This article was downloaded by: [East China Normal University]

On: 15 September 2014, At: 18:13

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Simulation and
Computation

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/Issp20
Sequential Two-stage D-optimality Sensitivity Test for

Binary Response Data

—— Lei Wang ? , Xiaolong Pu ? , Yan Li # & Yukun Liu ®

& School of Finance and Statistics , East China Normal University , 200241 , Shanghai , China
Accepted author version posted online: 07 Apr 2014.

To cite this article: Lei Wang , Xiaolong Pu , Yan Li & Yukun Liu (2014): Sequential Two-stage D-optimality Sensitivity Test for
Binary Response Data, Communications in Statistics - Simulation and Computation, DOI: 10.1080/03610918.2013.834450

To link to this article: http://dx.doi.org/10.1080/03610918.2013.834450

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service
to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting,
typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of
the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained

in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any

form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions



http://www.tandfonline.com/loi/lssp20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610918.2013.834450
http://dx.doi.org/10.1080/03610918.2013.834450
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [East China Normal University] at 18:13 15 September 2014

ACCEPTED MANUSCRIPT

Sequential Two-stage D-optimality Sensitivity Test for
Binary Response Data

Lei Wang, Xiaolong Pu, Yan Li, Yukun Liu
School of Finance and Statistics,
East China Normal University, Shanghai 200241, China

Abstract

In order to dficiently extract information about an underlying population based on binary
response data (e.g., dead or alive, explode or unexplode), we propose a two-stage D-optimality
sensitivity test, which consists of two parts. The first part is a two-stage uniform design used
to generate an overlap quickly; the second part conducts the locally D-optimal augmenta-
tions to determine optimal follow-up design points. Simulations indicate that the proposed
method outperforms the Langlie, Neyer and Dror and Steinberg methods in terms of probabil-
ity of achieving an overlap and estimation precision. Moreover, the superiority of the proposed

method are confirmed by two real applications.

Keywords: Sensitivity; D-optimality; Maximum likelihood estimator; Langlie method; Neyer

method; Overlap; Uniform design.

AMS Subiject Classification: 62L05; 62K05; 62P10

1 Introduction

Binary response data or dichotomous data are important and commonly used in biology and
initiating explosive device study (e.g., dead or alive, exploded or unexploded). Sensitivity
refers to the critical value of a latent continuous variable in a binary response data. For exam-

ple, the critical shock which makes an explosive explode, or the critical dose of a rat poison

*Address correspondence to Yukun Liu, 500 Dongchuan Road, Shanghai, 200241, P.R. China. E-mail address:
ykliu@sfs.ecnu.edu.cn
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that makes a white rat dead. The problem of interest is to make inferences about the sensi-
tivity distribution. To this end, sensitivity tests are conducted to gather information about the
sensitivity.

Sensitivity tests can be applied in various research fields such as biological, pharmaceu-
tical, psychological and engineering research and so on. However, the scarcity of sensitivity
information poses a challenge in constructing tfieient sensitivity tests in various settings.

The Probit method (Bliss, 1935) and the Bruceton method (Dixon and Mood, 1948) were two
primary attempts in this direction, which are simple butiivgent. Robbins and Monro (1951)
proposed the Robbins-Monro method to make inferences about sensitivity quantiles, however
it can estimate only one quantile at a time. Langlie (1965) proposed a ifimierd sensitiv-

ity method, i.e., the well-known Langlie method. For recent work about sensitivity tests, we
refer the readers to see Einbinder (1974) for the OSTR method, Wu (1985) foffittiens
sequential designs with binary data, Neyer (1994) for the D-optimality based sensitivity test
(the Neyer method), and Dror and Steinberg (2008) for the generalized linear models (the D-S
method). Other discussions can be found in Davis (1971), McLeish and Tosh (1990), Haines
et al. (2003), Joseph (2004), Karvanenal. (2007), Tian (2009) and Warsg al. (2013).

Among others, the Langlie and Neyer methods are the two most widely-used sensitivity
tests, and the D-S method is a new general sensitivity test. The Langlie method was developed
to find the design points corresponding to 50% responses, so it could provide a good estimation
of median but could not provide an ideal estimation of the population variance of a symmetric
distribution. Furthermore, it owns blindness in finding the follow-up design points. Unlike the
Langlie method, the Neyer method assumes that the sensitivity follows a parametric model and
it has a clear goal in finding the follow-up design points. Roughly speaking, it consists of two
parts. The first part is designed to make an overlap come up. By the overlap, we mean that there
is an overlap between stimuli that produce responses and those that produce non-responses, or
more specifically the smallest response is smaller than the largest non-response. The overlap

guarantees the existence of a maximum likelihood estimator (MLE) of the unknown parameters
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(see Silvapulle, 1981), which will be used in the second part. In the second part, by maximizing
the determinant of the Fisher information matrix of the parameters, it renders the resulting
MLEs to have approximately the smallest variances (see Abdelbasit and Plackett, 1983) or
provides the smallest confidence ellipsoid for the parameters (See Wu, 1985; McLeish and
Tosh, 1990).

Intuitively, the Neyer method is mordfient than the Langlie method. Théieiency of
the Neyer method is mainly due to the second part, which can extract as much information as
possible from a sensitivity population. However, the cost is that the Neyer method needs to
specify one more quantityguess— a guess value of the standard deviation— at the beginning.

It can be expected that the choice of such a guess value ffegt the performance of the
Neyer method, which will be seen from our simulation results: a bad guesswglegoften

makes an overlap come up late, resulting in a waste of samples. In practice, it is not easy to
give an accurate guess value of the standard deviation, which plays dowffi¢creney of the

Neyer method.

In addition, Dror and Steinberg (2008) considered the problem of experimental design
when the response is modeled by a generalized linear model, which could also be applied to
multifactor experiments. Based on the D-optimality criterion and Bayesian analysis that ex-
ploits a discretization of the parameter spaceffiwiently represent the posterior distribution,
the D-S method uses the posterior medians as the estimators and shows some superiorities in
efficiency to the Neyer and Bruceton methods. However, this method typically includes more
than just two inputs, and the selection of the prior distributions is also need to be discussed.
The priors are obviously important and mafe&t the performance of the D-S method, which
will be seen from our simulation results.

As pointed out earlier, anfigcient sensitivity test should require less initial knowledge of
the parameters and use all the current data information to determine the next design points.
According to the above discussion and motivated by the Neyer and D-S methods, we propose

a two-stage D-optimality sensitivity test method in this paper, which consists of two parts. The
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first part is designed to generate an overlap and preliminarily estimate the parameters. The
second part, similar to the modiffieient part of the Neyer and D-S methods, determines the
optimal follow-up design points by the D-optimality criterion. The proposed test requires only

a lower boundx. and an upper boung, of the mean beforehand. Our simulations indicate

the proposed method has larger probabilities of obtaining an overlap and gives better parameter
estimates compared with the Langlie, Neyer and D-S methods.

The rest of this paper is organized as follows. In Section 2, we introduce the general idea
of the proposed method. The first part of the proposed method is determined specifically in
Section 3. Simulations are conducted in Section 4 to compare the proposed method and three
competing methods, i.e., the Langlie, Neyer and D-S methods. In Section 5, we apply the
proposed method to two real sensitivity products and compare it with the Langlie and Neyer

methods again. Section 6 contains a discussion about the proposed method.

2 Two-stage D-Optimality Sensitivity Test

We first present some assumptions on the sensitivity data and then introduce the proposed

two-stage D-optimality sensitivity test.

2.1 Model assumption

Due to the scarcity of information, making a direct inference about the sensitivity distribution
is difficult. In practice, parametric models are usually assumed based on the historical data
or experiences of the investigator. In this paper, as in Silvapulle (1981), Neyer (1991, 1994)
and Dror and Steinberg (2008), we assume the cumulative distribution function (CDF) of the
sensitivity takes the fornr ((x — 1)/o), whereF(:) is a known function ang ando- > 0 are
unknown location and scale parameters, respectively. For simplicity, we focus on the case in
which the parametegsando respectively denote the population mean and standard deviation,

such as normal and log-normal distributions.
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Suppose the experiments have been conducted sequentially at stimuliXgvels - - -,

Xn. Let d; be the experimental result &, whered; = 1 denotes a response afid= 0 a

non-response. The likelihood function basedkpands; (i = 1,--- , N) is denoted as
N

Lw,0) = [ [F@(@-F@)™, z=(x-uo (1)
i=1

The parameterg ando are usually estimated by their MLEzsahdd, respectively (Silvapulle,
1981). Any function ot ando, for instanceéh(u, o), can also be estimated by its ML, 7).
Take a quantile of the sensitivity distribution for example. Lgte theqth percentile of the

sensitivity distribution andy be the solution td=(z5) = g. ThenLq can be estimated by

2.2 The D-Optimality part

The proposed test consists of two parts: an initial part and a D-optimality part. The initial part
is designed to find an overlap and preliminary estimate the parameters. The D-optimality part
follows the initial part and is designed to determine the optimal follow-up design points. We
first introduce the D-optimality part since it is similar to the main part of the Neyer and D-S
methods. The initial part will be presented in the next subsection.

The Fisher Information Matrix The Fisher information is a measure of the amount of
information that the data carry about an unknown parameterx,&t)(i = 1,2, --- ,n) be the
first n experimental data, then the Fisher information matrix of the pararfietdf, o) under

the parametric modeét((x — u)/o) is

|
In(@) =
lo1 122

11l :Z”: (F'(z))? 1 z )
= F@)1-F@)o?|, 2 ’

whereF’(-) denotes the derivative &1(-), z = (X —u)/o, i=1,---,n.

The D-optimality part Suppose an overlap comes up after the firekperiments have
been conducted in the initial part. Dendteas the MLE ofg based on the first observations.
It is well-known thatd, — @ is approximately distributed as (DL |,;1(9)) asn — oo, and the

determinantl;1(6)| measures that dispersionéaf
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With the purpose of minimizing the dispersionéf 1, we determines then@ 1)th design
point in the D-optimality part by
Xne1 = arg maxln.a(x; o)), ©)
X
where

(F@) 1

Ins1(X; On) = In(6n) + FQ(- F@)52 i}

» Z=(X= ftn)/0n.

The above determination of,,; is based on the assumption that there is an overlap after
the firstn experiments in the initial part. If no overlap comes up, then the MLE does not exist.
In this situation, motivated by Neyer (1994), we deffhe= (iin, &) in (2) as follows,

DX
o2 (4)
o =)= )
wherexgl‘j andx(lnL) are the largest non-response and the smallest response of thedfitat If
xgg or x(lrl‘_) has no definition, i.e., all experiments respond or none respond, Wg\gseth or
X = .

If the parameter of interest is onfy= u or 6 = o, we need to modify the above procedure

by replacingln(6) with (111122 — 12,)/122 Or (111122 — 12,)/111, respectively.

2.3 The initial part

We design the initial part by combining the following three considerations. First, it should
obtain an overlap quickly, since the existence of the MLE is based on the existence of the
overlap. Second, as the D-optimality part fi@ent for the moderate and large sample size,
the number of design points in the initial part should not be too small (preferably larger than
5). At last, considering the cost of the experiments, the number of design points in the initial
part should not be too large (preferably less than 10).

The premise of conducting the initial part is to specify the lower and upper bounds of the

mean,x. and xy, which gives a non-response and a response respectively. In pragtice,
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and xy are often conservatively determined according to the practitioner’s experience such
that almost surely the stimulus lewgl produces a non-response, aqdproduces a response.
Here, we provide a possible way to specify the lower and upper bounds. Suppose the sensitivity
has a natural lower bound,i, > —co and a natural upper boung,ax < . We select two
stimuli levelsx,. andxy (Xmin < XL < Xy < Xmax) @nd conduct experiments at them. The lower
and upper bounds andxy are determined if we observe one non-response and one response.
Otherwise, if the experiments all give responses, we reptaedth max2x,. — Xy, Xmin} and
conduct experiment at the new. This procedure may be iterated many times until a non-
response is observed at the resultipg The case that all experiment produces non-responses
can be treated in the same way. According to our simulation experiences, if a probit model is
appropriate for the underlying sensitivity, we recommend choosingi—ké andxy = a+ko
for somek > 0. Hereu ando are respectively the best current estimates of the mean
and the standard deviatian that the experimenters obtain. We recomménd 3 if only
u is of interest, ank = 5 when the parameter of interestdsor bothu ando. Under a
probit sensitivity model, any parameter of the sensitivity is a smooth functignasid o,
and therefore can be estimated through the estimatgsanid o. Conservatively, we also
recommend the choide= 5 for other parameters such as quantiles.

For convenience, we proceed with the premise that the lower and upper buadsl
xy are determined. We first condugt experiments equally spreading in the interval, ky)
and check whether an overlap comes up. If the overlap appears, turn to the D-optimality part;
otherwise, conduat, experiments equally spreading in the inter(/#fl), x(lnLl)), wherengj)
and x(lnLl) denote the largest non-response and the smallest response of the diasa. This
process may be iterated several times. We call the experiments before the D-optimality part
an initial test; The number of iterations in the initial test and the number of runs needed in
each iteration will be determined in the next section. In general, if no overlap comes up in
the initial test, then the proposed guess vatyen™(3) is most likely smaller than-. Having

approximately equal numbers of runs in each stage of the initial design is the fiicisné
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way to decrease the guessed value in this situation. A note to the practitioners is that if they

really are unsure about, they should run a larger initial experiment until they are certain that

the guessed value in (3), despite no overlap, is not largershan

Specifically, we consider the following choices for the initial part.

1)

2)

3)

One-stage uniform designLet n; be a pre-specified integer. We first condncexper-
iments at design points

Xu — XL
n1+1’

XJ:XL+J' j:1’2"”’n19

and then turn to the D-optimality part. These design points are called a one-stage uniform

design as they are uniformly spaced.

Two-stage uniform design. We first conduct a one-stage uniform design wighex-
periments in the intervalx(, xy) and check whether an overlap comes up. If the over-
lap comes up, turn to the D-optimality part. Otherwise, we conduct another one-stage
uniform design withn, experiments in the intervg (Tj), x(lnl_l)), and then turn to the D-

optimality part.

Multiple-stage uniform design. Similar to a two-stage uniform design, we can get a

multiple-stage uniform design by iterating the one-stage uniform design several times.

We may adopt a multiple-stage uniform design in the initial part. However, considering

the experimental cost and complexity, we do not recommend more-than-three-stages uniform

designs in practice.

3

Choice for the initial part

We have presented several choices for the initial part. In this section, through simulations we

determine: 1) the number of stages and 2) the sample sizes in each stage. To illustrate the main

idea of the proposed method, we assume the sensitivity follows a normal distribution which
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is the most important. Without loss of generality, in what follows we assume that the true

sensitivity model is N(01).

3.1  Choice for the number of stage

The main purpose of the initial part is to find an overlap quickly. We now compare the one-
stage, two-stage and three-stage uniform designs from the viewpoint of achieving an overlap.

To proceed, we present a definition of the term “overlap”. Given a series of sensitivity
data ,6) (i = 1,2,---,n), let (rg and Xfl'_) denote the largest stimulus that produces a
non-response and the smallest stimulus that produces a response, respectively. We say that an
overlap comes up, if and only ('3 > Xg'l) Thus the probability of achieving an overlap after
n experiments is defined & (rg > Xfl'_)). If (’8 orXﬁ'_) has no definition, i.e., all experiments
respond or none respond, then no overlap comes up.

We considered 64 pairs of andxy in our simulations withx, being integers between
—-10 and-3, andxy being integers between 3 and 10. et n, andnz denote the number
of experiments in the first, second and third stages, respectively. The total sample size of the
initial part, n; + n2 + nz, is chosen to be between 6 and 9. For a fixed total sample size such
as 9, if a two-stage uniform design is considered, we take the largest probability of achieving
an overlap among all combinatiof®y, ny) : 1 + Ny = 9} as the probability of this design at
the sample size 9. Three-stage uniform designs are treated similarly. All such probabilities are
shown in Figure 1 based on 10,000 replications.

After carefully studying Figure 1, we have the following findings. Firstly, for all the combi-
nations of [, xy], the two-stage uniform designs have a significant increase in the probability
of achieving an overlap compared with the one-stage uniform designs. The increase is about
10% when the total sample size is 6 or 7, and is more than 20% when the total sample size
is 8 or 9. Secondly, the three-stage uniform designs have the larger probabilities of achieving
an overlap than the two-stage uniform designs. However, this increase is very limited, mostly

less than 5%. Thirdly, the probabilities of the three designs get larger as the total sample size

ACCEPTED MANUSCRIPT
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increases.

According to the above discussion, we exclude the one-stage uniform design because its
probability of achieving an overlap is significantly less than the two-stage uniform design. The
three-stage uniform design is also not acceptable, since its probability of achieving an overlap
is slight larger than the two-stage uniform design at the cost of much complication. Thus, we

choose the two-stage uniform design for the initial part since it is simple #ectiee.

3.2 Choice for sample size combination

In this subsection, we determine the sample size pajng) of the two-stage uniform design
from the viewpoint of the estimation precision by simulations. d.&e the MLE of the pa-
rameterd, which may bed = (u,0), 6 = u or 8 = o. Define the sum of squared bias (SSB)
as

16 - 6]

o2

SSK =

2

whereo is the standard deviation. We take the average of,S@&&hoted MSE(mean squared
error), as the criteria of evaluating estimation precision.

In the simulations, we consider four typical choicesf y], i.e., [-3, 3], [-3, 5], [-5, 10]
and [-8,10]. Ten reasonable sample size pairs i) are chosen, anil is 25 and 30. We
generate 2,000 data-sets and estimdate(u, o) by the strategy used in the D-optimality part
of the proposed method.

The simulation results are presented in Tables 1 and 2. In general, the combinatijns (3
and (33) of (n1, np) give the smallest values of M@E,). Furthermore, the results in subsec-
tion 3.1 indicate that the probability of achieving an overlap gets larger as the total sample size
increases. Thus, we finally choosa,(n;) = (3,4) as the sample size pair in the two-stage
uniform design.

Thereafter, we have completely determined the proposed sensitivity test, which implements
the two-stage uniform design with the sample size pad )& the initial part and then follows

by the D-optimality part until the number of experimentis equal to the sample si2¢
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4  Simulation study

In this section, performances of the proposed method are evaluated through Monte Carlo sim-
ulations compared with the Langlie, Neyer and D-S methods. The principal criterions are the

probability of achieving an overlap and estimation precision.

4.1 Probability of obtaining an overlap

According to Silvapulle (1981), unique MLEs exist if and only if the sensitivity data produce
an overlap. Thus, the probability of obtaining an overlap is regarded as a general criteria of
evaluating dfiferent test methods.

Since all the methods need a lower boundand an upper boung, of the mean, four
arbitrary choices ofy , xy] are considered in our simulations, i.e-3 3], [-3, 4], [-4, 4] and
[-4,7]. Besides, noting that the Neyer test dependsrgiss we consider two choices of
Oguess I-€., 1 and 3 (ND1, ND3 for short). For the D-S method, we need to determine the prior
distributions forz ando-. As Dror and Steinberg (2008) advised making the spread of the prior

large for the D-S method, a natural choice of the prior distributions are
p ~N(uz,09), o ~ lognorma(log(uz), o'3),

whereu; = 0.5(x. + xy) anduz = 0.1(xy — X.). In order to guarantee almost surely that
the stimulusxy will produce a response and the stimukjswon't produce a response, we
choose the prior variances% and o-% such thatF(x.) is very close to 0 andF(xy) is very

close to 1 (e.g., 95%). We consider four choices®f, ¢2): (1) ((xu — x)/3, u2/3); (II)

((xu = x0)/4, p2/4); () ((xu = X0)/6, p2/2) and (IV) (kv — x0)/10, p2/2), and calculate

the probabilities of achieving an overlap based on 10,000 replications. The simulation results
are shown in Figure 2, where the probabilities of the D-S method are based on the priors (V)
(Source code can be fouindtp; Awww.math.tau.ac4dmgGLM_Design).

When the sample size is less than 10, the ND1 and D-S methods have the largest proba-
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bilities of all; the proposed method is slightly less than the Langlie method, but larger than
the ND3 method. When the sample size is larger than 10, the proposed method has the largest
probabilities; the ND1 and D-S follow; the Langlie and ND3 methods have the least prob-
abilities. Since the sample size is usually more than 10 in practice, the proposed method is
promising and the best from the viewpoint of probability of achieving an overlap, compared
with the Langlie, Neyer and D-S methods. Meanwhile, it is also seen that the performance of

the Neyer method isfected byogyess

4.2 Estimation precision

As shown above, the ND3 method is inferior to the ND1 method. In this subsection, we
compare the proposed method only with the Langlie, ND1 and D-S methods according to the
MSE;.

Besides the MSE in order to assess the overall performance betwegerent settings,
we can apply the relative mean index (RMI) which was used by Han and Tsung (2006), Zou

and Qiu (2009). We define

K i) i)
1 & Mse? - sms
RMIg = > 5
- SMSE]

where SMS@ is the smallest MS@ of thei-th setting { = 1,---,K) among all the test
methods (i.e., the Langlie, the Neyer, the D-S and the proposed methods). (Mﬁ? -
SMSLigi))/ SMSE—S) can be considered as a relatitBaency measure of the M$E compared
to the best one, and RMis the average of all the relativéfigiency values. A test plan with a
smaller RM}, value is considered better in its overall performance.

In this simulation, we choose ten pairs of [xy], i.e., [-3,3], [-3,5], [-4.4], [-4, 6],
[-4,8], [-5,5], [-5,7], [-5,10], [-6, 6], [-8,10] andN = 20, 25, 30 and 40. We compare
three types of parameters, i.6.= (u,0), 6 = u andd = . The corresponding simulation
results based on 2,000 replications are presented in Tables 3-6, respectively.

In the case of = (u, o), the MSE, and MSE; are listed separately in Tables 3-4. The

ACCEPTED MANUSCRIPT
12



Downloaded by [East China Normal University] at 18:13 15 September 2014

ACCEPTED MANUSCRIPT

results of the D-S method based on the four priors are shown in Appendix A, where we can
see that the D-S method iffected by the priors. The results of the D-S method in Tables 3-4
are all from the priors (V).

On the one hand, if we compare the four methods in estimatengdo together, by using
MSE(, »= MSE,+MSE,, it is easy to see the proposed method always has the leagt MI
and the D-S method performs better than the ND1 when the sample size is small. On the other
hand, if we compare these methods in estimatirend o, respectively, we find the langlie
method and the D-S method perform better than others from Tables 3-4.

Since the D-S method relies on the priors and the computations are complicated, in the case
of 6 = u andg = o, we only compare the ND1 and our methods based on 2,000 replications,
where thd(6; X) should be replaced with ;125 — Ifz)/lzz and (11122 — Ifz)/lll, respectively.

In the case of = u, the two methods have similar and nice performances according to the
MSE,, which are shown in Table 5. Note that when we focu$ enu, the MSE;s of the ND1
and our method are all smaller than those in Table 3, where we focis-dn, o). Moreover,
these two methods perform better than the Langlie method according to the RMI

In the case ob = o, according to the RMJ, the proposed method has uniformly better
estimation precision than the Langlie method and has comparable results with the ideal ND1
method. For reasonable comparison, we add the simulation results of the Neyer method with
oguess= 1.5 (ND1.5 for short) in Table 6. It can be seen that the proposed method has better
estimation precision than the ND1.5. And the ND1.5 is severely inferior to the ND1 although
oguess= 1.5 is very close to the true value. In addition, when we focug ero-, the MSE;s of

ND1 and our method are all smaller than those in Table 4, where we foquario- together.

5 Two real applications

Cooperating with a sensitivity experimental laboratory, we depict two applications of our pro-
posed method to sensitivity experiment in this section. The experiment’'s objectives are to

estimate the sensitivity parameters of two types of sensitivity products, denoted as type | and
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type Il.

According to experience, it is sensible to assume that the sensitivities of the two types of
products follow the normal distributions. Moreover, the type | product has been studied before
and the laboratory has historical information about its sensitivity (the true valyesmod o
are about 9.3 and 0.3, respectively). While, the type Il product is new. We apply the Langlie,
Neyer methods and our proposed method to the type | and type Il products.

For the type | product, the lower and the upper bounds are set to be 7.5 and 11.3, and
oguess= 0.3 in the Neyer method. We conduct one experiment at sampléNsiz&5 and two
experiments alN = 25. The two larger data sets at sample $ize 25 are not augmented from
the earlier small ones at sample side= 15. These data sets are produced in a completely
independent manner. The estimates of the three methods are presented in Table 7.

It can be seen that all the three methods give very accurate estimates of the location param-
eteru. However, the estimates of the parametdrased on the Langlie or the Neyer methods
may deviate severely from the approximate true value 0.3. For example, Mherl5 the
Neyer method estimatesby 0.0306; wherN = 25 the estimate based on the Langlie method
is 0.0283. These two poor estimates must correspond to the data set with almost no overlap.
As an advantage over the rest two methods, it is easy to see that the proposed method always
gives very close estimates to 0.3. Thus we conclude that the new method isfiimeatand
stable than the Langlie and Neyer methods in practice.

For the type Il product, the only information we know is that the estimate isf greater
than 5. In this case, the Neyer and the proposed methods are our best choices. We conduct one
experiment withN = 20 for the two methods. The lower and upper bounds are set as 50 and
100, andrgyess= 5.

The estimates of the Neyer and the proposed methods ar@5.08, 5 = 0.39 andu” =
68.75,0 = 7.50, respectively. The estimatesiofire close to each other. However, the Neyer
method significantly underestimates While the estimater; = 7.50 based on the proposed

method is more sensible. These results again provide evidence that the proposed method is
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very dficient and robust.

6 Discussion

In this paper, under a location-scale distributional assumption on the sensitivity of interest,
we propose a two-stage D-optimality sensitivity test methodtioiently extract information

from the underlying population; the maximum likelihood method is then employed to estimate
the parameters. It is worthwhile to point out that the proposed test has larger probabilities of
achieving an overlap and requires less initial parameters than the Neyer and D-S methods. In-
tuitively it can be expected that people can make more accurate inferences about the sensitivity
of interest at the same sample size using the proposed test than using traditional tests. We pro-
vided simulation results and two real applications to investigatefti@escy of the proposed

test and the resulting location and scale estimators.

It should be noted that when we determine the initial part of the proposed method, the sen-
sitivity distribution is chosen to be N(@). This implies that the choices of two-stage uniform
design and sample size pair, 43 for the two-stages depends on NI When the sensitivity
follows a normal or lognormal distribution with arbitrary parameters, we can transform the
sensitivity distribution to be N(@). Then the two-stage uniform design and sample size pair
(3,4) are still the best choices. When the sensitivity distribution is not normal or transformed
normal distribution, the choices of two-stage uniform design and sample size pgimfay
not be the best. In this situation, we can choose by simulations the number of stages and the

sample sizes in the initial test.
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Appendix A.  MSE, and MSE,, of the four priors when the parameter of interest is
0= (u0)
For the four priors of the D-S methods in Section 4, the corresponding simulation results

on estimation precision based on 2,000 replications are presented in Tables 8-9.
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Table 1: MSE, .y of sample size combinatiof\ = 25.

[XL, Xul=

[-3, 3] [-3, 5] [-5, 10] [-8,10]

(g, np)

(3,3) 0.2305 0.2152  0.2233 0.2023
(3,4) 02269 02188  0.2163 0.2138
(4,3) 0.2503  0.2373  0.2308 0.2128
(4,4) 02445  0.2313  0.2302 0.2309
(4,5) 0.2533  0.2399  0.2463 0.2290
(53) 0.2517  0.2783  0.2358 0.2388
(54) 02531 02431  0.2505 0.2668
(55) 0.2484 02570  0.2743 0.2575
(6,3) 0.2456  0.2630  0.2586 0.2433
(6,4) 0.2536  0.2535  0.2623 0.2725

Table 2: MSE, .y of sample size combinatiof\ = 30.

[XL, Xul=

-3, 3] [-3, 5] [-5, 10] [-8,10]

(g, np)

(3,3) 02063  0.1914  0.1609 0.1713
(3,4) 01801  0.1808  0.1779 0.1794
(4,3) 02132 01797  0.1891 0.1933
(4,4) 02124  0.2063  0.2013 0.1773
(4,5) 0.1957  0.1973  0.1929 0.2000
(53) 0.2008  0.2082  0.2041 0.1925
(54) 02169 01980  0.2130 0.2045
(55) 0.1873  0.2095  0.2173 0.1992
(6,3) 0.1983  0.2006  0.2047 0.2092
(6,4) 02095  0.2233  0.2120  0.2149
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Table 3: MSE (x1072) and RM|, when the parameter of interestis= (u, o)

Methods Langlie ND1 D-S Two-stage Langlie ND1 D-S distage

Bounds N=20 N=25

[-3, 3] 9.56 12.77 10.58 11.45 7.73 9.39 9.6 9.12
[-3, 5] 11.79 13.58 22.73 12.56 8.88 11.00 18.34 9.94
[-4, 4] 1143 12.84 14.92 12.50 8.60 10.20 13.30 9.96
[-4, 6] 1214 12.20 24.38 12.66 8.84 9.76 19.86 10.25
[-4, 8] 11.53 14.05 43.17 13.28 8.69 9.77 34.36 10.23
[-5, 5] 11.47 1292 17.75 13.38 9.08 9.40 16.53 10.69
[-5, 71 13.35 13.50 28.10 13.24 10.12 10.90 23.22 10.40
[-5,10] 12.08 14.28 48.45 14.36 9.49 10.80 36.07 10.96
[-6, 6] 10.82 12.12 20.16 13.90 8.53 9.49 17.40 11.08
[-8,10] 15.95 14.77 30.95 16.65 11.23 11.10 25.18 12.37
RMI 0.009 0.128 1.173 0.132 0.001 0.123 1.3260.157
Bounds N=30 N=40

[-3, 3] 6.62 7.68 9.15 7.48 4.73 545 7.55 5.73
[-3, 5] 7.32 9.64 16.58 8.36 531 6.81 13.17 6.44
[-4, 4] 7.19 8.81 11.61 8.34 5.25 6.43 10.16 6.24
[-4, 6] 6.85 8.57 16.34 8.69 5.00 6.37 13.30 6.61
[-4, 8] 7.16 7.88 28.85 8.53 5.15 5.68 19.70 6.41
[-5, 5] 7.44 7.29 14.29 8.95 5.43 5.63 11.33 6.41
[-5, 7] 7.90 9.21 19.07 8.79 5.78 7.09 14.30 6.67
[-5,10] 7.71 8.99 28.25 9.00 5.55 7.03 20.71 6.34
[-6, 6] 7.32 7.53 14.78 9.19 5.04 541 12.43 6.85
[-8,10] 8.72 9.49 21.76 10.03 6.02 6.61 17.06 7.05
RMI 0.002 0.150 1.423 0.181 0 0.174 1.702 0.219
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Table 4: MSE (x1072) and RM|, when the parameter of interestis- (u, o)

Methods Langlie ND1 D-S Two-stage Langlie ND1 D-S dRstage

Bounds N=20 N=25

[-3, 3] 2326 1925 11.14  18.19 18.81 14.69 10.04  13.57
[-3, 5] 2221 20.35 4.46 15.27 17.46 1493 4.43 11.94
[-4, 4] 23.17 19.93 4.82 17.06 18.99 1554 454 13.41
[-4, 6] 22.06 18.18 5.93 15.06 16.97 13.59 5.99 12.08
[-4, 8] 23.37 19.66 11.30 14.51 18.49 1482 1047  12.13
[-5 5] 2295 20.34 6.94 15.98 18.97 16.03 6.90 12.57
[-5 7] 2227 19.65 10.26  14.15 16.88 14.47 9.59 11.71
[-5,10] 23.13 21.07 2254 1292 19.24 16.10 17.08  10.66
[-6, 6] 22,76 1943 10.65  14.68 18.14 15.09 9.38 12.23
[-8,10] 24.12 20.95 24.79 10.44 18.22 16.10 21.13 9.79
RMI 1.938 1554 0.212  0.948 1.471 1.054 0.1760.653
Bounds N=30 N=40

[-3, 3] 15.73 11.90 8.91 10.53 13.07 822 744 7.22
[-3, 5] 14.98 12.05 4.32 9.72 1197 812 412 6.83
[-4, 4] 15,53 11.95 431 10.40 1161 7.89 3.73 7.27
[-4, 6] 1427 1039 574 9.74 11.31 7.38 5.29 7.08
[-4, 8] 16.62 12.12 10.17 9.66 1293 853 831 6.76
[-5 5] 15.82 1221 6.20 10.41 11.82 850 584 7.42
[-5 7] 14.18 11.95 9.65 9.70 11.25 7.83 8.15 7.01
[-5,10] 16.19 12.65 14.04 8.79 12.00 8.22 9.98 6.78
[-6, 6] 14.36 11.71 8.97 10.34 11.12 796 7.67 7.39
[-8,10] 14.96 13.01 15.67 8.69 11.31 895 11.14 6.72
RMI 1.223 0.741 0.145  0.438 1.047 0.408 0.1590.222
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Table 5: MSE, (x107?) and RM|, when the parameter of interestis= u

Methods ND1 Two-stage ND1 Tovstage

Bounds N=20 N=25
[-3, 3] 10.69 10.64 8.62 8.58
[-3, 5] 9.75 11.37 7.85 8.68
[-4, 4] 10.69 11.60 8.41 8.86
[-4, 6] 9.74 12.02 7.21 8.80
[-4, 8] 10.57 12.91 7.85 9.30
[-5 5] 11.11 11.95 8.74 8.75
[-5, 7] 1251 13.08 9.10 9.74
[-5,10] 13.72 13.64 9.69 9.14
[-6, 6] 11.19 11.07 8.36 8.52
[-8,10] 14.08 14.60 9.87 10.50
RMI 0.002 0.086 0.007 0.072
Bounds N=30 N=40
[-3, 3] 6.82 7.12 4.77 5.03
[-3, 5] 6.03 6.82 4.24 4.99
[-4, 4 6.52 7.02 4.38 4.96
[-4, 6] 5.68 6.74 4.22 4.82
[-4, 8] 6.43 7.13 4.96 4.79
[-5 5] 7.36 6.81 5.06 4.76
[-5 7] 7.17 7.37 4.65 4.98
[-5,10] 7.08 7.11 4.62 4.86
[-6, 6] 6.95 6.58 4.69 4.78
[-8,10] 7.23 7.62 4.98 5.11
RMI 0.014 0.063 0.010 0.067
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Table 6: MSE. (x1072) and RM|, when the parameter of interestis: o

Methods ND1 ND1.5 Two-stage ND1 ND1.®2-stage

Bounds N=20 N=25

[-3, 3] 14.40 22.19 13.87 11.07 17.34 10.61
[-3, 5] 13.34 19.33  13.44 10.01 14.57 10.59
[-4, 4] 13.59 21.61 14.19 1097 16.37 10.82
[-4, 6] 12.25 19.34 12.23 10.11 14.81 9.76
[-4, 8] 12.26 22.66 11.39 9.85 16.75 9.38
[-5 5] 13.95 21.30 13.74 10.43 16.30 10.79
[-5, 7] 10.96 21.37 11.80 9.41 15.82 9.58
[-5,10] 8.54 19.03 10.92 7.77 14.36 9.11
[-6, 6] 11.31 21.63 11.68 9.18 16.53 9.59
[-8,10] 7.28 19.75 6.82 7.13 14.60 6.91
RMI 0.020 0.875 0.044 0.018 0.691 0.033
Bounds N=30 N=40

[-3, 3] 8.88 13.37 8.32 5.96 7.99 5.89
[-3, 5] 7.86 11.11 8.56 6.18 7.19 6.00
[-4, 4] 8.71 12.47 8.66 6.36 7.94 6.13
[-4, 6] 8.46 11.28 7.94 562 721 571
[-4, 8] 831 12091 7.69 593 8.00 5.77
[-5, 5] 8.55 12.59 8.63 6.32 7.82 6.23
[-5, 7] 7.87 12.32 7.87 5.43 7.72 5.67
[-5,10] 6.78 11.29 7.86 5.53 7.34 6.34
[-6, 6] 7.31 12.60 8.23 5.29 7.84 6.03
[-8,10] 6.64 11.41 6.36 5.70 7.53 5.43
RMI 0.026 0.578 0.038 0.017 0.339 0.035
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Table 7: Parameter estimates of type | product

Methods No.1: N=15 No.2: N=25 No.3: N=25
A9 pooe pé
Langlie 9.1673 0.2513 9.2283 0.0283 9.2118 0.3839

Neyer

9.3915 0.0306

Two-stage 9.5755 0.3567

9.3041 0.1823
9.2653 0.3438

9.3234 0.2946

9.34P83003

Table 8: MSE, (x10-2) when the concern parametet (u, o)

Priors
Bounds
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mv
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, 10]
6, 6]
[-8,10]

—

| Il nm - v 1 1\%
N=20 N=25
2452 23.38 19.89 10.58 19.72 19.27 16.35 9.46
27.69 26.27 24.20 22.73  21.97 20.89 20.56 18.34
27.83 26.95 22.34 1492 22,60 22.23 19.17 13.30
30.89 30.09 27.76 24.38 25.04 25.14 23.30 19.86
33.60 35.51 32.45 43.17 2751 28.49 27.02 34.36
31.18 28.25 27.20 17.75 2481 23.01 2254 16.53
34.86 33.07 29.91 28.10 27.19 26.83 24.73 23.22
38.54 4125 3522 4845 3120 31.55 26.66 36.07
3457 30.95 30.00 20.16 27.57 25.62 23.79 17.40
43.23 40.86 39.44 30.95 34.08 32.99 31.0%.18
N=30 N=40

16.76 16.47 13.84 9.15 13.01 1254 10.88 7.55
18.33 17.05 17.95 16.58 13.65 13.61 13.68 13.17
19.01 18.77 17.28 11.61 1453 13.95 13.52 10.16
21.20 21.36 18.96 16.34 16.09 16.52 15.18 13.30
22.35 2279 23.17 28.85 16.31 17.23 17.25 19.70
20.50 19.01 20.11 14.29 1494 14.41 1459 11.33
2252 2257 20.85 19.07 16.62 17.12 1594 14.30
2499 26.43 2196 28.25 1858 19.87 16.44 20.71
23.01 22.09 20.14 1478 17.32 17.03 16.65 12.43
27.32 27.12 2574 21.76  20.13 19.39 19.147.06
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Table 9: MSE. (x1072?) when the concern parametee (u, o)

Priors

B 01w

|
(214, 1, BN N N NG UR A
NGO

— e
|
-
'_\
o
—_

I Il 1] 11\Y I Il 1] 11\Y
N=20 N=25
13.22 1420 10.85 11.14 12.36 13.64 9.89 10.04
345 354 489 4.46 329 334 476 443
346 344 486 4.82 332 328 447 454
221 102 585 593 243 118 6.01 5.99
597 417 10.26 11.30 591 3.98 948 1047
226 098 6.38 6.94 257 120 6.20 6.90
552 4.17 10.25 10.26 536 4.05 9.06 9.59
1493 14.86 18.73 22.54 12.77 13.08 16.67 17.08
6.14 3.97 10.08 10.65 580 3.92 10.00 9.38
2455 25.61 26.26 24.79 20.02 20.80 19.82.13
N=30 N=40

11.62 13.12 894 8.91 10.31 12.18 7.36 7.44
3.20 3.20 4.62 432 294 294 436 4.12
3.18 3.08 429 431 295 285 414 3.73
263 133 595 574 281 151 524 529
595 397 9.04 10.17 523 391 738 831
276 137 6.10 6.20 283 152 581 584
5.27 396 861 9.65 479 377 7.14 8.15
11.25 11.75 13.10 14.04 8.85 9.44 10.07 9.98
571 3.85 899 8.97 504 358 7.23 7.67
16.36 17.63 15.88 15.67 11.63 13.06 11.881.14
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Figure 1:Probabilities of achieving an overlap between three uniform designs. The total sample
sizes for (a)-(d) are 6, 7, 8 and 9.
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Figure 2. Comparison of probabilities of achieving an overlap féedent choices ofy , xy]: (a)
[-3.3], (b) [-3.4], (c) [-4,4] and (d) F-4, 7].
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