate n− 4

9 as in (ii) of Proposition 2.2. The
test (10) will provide larger power than Th with some h = Op�n

− 2
9 � if only �2 − �1 is

of smaller order than �ln ln n�−4.

2.3. Wild Bootstrap Implementation of the Test

Based on Theorem 2.1, z� is an asymptotically correct �-level critical value under
null hypothesis. However, it is well known that in specification testing problem the
rate of convergence of the distribution of the test statistic is usually rather slow;
see, e.g., Hall and Hart (1990), Zhang (2003), and Fan and Zhang (2004). For this
reason, we propose a wild bootstrap (see Wu, 1986) version of test (10) and prove
its consistency. Some similar applications of wild bootstrap for present context
and lack-of-fit tests can also be found in Hardle and Mammen (1993), Dette and
Neumeyer (2001), Neumeyer and Dette (2003), and Guerre and Lavergne (2005).

To be precise, define nonparametric residuals by

êij �= yij − f̂i�hb �xij�� j = 1� � � � � ni� i = 1� 2�

where hb is a pre-specified bandwidth of order hmax. Then the bootstrap residuals
is given by e∗ij = êij�ij , where �ijs are independent random variables generated by
an arbitrary distribution so that E��ij� = 0, E��2

ij� = 1 and E��4
ij� < �. In this

article, we follow the suggestion by Hardle and Mammen (1993) and use a two-point
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Comparison of Regression Curves 1309

distribution with masses �
√
5+ 1�/2

√
5 and �

√
5− 1�/2

√
5 at the points �1−√

5�/2
and �1+√

5�/2, respectively. We obtain the bootstrap sample

y∗ij = f̂0�hb �xij�+ e∗ij �

A bootstrap test statistic T̂ ∗ is built from the bootstrap sample as was the original
test statistic in (10). When this procedure is repeated many times, the bootstrap
critical value z∗� is the empirical 1− � quantile of the bootstrap test statistics. Finally,
the hypothesis of equal regression curves is rejected if T̂ ≥ z∗�. The following theorem
establishes the consistency of this procedure.

Theorem 2.3. Under the assumption of Theorem 2.1, we have:

sup
z∈R

∣∣P�T̂ ∗ ≤ z	��xij� yij�� j = 1� � � � � ni� i = 1� 2��− P�N�0� 1� ≤ z�
∣∣ �−→ 0�

We will use Monte Carlo simulations to show the effectiveness of this bootstrap
version of the proposed test in next section.

3. Small-Sample Performance Assessment

3.1. Simulation Study of Level

We first investigate the approximation of the level by the wild bootstrap version
of the test. We consider two regression functions, f1�x� = f2�x� = x2 and f1�x� =
f2�x� = cos�x�, and the sample size, ni = 25 or 50. Four scenarios on distributions
of errors considered are as follows:

�I� �1i ∼ N�0� 1�� �2i ∼ N�0� 1�� �II� �1i ∼ N�0� 1�� �2i ∼ N�0� 0�5��

�III� �1i ∼ N�0� 1�� �2i ∼ t�4�� �IV� �1i ∼ exp�1�� �2i ∼ t�4��

where exp�1� and t�4� denote the centered standardized exponential distribution and
Student-t distribution with four degrees of freedom, respectively. Both the random
design Uniform (U�0� 1�) and the following fixed designs are considered:

x1j =
j − 1
n1 − 1

and x2j =
j

n2

� j = 1� � � � � ni� (12)

By the guidelines in Remark 2.2, we use a = 5/4, hmax = a�max�n1� n2��
−1/5,

�n = 2�5
√
ln�Jn + 1�, and Jn is fixed as 4 for the considered sample size. The

Epanechnikov kernel is used. For each experiment we run 2,000 replications
under null hypothesis and resample bootstrap 1,000 times. Moreover, we use the
bootstrap bandwidth hb = hmax. The results for random design and fixed design are
summarized, respectively, in Tables 1 and 2 which show the simulated rejection
probabilities of the test with level 2�5% and 5% (In each entry, the upper and lower
values, respectively). From these two tables, we observe a reasonable approximation
of the level by the bootstrap procedure. The levels of the test are insensitive to the
distribution of errors.
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1310 Zou et al.

Table 1
Simulated level of test for random uniform design points

f1�x� = f2�x� = x2 f1�x� = f2�x� = cos x

�25� 25� �25� 50� �50� 25� �50� 50� �25� 25� �25� 50� �50� 25� �50� 50�

(I) 2.1 2.4 2.4 2.7 2.1 2.3 2.3 2.5
4.2 5.5 5.5 5.4 4.6 4.8 4.8 5.6

(II) 2.1 2.3 2.1 2.4 2.0 2.2 2.4 2.7
3.8 4.2 4.0 4.9 3.1 4.0 4.1 5.1

(III) 2.2 2.4 2.3 2.1 2.5 2.7 2.5 2.3
4.5 4.9 4.8 4.4 4.8 4.7 5.0 4.5

(IV) 1.8 2.2 1.8 2.5 1.7 2.2 1.7 2.9
3.9 4.2 3.6 4.6 3.6 4.1 3.4 5.1

3.2. Simulation Study of Power

Now, we study the power of the proposed test. Dette and Neumeyer (2001)
performed a comparison and demonstrated that the test based on the difference
of variance estimators (hereafter we denote it as DN test for brevity) has excellent
finite sample properties and is very often remarkably more powerful than several
other tests proposed in the literature, such as Delgado (1993), Hall and Hart (1990),
Kulasekera (1995), and Kulasekera and Wang (1997). Thus, here we use DN test
as a benchmark for comparisons with our proposed adaptive test. Note that in
Remark 2.1, we have given some discussions on the connection and difference
between DN test and the GLR statistic (6). Here, to evaluate the gain of using the
GLR statistic (7), our comparisons also involve the non adaptive GLR test based on
the same bandwidth choice as that of DN test used in simulation study of Dette and
Neumeyer (2001). That is, use different bandwidths of order n−3/10 for the estimators
f̂1, f̂2, and f̂0 (see (3.6) and (3.7) in Dette and Neumeyer, 2001).

Because the levels of bootstrap versions of the considered tests are different
under each comparison scenario, for the sake of a fair comparison, the critical values
of the tests under different comparison setting are obtained by simulations in order

Table 2
Simulated level of test for fixed design points (12)

f1�x� = f2�x� = x2 f1�x� = f2�x� = cos x

�25� 25� �25� 50� �50� 25� �50� 50� �25� 25� �25� 50� �50� 25� �50� 50�

(I) 2.6 2.4 2.4 2.6 2.3 2.4 2.4 2.5
5.0 5.0 5.0 5.1 4.8 5.3 4.3 5.1

(II) 2.8 2.9 2.7 2.8 2.5 2.1 2.9 2.9
4.7 5.5 5.3 5.1 4.8 4.1 4.9 4.9

(III) 1.7 3.1 2.5 2.0 1.6 2.8 2.5 2.2
4.0 5.0 5.2 5.1 4.0 5.6 5.4 5.0

(IV) 2.0 2.0 2.2 2.3 1.9 2.0 2.3 2.4
4.5 4.7 4.5 4.9 4.0 4.6 4.9 5.2
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Comparison of Regression Curves 1311

to attain more precise false probability. For simplicity, we only consider nominal
level of 5% in each case and fixed design points (12) as in Dette and Neumeyer
(2001). The following comparison scenarios are considered:

�I� f1�x� = f2�x�− 1 = cos�x�� �II� f1�x� = f2�x�− x = cos�x��

�III� f1�x� = f2�x�− cos�3x� = cos�x�� �IV� f1�x� = f2�x�− sin�2x� = exp�x��

�V� f1�x� = f2�x�− sin�3x� = exp�x�� �VI� f1�x� = f2�x�− 2 sin�4x� = exp�x��
(13)

These scenarios cover various smoothness of f1, f2, and f1 − f2 which can give a
limited but illustrative explantation of the effect of choice of bandwidth. Table 3
shows the simulation results of comparisons of three tests for various sample sizes
under the above scenarios with standard normal errors. The symbols “GLR” and
“AGLR” denote the non adaptive and adaptive GLR tests, (7) and (10), respectively.

When the difference between two functions is smooth or flat, such as in the
cases (I), (II), and (IV), these three tests yield very similar performance. Note that
compared with DN test, the GLR test has a very slight disadvantage. This is
not surprising to us because as pointed in Remark 2.1, the form of DN test can
be derived by using Nadaraya–Watson estimator and the GLR procedure as in
Sec. 2.1 under the assumption that the two distributions of errors has the same
variance which is just the case considered in Table 3. When f1 − f2 becomes more
oscillating, such as in the cases (III), (V), and (VI), the data-based AGLR test
generally provides more robust rejection probabilities than those of DN and GLR
tests. Especially in the case (VI), we observe the proposed adaptive test yields a
substantial improvement with respect to power for all the sample sizes considered.
This demonstrates that the AGLR test can adapt to the unknown smoothness of the
difference between two regression functions and can pick up smaller bandwidth to
detect more irregular alternatives. Another noteworthy point is that in the case (III),

Table 3
Power comparisons of the tests for various sample sizes with standard

normal errors under (13)

n2 = 25 n2 = 50

DN GLR AGLR DN GLR AGLR

n1 = 25 (I) 0.850 0.812 0.848 0.935 0.903 0.928
(II) 0.392 0.339 0.362 0.477 0.413 0.441
(III) 0.044 0.202 0.281 0.170 0.420 0.401
(IV) 0.386 0.356 0.358 0.519 0.513 0.502
(V) 0.183 0.182 0.238 0.356 0.380 0.387
(VI) 0.062 0.090 0.543 0.254 0.596 0.930

n1 = 50 (I) 0.929 0.900 0.918 0.991 0.987 0.990
(II) 0.494 0.432 0.482 0.679 0.627 0.646
(III) 0.060 0.242 0.354 0.306 0.608 0.596
(IV) 0.489 0.457 0.456 0.709 0.722 0.683
(V) 0.244 0.239 0.334 0.534 0.553 0.560
(VI) 0.073 0.096 0.832 0.477 0.792 0.993
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1312 Zou et al.

DN test is not unbiased for small sample sizes, which can be partially explained by
the fact that a large negative bias term in the variance estimators (larger than the
magnitude of difference between two functions) vanishes very slowly as sample size
n increase due to using the Nadaraya–Watson smoother (see Theorem 2.1 in Dette
and Neumeyer, 2001) and Proposition 2.2 in Sec. 2.2). This phenomenon is more
remarkable in the next comparison example.

To check whether the foregoing conclusions are affected by the distribution of
errors and to study the effect of unequal variances of two errors on the performance
of DN test, next we consider �1i and �2i are distributed as N�0� 0�5� and t�4�,
respectively. Table 4 summarizes the simulation results of powers of the considered
tests for various sample sizes under alternatives (13). From this table, we can
observe a better power for the AGLR test in most of cases. Moreover, compared
with DN test, GLR test performs more robust for various functions and sample
sizes which is due to taking unequal variances into account.

3.3. A Real-Data Application

Here, we apply the proposed AGLR test to a dataset obtained from a deep reactive
ion etching (DRIE) process in semiconductor manufacturing industry. In the DRIE
process, the desired curve is the one with smooth and straight sidewalls and flat
bottoms, and ideally the sidewalls of a trench are perpendicular to the bottom of
the trench with certain degree of smoothness around the corners. Various curve
shapes, such as positive and negative ones due to underetching and overetching, are
considered to be unacceptable. More detailed discussion about the DRIE example
can be found in Zou et al. (2007, 2008) and the references cited there. In the
quality control of the DRIE process, a critical step is comparing a new curve with
some (or one) desired curves (reference sample) to check if the new curve has good
shape. Then we would update the reference sample with the new curve without

Table 4
Power comparisons of the tests for various sample sizes with unequal

variances under (13)

n2 = 25 n2 = 50

DN GLR AGLR DN GLR AGLR

n1 = 25 (I) 0.732 0.700 0.763 0.665 0.877 0.925
(II) 0.212 0.292 0.335 0.045 0.410 0.485
(III) 0.017 0.108 0.237 0.040 0.341 0.403
(IV) 0.234 0.301 0.328 0.159 0.574 0.520
(V) 0.252 0.142 0.215 0.622 0.466 0.412
(VI) 0.017 0.064 0.441 0.060 0.382 0.929

n1 = 50 (I) 0.798 0.695 0.743 0.928 0.929 0.973
(II) 0.353 0.298 0.335 0.268 0.491 0.596
(III) 0.050 0.121 0.236 0.138 0.334 0.484
(IV) 0.384 0.298 0.348 0.441 0.605 0.634
(V) 0.197 0.134 0.258 0.695 0.450 0.480
(VI) 0.058 0.061 0.681 0.249 0.389 0.964
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Comparison of Regression Curves 1313

Figure 1. The original observations and local linear fits of two DRIE curves.

significant difference. Thus, it requires carefully examination and powerful testing
approach because once an inferior DRIE sample is regarded as a good one, the
reference sample will be potentially (highly) affected. To make the curve convenient
to describe by a mathematical function, it is rotated by 45 along a reference point
in a pre-specified coordinate system. The dimensional readings (the responses) of the
profile are then collected by the scanning electron microscope at some given design
points (the covariates). Figure 1 shows the observations of two considered curves
and the corresponding nonparametric regression curves with bandwidths selected by
simple cross-validation.

In this example, one curve has n1 = 35 observations and the other has n2 =
70 observations. We can obtain the estimates of the error variances to be 0.17
and 0.28 for the two curves, respectively, using formula (6). This demonstrates
that the proposed approach which takes into account the different variances in
the two curves, is likely to be more appropriate and efficient. Following the
guidelines in Remark 2.2, we choose a = 5/4, hmax = 5

4 �max�n1� n2��
−1/5, �n =

2�5
√
ln�Jn + 1�, and Jn = 5. The resulting test statistic T̂ is 8.811. By using wild

bootstrap approximation of critical value, we find it shows strong evidence against
equality at a 0.002 level. As a comparison, when using the GLR test with the
bandwidths less than 0.18, we cannot reject the null hypothesis at 0.05 level.

Appendix

Here, we only present a sketch of proof of theorems. A detailed technical report is
available from the authors. Throughout the Appendix, for notation convenience, we
need the following additional definitions. Again we omit all indices referring to the
bandwidth. For i = 1� 2, let

�i�x� =
1
n

ni∑
j=1

Kh�xij − x��ij/

2
i �
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1314 Zou et al.

�2+i�x� =
1
nh

ni∑
j=1

Kh�xij − x��xij − x��ij/

2
i �

Obviously, �i �i = 1� � � � � 4� are all of order Op�nh�
−1/2. Moreover, define

�i�x� = �i�x�/di�x��

Ri�x� =
f ′′
i �x�

2ndi�x�

ni∑
j=1

Kh�xij − x��xij − x�2/
2
i �

�0�x� =
1

�0�x�
�d1�x��1�x�+ d2�x��2�x���

R0�x� =
1

�0�x�
�d1�x�R1�x�+ d2�x�R2�x���

and the following vector-matrix notation:

D = diag
{

1
�0�x11�

� � � � �
1

�0�x1n1�
�

1
�0�x21�

� � � � �
1

�0�x2n2�

}
�

D1 = diag
{

1
d1�x1�

� � � � �
1

d1�xn1�
� 0�n2

}
� D2 = diag

{
0�n1�

1
d2�x21�

� � � � �
1

d2�x2n2�

}
�

J1 =
1


2
1

diag�1�n1� 0
�
n2
�� J2 =

1


2
2

diag�0�n1� 1
�
n2
��

� = ��11� � � � � �1n1
� �21� � � � � �2n2

�� = ��1� � � � � �n1� �n1+1� � � � � �n�
��

Kh =
((

Kh�x1i − x1j�
)
n1×n1

(
Kh�x1i − x2j�

)
n1×n2(

Kh�x2i − x1j�
)
n2×n1

(
Kh�x2i − x2j�

)
n2×n2

)
�

Kh ∗ Kh =
((

Kh ∗ Kh�x1i − x1j�
)
n1×n1

(
Kh ∗ Kh�x1i − x2j�

)
n1×n2(

Kh ∗ Kh�x2i − x1j�
)
n2×n1

(
Kh ∗ Kh�x2i − x2j�

)
n2×n2

)
�

First, we state the following two necessary lemmas without giving their proofs.

Lemma A.1. Under the assumption of Proposition 2.1, we have:

1
ni

RSSi = 
̂2
i = 
2

i �1+ Op�n
−1/2�+ Op�nh�

−1��

1
ni

RSS0�i = 
2
i �1+ Op�n

−1/2�+ Op�nh�
−1�� i = 1� 2�

Lemma A.2. Under the assumption of Proposition 2.1, uniformly for x ∈ 	 and k =
0� 1� 2, we have:

f̂k�h�x�− f1�x� = ��k�x�+ Rk�x�� �1+ op�1���
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Comparison of Regression Curves 1315

Lemma A.3. Under the assumption of Proposition 2.1, we have:

nk∑
i=1

Rk�xki��k�xki� =
nk∑
i=1

Rk�xki��ki + op�h
−1/2�� k = 1� 2�

2∑
i=1

1


2
i

ni∑
j=1

R0�xij��0�xij� =
2∑

i=1

1


2
i

ni∑
j=1

R0�xij��ij + op�h
−1/2��

Proof. We sketch a proof of the first part of the assertion; the others follow by
similar arguments. By using the fact that

R1�x� =
h2

2
f ′′
1 �x��1�1+ O�hs�+ Op�nh�

−1/2��

we have

n1∑
i=1

R1�x1i��1i =
h2

2
�1

n1∑
i=1

f ′′
1 �x1i��1i�1+ O�hs�+ Op�nh�

−1/2�

and

n1∑
i=1

R1�x1i��1�x1i� =
h

2n1

∑
i=j

K�0��1i�
−1
1 �x1i�f

′′
1 �x1i��1�1+ O�hs�+ Op�nh�

−1/2�

+∑
i �=j

1
n1

�1i�
−1
1 �x1j�Kh�x1i − x1j�

× h2

2
f ′′
1 �x1j��1�1+ O�hs�+ Op�nh�

−1/2�

= Op�n
−1/2h�+ h2

2
�1

n1∑
i=1

�1if
′′
1 �x1i��1+ O�hs�+ Op�nh�

−1/2��

which implies that
∑n1

i=1 R1�x1i��1�x1i� =
∑n1

i=1 R1�x1i��1i + O�hs� ·
�n

1
2 h2 1√

n

∑n1
i=1 �1if

′′
1 �x1i��. Note that 1√

n

∑n1
i=1 �1if

′′
1 �x1i� is stochastically bounded.

Thus, using Condition C5 yields the assertion.

Lemma A.4. Under the assumption of Proposition 2.1, we have:

2∑
i=1

1


2
i

ni∑
j=1

R2
0�xij� =

2∑
i=1

1


2
i

ni∑
j=1

R2
i �xij�+ op�h

−1/2��

The proof is similar to that of Lemma A.3 and hence is omitted here.

Proof of Proposition 2�1. By Lemmas A.1–A.4 and first-order Taylor expansion, we
can show

Th =
2∑

i=1

1


2
i

ni∑
j=1

�2�i�xij��ij − �2i �xij��−
2∑

i=1

1


2
i

ni∑
j=1

[
2�0�xij��ij − �20�xij�

]
+ op�h

−1/2��
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Now we rewrite Th as

Th = 2
n

{ 2∑
i=1

(
��JiDiKhJi� −

1
2
��JiDiKh ∗ KhJi�

)
−
[
���J1 + J2�DKh�J1 + J2�� −

1
2
���J1 + J2�DKh ∗ Kh�J1 + J2��

]}
+ op�h

−1/2�

≡ 2h−1/2

[ ∑
1≤i≤j≤n

�ij�i�j + op�1�
]
≡ 2h−1/2����h�

� + op�1��� (A.1)

where we have used the fact that

1
n2

��JiKhDiJiDiKhJi� = 1
n
��JiDiKh ∗ KhJi��1+ op�1���

and �h = ��ij� is defined as follows:

�ij =
h1/2

n
4
1

(
d2�x1i�

�0�x1i�d1�x1i�
+ d2�x1j�

�0�x1j�d1�x1j�

)
×
(
Kh�x1i − x1j�−

1
2
Kh ∗ Kh�x1i − x1j�

)
� 1 ≤ i < j ≤ n1�

�ij =
h1/2

n
4
1

d2�x1i�

�0�x1i�d1�x1i�

(
Kh�0�−

1
2
Kh ∗ Kh�0�

)
� 1 ≤ i ≤ n1�

�ii =
h1/2

n
4
2

(
d1�x2k�

�0�x2k�d2�x2k�
+ d1�x2l�

�0�x2l�d2�x2l�

)
×
(
Kh�x2k − x2l�−

1
2
Kh ∗ Kh�x2k − x2l�

)
�

n1 < i < j ≤ n with k = i− n1 and l = j − n1�

�jj =
h1/2

n
4
2

d1�x2l�

�0�x2l�d2�x2l�

(
Kh�0�−

1
2
Kh ∗ Kh�0�

)
� n1 < j ≤ n�

�ij = − h1/2

n
2
1


2
2

(
1

�0�x1i�
+ 1

�0�x2l�

)(
Kh�x1i − x2l�−

1
2
Kh ∗ Kh�x1i − x2l�

)
�

1 ≤ i ≤ n1 < j ≤ n�

Note that Var�2h−1/2∑n
i=1 �ii�

2
i � = op�h

−1�, and

E

(
2h−1/2

n∑
i=1

�ii�
2
i

)
= 2h−1/2

{

2
1

n1∑
i=1

h1/2

n
4
1

d2�x1i�

�0�x1i�d1�x1i�

(
Kh�0�−

1
2
Kh ∗ Kh�0�

)

+ 
2
2

n2∑
i=1

h1/2

n
4
2

d1�x2i�

�0�x2i�d2�x2i�

(
Kh�0�−

1
2
Kh ∗ Kh�0�

)}
+ op�h

−1/2�

= 2			
h

(
K�0�− 1

2

∫
K2�t�dt

)
+ op�h

−1/2��
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As a consequence, we have:

2h−1/2
n∑

i=1

�ii�i = �̌h + op�h
−1/2��

Now, it remains to show the asymptotic normality of Wh =
2h− 1

2
∑

1≤i<j≤n �ij�i�j . Since it can be written as a symmetric quadratic form with
vanishing diagonal elements, we can apply Theorem 5.2 in De Jong (1987).
Obviously, the expectation of Wh is zero, while

Var
( ∑

1≤i<j≤n

�ij�i�j

)
= E

(
Var

( ∑
1≤i<j≤n

�ij�i�j 	 x11� � � � � x1n1� x21� � � � � x2n2
))

= E

( ∑
1≤i<j≤n1

�2ij

4
1 +

∑
1≤i≤n1<j≤n

�2ij

2
1


2
2 +

∑
n1<i<j≤n

�2ij

4
2

)

= 1
2

2∑
i=1

∫∫
g2i �x� y�di�x�di�y�G

2

(
x − y

h

) 1
h
dx dy

+
∫∫

g23�x� y�d1�x�d2�y�G
2

(
x − y

h

)
1
h
dx dy + Op�n

−1�

= 2
∫ (

d2
2�y�

�2
0 �y�

+ d2
1�y�

�2
0 �y�

+ 2d1�y�d2�y�

�2
0 �y�

)
dy
∫

G2�x�dx + o�1�

= 2			
∫

G2�x�dx + o�1��

where we define

g1�x� y� =
d2�x�

�0�x�d1�x�
+ d2�y�

�0�y�d1�y�
� g2�x� y� =

d1�x�

�0�x�d2�x�
+ d1�y�

�0�y�d2�y�
�

g3�x� y� =
1

�0�x�
+ 1

�0�y�
� G�x� = K�x�− 1

2
K ∗ K�x��

Thus, the asymptotic variance of Th is 
̌2. Finally, by tedious but straightforward
algebra, we can verify that �ijs satisfy all the conditions given in Theorem 2 of De
Jong (1987) and thus we complete the proof.

Proof of Proposition A.2. The proof of this proposition is analogous to that of
Proposition 2.1. Here we only highlight the differences between them. By some
algebra, we can obtain

f̂0�h = �−1
0 ��1 + �2�+ �−1

0 �f1d1 + f2d2�+
�1
2
h2�−1

0 �f ′′
1 d1 + f ′′

2 d2�

+ h2�−3
0 �d′

1d2 − d1d
′
2���

′�0 − �� ′
0�+ o�h2��

Therefore, under H1,

f̂0�h�x�− f1�x� = �−1
0 �x�d2�x���x�+ �−1

0 ��1�x�+ �2�x��+ h2B�x�+ o�h2��

f̂0�h�x�− f2�x� = −�−1
0 �x�d1�x���x�+ �−1

0 ��1�x�+ �2�x��+ h2B�x�+ o�h2��
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Then substituting these expressions into Th and by lengthy algebra, we have:

Th = 2h−1/2
∑

1≤i≤j≤n

�ij�i�j + 2
2∑

i=1

ni∑
j=1

�−1�i�−1
0 �xij���xij�d3−i�xij��ij/


2
i

+ n�� + nh4�1 − nh4�2 + op�h
−1/2��

where �ij�i�j’s are given by (A.1). Using Proposition 2.1 and calculating the
expectation and variance of the second term in the latter equation, we complete the
proof.

Proof of Proposition A.3. Using similar arguments to those in the proof of
Proposition 2.1, we can show that

Th = ��1Vh�1 + op�h
−1/2�� Th − Th0

= ��1�Vh − Vh0
��1 + op�h

−1/2 − h
−1/2
0 ��

where �1 = �
−1
1 �11� � � � � 


−1
1 �1n1

� 
−1
2 �21� � � � � 


−1
2 �2n2

��. Hence, conditionally on the
pool sample, a direct calculation yields the assertions.

Denote Tc
h=Th − �̂h which is the asymptotic centered GLR statistic. Moreover,

define �ch as a n× n matrix with zero diagonal elements and the rest elements �cij
equal to �ij . The following lemma is helpful in proving Theorem 2.1.

Lemma A.5. Under the assumption of Theorem 2.1, for all h ∈ �n\�h0�, we have:

(i) v̂h�h0 = Op�h
−1 − h−1

0 �1/2;

(ii)
����ch−�ch0

��

vh�h0

�−→ N�0� 1�;

(iii) maxh∈�n\�h0�
∣∣ Tc

h−Tc
h0

v̂h�h0

∣∣ = �1+ op�1��maxh∈�n\�h0�
∣∣ ����ch−�ch0

��

vh�h0

∣∣+ op�1��

Proof. By (A.1), we have

Tc
h − Tc

h0
= ����ch − �ch0�� + op�h

−1/2 − h
−1/2
0 ��

Results (i) and (ii) can be shown by analogous arguments in the proof of
Proposition 2.1. Result (iii) directly follows (i) and the above equation.

Proof of Theorem 2.1. By using Lemma A.5(i) and (iii),

Pr�h̃ �= h0� = Pr

(
max

h∈�n\�h0�

∣∣∣∣Tc
h − Tc

h0

v̂h�h0

∣∣∣∣ > �n

)

≤ Pr

(
max

h∈�n\�h0�

∣∣∣∣����ch − �ch0��

vh�h0

∣∣∣∣ ≥ �n
1+ c

)
+ op�1��

It can be easily checked that �ch − �ch0 satisfies the conditions of Lemma A.2 for
general symmetric matrix in Guerre and Lavergne (2005). Applying Lemma A.2(ii)
of Guerre and Lavergne (2005), Lemma A.5 and Proposition 2.1, the remaining
proofs can be completed by using the same arguments as in the proof of Theorem 1
of Guerre and Lavergne (2005). Hence, details are omitted here.
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Proof of Theorem 2.2. The proof is based on the following lower bound for the
power of the test:

P�T̂ ≥ vh0z�� ≥ P�Th − �̂h ≥ vh0z� + �nv̂h�h0�� (A.2)

That is, the adaptive test (10) inherits the power properties of each of the Th up to
�nv̂h�h0 ; see the discussions in Guerre and Lavergne (2005).

Under a local alternative �, by Proposition 2.2, collecting the leading terms we
have:

Th − �̂h = h− 1
2w + n���1+ op�1��− nh4��2 − �1�� (A.3)

where w is an asymptotically normal random variable with variance �2. Upon
remembering that v̂h�h0 and v̂h is of order h− 1

2 , we can find an appropriate h in the
set of �n, say hn, such that

n�� − nh4��2 − �1�− �nv̂h�h0

attains its maximum value asymptotically. That is, take hn = h0a
−jn , where jn is the

integer part of

2
9 ln a

ln
[
8n��2 − �1�

�n�
1/2
2

]
�

Note that hn is in �n when ns1� �2−�1
�n

�
2
9 is large enough. Then, substituting hn into

(A.3), Theorem 2 now follows from (A.2).

Proof of Theorem 2.3. Denote E∗ as the conditional expectation given the total
sample ��xij� yij�� j = 1� � � � � ni� i = 1� 2�. Under H0, we can easily verify the
following moment condition for bootstrap residuals:

E∗��∗
ij� = 0� E∗��∗

ij�
2 = 
2

i �1+ O�h4
b�+ O�nhb�

−1 + O�n− 1
2 ��� E∗��∗

ij�
4 < ��

where we refer to Lemma 3 in Zhu and Xue (2006) for the second moment
condition. Using these conditions, Theorem 2.3 can be established by mimicking the
proof of Theorem 2.1.
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