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ACCEPTED MANUSCRIPT

Sequential Two-stage D-optimality Sensitivity Test for
Binary Response Data

Lei Wang, Xiaolong Pu, Yan Li, Yukun Liu∗

School of Finance and Statistics,

East China Normal University, Shanghai 200241, China

Abstract

In order to efficiently extract information about an underlying population based on binary

response data (e.g., dead or alive, explode or unexplode), we propose a two-stage D-optimality

sensitivity test, which consists of two parts. The first part is a two-stage uniform design used

to generate an overlap quickly; the second part conducts the locally D-optimal augmenta-

tions to determine optimal follow-up design points. Simulations indicate that the proposed

method outperforms the Langlie, Neyer and Dror and Steinberg methods in terms of probabil-

ity of achieving an overlap and estimation precision. Moreover, the superiority of the proposed

method are confirmed by two real applications.

Keywords: Sensitivity; D-optimality; Maximum likelihood estimator; Langlie method; Neyer

method; Overlap; Uniform design.

AMS Subject Classification: 62L05; 62K05; 62P10

1 Introduction

Binary response data or dichotomous data are important and commonly used in biology and

initiating explosive device study (e.g., dead or alive, exploded or unexploded). Sensitivity

refers to the critical value of a latent continuous variable in a binary response data. For exam-

ple, the critical shock which makes an explosive explode, or the critical dose of a rat poison

∗Address correspondence to Yukun Liu, 500 Dongchuan Road, Shanghai, 200241, P.R. China. E-mail address:
ykliu@sfs.ecnu.edu.cn
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that makes a white rat dead. The problem of interest is to make inferences about the sensi-

tivity distribution. To this end, sensitivity tests are conducted to gather information about the

sensitivity.

Sensitivity tests can be applied in various research fields such as biological, pharmaceu-

tical, psychological and engineering research and so on. However, the scarcity of sensitivity

information poses a challenge in constructing the efficient sensitivity tests in various settings.

The Probit method (Bliss, 1935) and the Bruceton method (Dixon and Mood, 1948) were two

primary attempts in this direction, which are simple but inefficient. Robbins and Monro (1951)

proposed the Robbins-Monro method to make inferences about sensitivity quantiles, however

it can estimate only one quantile at a time. Langlie (1965) proposed a more efficient sensitiv-

ity method, i.e., the well-known Langlie method. For recent work about sensitivity tests, we

refer the readers to see Einbinder (1974) for the OSTR method, Wu (1985) for the efficient

sequential designs with binary data, Neyer (1994) for the D-optimality based sensitivity test

(the Neyer method), and Dror and Steinberg (2008) for the generalized linear models (the D-S

method). Other discussions can be found in Davis (1971), McLeish and Tosh (1990), Haines

et al. (2003), Joseph (2004), Karvanenet al. (2007), Tian (2009) and Wanget al. (2013).

Among others, the Langlie and Neyer methods are the two most widely-used sensitivity

tests, and the D-S method is a new general sensitivity test. The Langlie method was developed

to find the design points corresponding to 50% responses, so it could provide a good estimation

of median but could not provide an ideal estimation of the population variance of a symmetric

distribution. Furthermore, it owns blindness in finding the follow-up design points. Unlike the

Langlie method, the Neyer method assumes that the sensitivity follows a parametric model and

it has a clear goal in finding the follow-up design points. Roughly speaking, it consists of two

parts. The first part is designed to make an overlap come up. By the overlap, we mean that there

is an overlap between stimuli that produce responses and those that produce non-responses, or

more specifically the smallest response is smaller than the largest non-response. The overlap

guarantees the existence of a maximum likelihood estimator (MLE) of the unknown parameters
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ACCEPTED MANUSCRIPT

(see Silvapulle, 1981), which will be used in the second part. In the second part, by maximizing

the determinant of the Fisher information matrix of the parameters, it renders the resulting

MLEs to have approximately the smallest variances (see Abdelbasit and Plackett, 1983) or

provides the smallest confidence ellipsoid for the parameters (See Wu, 1985; McLeish and

Tosh, 1990).

Intuitively, the Neyer method is more efficient than the Langlie method. The efficiency of

the Neyer method is mainly due to the second part, which can extract as much information as

possible from a sensitivity population. However, the cost is that the Neyer method needs to

specify one more quantityσguess— a guess value of the standard deviation— at the beginning.

It can be expected that the choice of such a guess value may affect the performance of the

Neyer method, which will be seen from our simulation results: a bad guess valueσguessoften

makes an overlap come up late, resulting in a waste of samples. In practice, it is not easy to

give an accurate guess value of the standard deviation, which plays down the efficiency of the

Neyer method.

In addition, Dror and Steinberg (2008) considered the problem of experimental design

when the response is modeled by a generalized linear model, which could also be applied to

multifactor experiments. Based on the D-optimality criterion and Bayesian analysis that ex-

ploits a discretization of the parameter space to efficiently represent the posterior distribution,

the D-S method uses the posterior medians as the estimators and shows some superiorities in

efficiency to the Neyer and Bruceton methods. However, this method typically includes more

than just two inputs, and the selection of the prior distributions is also need to be discussed.

The priors are obviously important and may affect the performance of the D-S method, which

will be seen from our simulation results.

As pointed out earlier, an efficient sensitivity test should require less initial knowledge of

the parameters and use all the current data information to determine the next design points.

According to the above discussion and motivated by the Neyer and D-S methods, we propose

a two-stage D-optimality sensitivity test method in this paper, which consists of two parts. The
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ACCEPTED MANUSCRIPT

first part is designed to generate an overlap and preliminarily estimate the parameters. The

second part, similar to the most efficient part of the Neyer and D-S methods, determines the

optimal follow-up design points by the D-optimality criterion. The proposed test requires only

a lower boundxL and an upper boundxU of the mean beforehand. Our simulations indicate

the proposed method has larger probabilities of obtaining an overlap and gives better parameter

estimates compared with the Langlie, Neyer and D-S methods.

The rest of this paper is organized as follows. In Section 2, we introduce the general idea

of the proposed method. The first part of the proposed method is determined specifically in

Section 3. Simulations are conducted in Section 4 to compare the proposed method and three

competing methods, i.e., the Langlie, Neyer and D-S methods. In Section 5, we apply the

proposed method to two real sensitivity products and compare it with the Langlie and Neyer

methods again. Section 6 contains a discussion about the proposed method.

2 Two-stage D-Optimality Sensitivity Test

We first present some assumptions on the sensitivity data and then introduce the proposed

two-stage D-optimality sensitivity test.

2.1 Model assumption

Due to the scarcity of information, making a direct inference about the sensitivity distribution

is difficult. In practice, parametric models are usually assumed based on the historical data

or experiences of the investigator. In this paper, as in Silvapulle (1981), Neyer (1991, 1994)

and Dror and Steinberg (2008), we assume the cumulative distribution function (CDF) of the

sensitivity takes the formF((x − μ)/σ), whereF(∙) is a known function andμ andσ > 0 are

unknown location and scale parameters, respectively. For simplicity, we focus on the case in

which the parametersμ andσ respectively denote the population mean and standard deviation,

such as normal and log-normal distributions.
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Suppose the experiments have been conducted sequentially at stimuli levelsx1, x2, ∙ ∙ ∙ ,

xN. Let δi be the experimental result atxi , whereδi = 1 denotes a response andδi = 0 a

non-response. The likelihood function based onxi andδi (i = 1, ∙ ∙ ∙ ,N) is denoted as

L(μ, σ) =
N∏

i=1

F(zi)
δi (1− F(zi))

1−δi , zi = (xi − μ)/σ. (1)

The parametersμ andσ are usually estimated by their MLEs ˆμ andσ̂, respectively (Silvapulle,

1981). Any function ofμ andσ, for instanceh(μ, σ), can also be estimated by its MLEh(μ̂, σ̂).

Take a quantile of the sensitivity distribution for example. LetLq be theqth percentile of the

sensitivity distribution andzq be the solution toF(zq) = q. Then Lq can be estimated by

L̂q = μ̂ + zqσ̂.

2.2 The D-Optimality part

The proposed test consists of two parts: an initial part and a D-optimality part. The initial part

is designed to find an overlap and preliminary estimate the parameters. The D-optimality part

follows the initial part and is designed to determine the optimal follow-up design points. We

first introduce the D-optimality part since it is similar to the main part of the Neyer and D-S

methods. The initial part will be presented in the next subsection.

The Fisher Information Matrix The Fisher information is a measure of the amount of

information that the data carry about an unknown parameter. Let (xi , δi) (i = 1, 2, ∙ ∙ ∙ ,n) be the

first n experimental data, then the Fisher information matrix of the parameterθ = (μ, σ) under

the parametric modelF((x− μ)/σ) is

In(θ) =




I11 I12

I21 I22




=

n∑

i=1

(F′(zi))2

F(zi)(1− F(zi))σ2




1 zi

zi z2
i



, (2)

whereF′(∙) denotes the derivative ofF(∙), zi = (xi − μ)/σ, i = 1, ∙ ∙ ∙ ,n.

The D-optimality part Suppose an overlap comes up after the firstn experiments have

been conducted in the initial part. Denoteθ̂n as the MLE ofθ based on the firstn observations.

It is well-known thatθ̂n − θ is approximately distributed as N
(
0, I−1

n (θ)
)

asn → ∞, and the

determinant|I−1
n (θ)| measures that dispersion ofθ̂n.
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ACCEPTED MANUSCRIPT

With the purpose of minimizing the dispersion ofθ̂n+1, we determines the (n+ 1)th design

point in the D-optimality part by

xn+1 = arg max
x
|In+1(x; θ̂n)|, (3)

where

In+1(x; θ̂n) = In(θ̂n) +
(F(z)

′
)2

F(z)(1− F(z))σ̂2
n




1 z

z z2



, z= (x− μ̂n)/σ̂n.

The above determination ofxn+1 is based on the assumption that there is an overlap after

the firstn experiments in the initial part. If no overlap comes up, then the MLE does not exist.

In this situation, motivated by Neyer (1994), we defineθ̂n = (μ̂n, σ̂n) in (2) as follows,




μ̂n =
x(n)

1L + x(n)
0U

2
,

σ̂n = x(n)
1L − x(n)

0U ,

(4)

wherex(n)
0U andx(n)

1L are the largest non-response and the smallest response of the firstn data. If

x(n)
0U or x(n)

1L has no definition, i.e., all experiments respond or none respond, we setx(n)
0U = xL or

x(n)
1L = xU .

If the parameter of interest is onlyθ = μ or θ = σ, we need to modify the above procedure

by replacingIn(θ) with (I11I22− I2
12)/I22 or (I11I22− I2

12)/I11, respectively.

2.3 The initial part

We design the initial part by combining the following three considerations. First, it should

obtain an overlap quickly, since the existence of the MLE is based on the existence of the

overlap. Second, as the D-optimality part is efficient for the moderate and large sample size,

the number of design points in the initial part should not be too small (preferably larger than

5). At last, considering the cost of the experiments, the number of design points in the initial

part should not be too large (preferably less than 10).

The premise of conducting the initial part is to specify the lower and upper bounds of the

mean,xL and xU , which gives a non-response and a response respectively. In practice,xL
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and xU are often conservatively determined according to the practitioner’s experience such

that almost surely the stimulus levelxL produces a non-response, andxU produces a response.

Here, we provide a possible way to specify the lower and upper bounds. Suppose the sensitivity

has a natural lower boundxmin > −∞ and a natural upper boundxmax < ∞. We select two

stimuli levelsxL andxU (xmin ≤ xL < xU ≤ xmax) and conduct experiments at them. The lower

and upper boundsxL andxU are determined if we observe one non-response and one response.

Otherwise, if the experiments all give responses, we replacexL with max{2xL − xU , xmin} and

conduct experiment at the newxL. This procedure may be iterated many times until a non-

response is observed at the resultingxL. The case that all experiment produces non-responses

can be treated in the same way. According to our simulation experiences, if a probit model is

appropriate for the underlying sensitivity, we recommend choosingxL = μ̃−kσ̃ andxU = μ̃+kσ̃

for somek > 0. Here μ̃ and σ̃ are respectively the best current estimates of the meanμ

and the standard deviationσ that the experimenters obtain. We recommendk = 3 if only

μ is of interest, andk = 5 when the parameter of interest isσ or bothμ andσ. Under a

probit sensitivity model, any parameter of the sensitivity is a smooth function ofμ andσ,

and therefore can be estimated through the estimates ofμ andσ. Conservatively, we also

recommend the choicek = 5 for other parameters such as quantiles.

For convenience, we proceed with the premise that the lower and upper boundsxL and

xU are determined. We first conductn1 experiments equally spreading in the interval (xL, xU)

and check whether an overlap comes up. If the overlap appears, turn to the D-optimality part;

otherwise, conductn2 experiments equally spreading in the interval
(
x(n1)

0U , x
(n1)
1L

)
, wherex(n1)

0U

andx(n1)
1L denote the largest non-response and the smallest response of the firstn1 data. This

process may be iterated several times. We call the experiments before the D-optimality part

an initial test; The number of iterations in the initial test and the number of runs needed in

each iteration will be determined in the next section. In general, if no overlap comes up in

the initial test, then the proposed guess value ˆσn in (3) is most likely smaller thanσ. Having

approximately equal numbers of runs in each stage of the initial design is the most efficient
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way to decrease the guessed value in this situation. A note to the practitioners is that if they

really are unsure aboutσ, they should run a larger initial experiment until they are certain that

the guessed value in (3), despite no overlap, is not larger thanσ.

Specifically, we consider the following choices for the initial part.

1) One-stage uniform design.Let n1 be a pre-specified integer. We first conductn1 exper-

iments at design points

xj = xL + j ∙
xU − xL

n1 + 1
, j = 1,2, ∙ ∙ ∙ ,n1,

and then turn to the D-optimality part. These design points are called a one-stage uniform

design as they are uniformly spaced.

2) Two-stage uniform design. We first conduct a one-stage uniform design withn1 ex-

periments in the interval (xL, xU) and check whether an overlap comes up. If the over-

lap comes up, turn to the D-optimality part. Otherwise, we conduct another one-stage

uniform design withn2 experiments in the interval
(
x(n1)

0U , x
(n1)
1L

)
, and then turn to the D-

optimality part.

3) Multiple-stage uniform design. Similar to a two-stage uniform design, we can get a

multiple-stage uniform design by iterating the one-stage uniform design several times.

We may adopt a multiple-stage uniform design in the initial part. However, considering

the experimental cost and complexity, we do not recommend more-than-three-stages uniform

designs in practice.

3 Choice for the initial part

We have presented several choices for the initial part. In this section, through simulations we

determine: 1) the number of stages and 2) the sample sizes in each stage. To illustrate the main

idea of the proposed method, we assume the sensitivity follows a normal distribution which

8
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

E
as

t C
hi

na
 N

or
m

al
 U

ni
ve

rs
ity

] 
at

 1
8:

13
 1

5 
Se

pt
em

be
r 

20
14

 



ACCEPTED MANUSCRIPT

is the most important. Without loss of generality, in what follows we assume that the true

sensitivity model is N(0, 1).

3.1 Choice for the number of stage

The main purpose of the initial part is to find an overlap quickly. We now compare the one-

stage, two-stage and three-stage uniform designs from the viewpoint of achieving an overlap.

To proceed, we present a definition of the term “overlap”. Given a series of sensitivity

data (Xi , δi) (i = 1, 2, ∙ ∙ ∙ ,n), let X(n)
0U and X(n)

1L denote the largest stimulus that produces a

non-response and the smallest stimulus that produces a response, respectively. We say that an

overlap comes up, if and only ifX(n)
0U > X(n)

1L . Thus the probability of achieving an overlap after

n experiments is defined asP(X(n)
0U > X(n)

1L ). If X(n)
0U or X(n)

1L has no definition, i.e., all experiments

respond or none respond, then no overlap comes up.

We considered 64 pairs ofxL and xU in our simulations withxL being integers between

−10 and−3, andxU being integers between 3 and 10. Letn1, n2 andn3 denote the number

of experiments in the first, second and third stages, respectively. The total sample size of the

initial part, n1 + n2 + n3, is chosen to be between 6 and 9. For a fixed total sample size such

as 9, if a two-stage uniform design is considered, we take the largest probability of achieving

an overlap among all combinations
{
(n1, n2) : n1 + n2 = 9

}
as the probability of this design at

the sample size 9. Three-stage uniform designs are treated similarly. All such probabilities are

shown in Figure 1 based on 10,000 replications.

After carefully studying Figure 1, we have the following findings. Firstly, for all the combi-

nations of [xL, xU ], the two-stage uniform designs have a significant increase in the probability

of achieving an overlap compared with the one-stage uniform designs. The increase is about

10% when the total sample size is 6 or 7, and is more than 20% when the total sample size

is 8 or 9. Secondly, the three-stage uniform designs have the larger probabilities of achieving

an overlap than the two-stage uniform designs. However, this increase is very limited, mostly

less than 5%. Thirdly, the probabilities of the three designs get larger as the total sample size
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increases.

According to the above discussion, we exclude the one-stage uniform design because its

probability of achieving an overlap is significantly less than the two-stage uniform design. The

three-stage uniform design is also not acceptable, since its probability of achieving an overlap

is slight larger than the two-stage uniform design at the cost of much complication. Thus, we

choose the two-stage uniform design for the initial part since it is simple and effective.

3.2 Choice for sample size combination

In this subsection, we determine the sample size pair (n1, n2) of the two-stage uniform design

from the viewpoint of the estimation precision by simulations. Letθ̂ be the MLE of the pa-

rameterθ, which may beθ = (μ, σ), θ = μ or θ = σ. Define the sum of squared bias (SSB)

as

SSBθ ≡
||θ − θ̂||2

σ2
,

whereσ is the standard deviation. We take the average of SSBθ, denoted MSEθ (mean squared

error), as the criteria of evaluating estimation precision.

In the simulations, we consider four typical choices of [xL, xU ], i.e., [−3,3], [−3, 5], [−5, 10]

and [−8,10]. Ten reasonable sample size pairs (n1, n2) are chosen, andN is 25 and 30. We

generate 2,000 data-sets and estimateθ = (μ, σ) by the strategy used in the D-optimality part

of the proposed method.

The simulation results are presented in Tables 1 and 2. In general, the combinations (3, 4)

and (3, 3) of (n1, n2) give the smallest values of MSE(μ,σ). Furthermore, the results in subsec-

tion 3.1 indicate that the probability of achieving an overlap gets larger as the total sample size

increases. Thus, we finally choose (n1, n2) = (3, 4) as the sample size pair in the two-stage

uniform design.

Thereafter, we have completely determined the proposed sensitivity test, which implements

the two-stage uniform design with the sample size pair (3,4) in the initial part and then follows

by the D-optimality part until the number of experimentsn is equal to the sample sizeN.
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4 Simulation study

In this section, performances of the proposed method are evaluated through Monte Carlo sim-

ulations compared with the Langlie, Neyer and D-S methods. The principal criterions are the

probability of achieving an overlap and estimation precision.

4.1 Probability of obtaining an overlap

According to Silvapulle (1981), unique MLEs exist if and only if the sensitivity data produce

an overlap. Thus, the probability of obtaining an overlap is regarded as a general criteria of

evaluating different test methods.

Since all the methods need a lower boundxL and an upper boundxU of the mean, four

arbitrary choices of [xL, xU ] are considered in our simulations, i.e., [−3,3], [−3,4], [−4,4] and

[−4, 7]. Besides, noting that the Neyer test depends onσguess, we consider two choices of

σguess, i.e., 1 and 3 (ND1, ND3 for short). For the D-S method, we need to determine the prior

distributions forμ andσ. As Dror and Steinberg (2008) advised making the spread of the prior

large for the D-S method, a natural choice of the prior distributions are

μ ∼ N(μ1, σ
2
1), σ ∼ lognormal

(
log(μ2), σ2

2
)
,

whereμ1 = 0.5(xL + xU) andμ2 = 0.1(xU − xL). In order to guarantee almost surely that

the stimulusxU will produce a response and the stimulusxL won’t produce a response, we

choose the prior variancesσ2
1 andσ2

2 such thatF(xL) is very close to 0 andF(xU) is very

close to 1 (e.g., 95%). We consider four choices of (σ1, σ2): (I) ((xU − xL)/3, μ2/3); (II)

((xU − xL)/4, μ2/4); (III) (( xU − xL)/6, μ2/2) and (IV) ((xU − xL)/10, μ2/2), and calculate

the probabilities of achieving an overlap based on 10,000 replications. The simulation results

are shown in Figure 2, where the probabilities of the D-S method are based on the priors (IV)

(Source code can be foundhttp://www.math.tau.ac.il/∼dms/GLM Design).

When the sample size is less than 10, the ND1 and D-S methods have the largest proba-
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bilities of all; the proposed method is slightly less than the Langlie method, but larger than

the ND3 method. When the sample size is larger than 10, the proposed method has the largest

probabilities; the ND1 and D-S follow; the Langlie and ND3 methods have the least prob-

abilities. Since the sample size is usually more than 10 in practice, the proposed method is

promising and the best from the viewpoint of probability of achieving an overlap, compared

with the Langlie, Neyer and D-S methods. Meanwhile, it is also seen that the performance of

the Neyer method is affected byσguess.

4.2 Estimation precision

As shown above, the ND3 method is inferior to the ND1 method. In this subsection, we

compare the proposed method only with the Langlie, ND1 and D-S methods according to the

MSEθ.

Besides the MSEθ, in order to assess the overall performance between different settings,

we can apply the relative mean index (RMI) which was used by Han and Tsung (2006), Zou

and Qiu (2009). We define

RMIθ =
1
K

K∑

i=1

MSE(i)
θ − SMSE(i)

θ

SMSE(i)
θ

,

where SMSE(i)θ is the smallest MSE(i)θ of the i-th setting (i = 1, ∙ ∙ ∙ ,K) among all the test

methods (i.e., the Langlie, the Neyer, the D-S and the proposed methods). Then,
(
MSE(i)

θ −

SMSE(i)
θ

)
/ SMSE(i)

θ can be considered as a relative efficiency measure of the MSE(i)
θ , compared

to the best one, and RMIθ is the average of all the relative efficiency values. A test plan with a

smaller RMIθ value is considered better in its overall performance.

In this simulation, we choose ten pairs of [xL, xU ], i.e., [−3, 3], [−3, 5], [−4,4], [−4, 6],

[−4, 8], [−5, 5], [−5,7], [−5,10], [−6,6], [−8,10] andN = 20, 25, 30 and 40. We compare

three types of parameters, i.e.,θ = (μ, σ), θ = μ andθ = σ. The corresponding simulation

results based on 2,000 replications are presented in Tables 3-6, respectively.

In the case ofθ = (μ, σ), the MSEμ and MSEσ are listed separately in Tables 3-4. The
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results of the D-S method based on the four priors are shown in Appendix A, where we can

see that the D-S method is affected by the priors. The results of the D-S method in Tables 3-4

are all from the priors (IV).

On the one hand, if we compare the four methods in estimatingμ andσ together, by using

MSE(μ,σ)= MSEμ+MSEσ, it is easy to see the proposed method always has the least RMI(μ,σ),

and the D-S method performs better than the ND1 when the sample size is small. On the other

hand, if we compare these methods in estimatingμ andσ, respectively, we find the langlie

method and the D-S method perform better than others from Tables 3-4.

Since the D-S method relies on the priors and the computations are complicated, in the case

of θ = μ andθ = σ, we only compare the ND1 and our methods based on 2,000 replications,

where theIn(θ; x) should be replaced with (I11I22− I2
12)/I22 and (I11I22− I2

12)/I11, respectively.

In the case ofθ = μ, the two methods have similar and nice performances according to the

MSEμ, which are shown in Table 5. Note that when we focus onθ = μ, the MSEμs of the ND1

and our method are all smaller than those in Table 3, where we focus onθ = (μ, σ). Moreover,

these two methods perform better than the Langlie method according to the RMIμ.

In the case ofθ = σ, according to the RMIσ, the proposed method has uniformly better

estimation precision than the Langlie method and has comparable results with the ideal ND1

method. For reasonable comparison, we add the simulation results of the Neyer method with

σguess= 1.5 (ND1.5 for short) in Table 6. It can be seen that the proposed method has better

estimation precision than the ND1.5. And the ND1.5 is severely inferior to the ND1 although

σguess= 1.5 is very close to the true value. In addition, when we focus onθ = σ, the MSEσs of

ND1 and our method are all smaller than those in Table 4, where we focus onμ andσ together.

5 Two real applications

Cooperating with a sensitivity experimental laboratory, we depict two applications of our pro-

posed method to sensitivity experiment in this section. The experiment’s objectives are to

estimate the sensitivity parameters of two types of sensitivity products, denoted as type I and
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type II.

According to experience, it is sensible to assume that the sensitivities of the two types of

products follow the normal distributions. Moreover, the type I product has been studied before

and the laboratory has historical information about its sensitivity (the true values ofμ andσ

are about 9.3 and 0.3, respectively). While, the type II product is new. We apply the Langlie,

Neyer methods and our proposed method to the type I and type II products.

For the type I product, the lower and the upper bounds are set to be 7.5 and 11.3, and

σguess= 0.3 in the Neyer method. We conduct one experiment at sample sizeN = 15 and two

experiments atN = 25. The two larger data sets at sample sizeN = 25 are not augmented from

the earlier small ones at sample sizeN = 15. These data sets are produced in a completely

independent manner. The estimates of the three methods are presented in Table 7.

It can be seen that all the three methods give very accurate estimates of the location param-

eterμ. However, the estimates of the parameterσ based on the Langlie or the Neyer methods

may deviate severely from the approximate true value 0.3. For example, whenN = 15 the

Neyer method estimatesσ by 0.0306; whenN = 25 the estimate based on the Langlie method

is 0.0283. These two poor estimates must correspond to the data set with almost no overlap.

As an advantage over the rest two methods, it is easy to see that the proposed method always

gives very close estimates to 0.3. Thus we conclude that the new method is more efficient and

stable than the Langlie and Neyer methods in practice.

For the type II product, the only information we know is that the estimate ofσ is greater

than 5. In this case, the Neyer and the proposed methods are our best choices. We conduct one

experiment withN = 20 for the two methods. The lower and upper bounds are set as 50 and

100, andσguess= 5.

The estimates of the Neyer and the proposed methods are ˆμ = 75.08, σ̂ = 0.39 andμ̂ =

68.75, σ̂ = 7.50, respectively. The estimates ofμ are close to each other. However, the Neyer

method significantly underestimatesσ. While the estimate ˆσ2 = 7.50 based on the proposed

method is more sensible. These results again provide evidence that the proposed method is
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very efficient and robust.

6 Discussion

In this paper, under a location-scale distributional assumption on the sensitivity of interest,

we propose a two-stage D-optimality sensitivity test method to efficiently extract information

from the underlying population; the maximum likelihood method is then employed to estimate

the parameters. It is worthwhile to point out that the proposed test has larger probabilities of

achieving an overlap and requires less initial parameters than the Neyer and D-S methods. In-

tuitively it can be expected that people can make more accurate inferences about the sensitivity

of interest at the same sample size using the proposed test than using traditional tests. We pro-

vided simulation results and two real applications to investigate the efficiency of the proposed

test and the resulting location and scale estimators.

It should be noted that when we determine the initial part of the proposed method, the sen-

sitivity distribution is chosen to be N(0,1). This implies that the choices of two-stage uniform

design and sample size pair (3,4) for the two-stages depends on N(0, 1). When the sensitivity

follows a normal or lognormal distribution with arbitrary parameters, we can transform the

sensitivity distribution to be N(0, 1). Then the two-stage uniform design and sample size pair

(3, 4) are still the best choices. When the sensitivity distribution is not normal or transformed

normal distribution, the choices of two-stage uniform design and sample size pair (3,4) may

not be the best. In this situation, we can choose by simulations the number of stages and the

sample sizes in the initial test.
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Appendix A. MSEμ and MSEσ of the four priors when the parameter of interest is

θ = (μ, σ)

For the four priors of the D-S methods in Section 4, the corresponding simulation results

on estimation precision based on 2,000 replications are presented in Tables 8-9.
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Table 1: MSE(μ,σ) of sample size combination,N = 25.

(n1, n2)
[xL, xU ]=

[–3, 3] [–3, 5] [–5, 10] [–8,10]

(3,3) 0.2305 0.2152 0.2233 0.2023
(3,4) 0.2269 0.2188 0.2163 0.2138
(4,3) 0.2503 0.2373 0.2308 0.2128
(4,4) 0.2445 0.2313 0.2302 0.2309
(4,5) 0.2533 0.2399 0.2463 0.2290
(5,3) 0.2517 0.2783 0.2358 0.2388
(5,4) 0.2531 0.2431 0.2505 0.2668
(5,5) 0.2484 0.2570 0.2743 0.2575
(6,3) 0.2456 0.2630 0.2586 0.2433
(6,4) 0.2536 0.2535 0.2623 0.2725

Table 2: MSE(μ,σ) of sample size combination,N = 30.

(n1, n2)
[xL, xU ]=

[–3, 3] [–3, 5] [–5, 10] [–8,10]

(3,3) 0.2063 0.1914 0.1609 0.1713
(3,4) 0.1801 0.1808 0.1779 0.1794
(4,3) 0.2132 0.1797 0.1891 0.1933
(4,4) 0.2124 0.2063 0.2013 0.1773
(4,5) 0.1957 0.1973 0.1929 0.2000
(5,3) 0.2008 0.2082 0.2041 0.1925
(5,4) 0.2169 0.1980 0.2130 0.2045
(5,5) 0.1873 0.2095 0.2173 0.1992
(6,3) 0.1983 0.2006 0.2047 0.2092
(6,4) 0.2095 0.2233 0.2120 0.2149
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Table 3: MSEμ (×10−2) and RMIμ when the parameter of interest isθ = (μ, σ)

Methods Langlie ND1 D-S Two-stage Langlie ND1 D-S Two-stage

Bounds N=20 N=25

[−3, 3] 9.56 12.77 10.58 11.45 7.73 9.39 9.46 9.12
[−3, 5] 11.79 13.58 22.73 12.56 8.88 11.00 18.34 9.94
[−4, 4] 11.43 12.84 14.92 12.50 8.60 10.20 13.30 9.96
[−4, 6] 12.14 12.20 24.38 12.66 8.84 9.76 19.86 10.25
[−4, 8] 11.53 14.05 43.17 13.28 8.69 9.77 34.36 10.23
[−5, 5] 11.47 12.92 17.75 13.38 9.08 9.40 16.53 10.69
[−5, 7] 13.35 13.50 28.10 13.24 10.12 10.90 23.22 10.40
[−5,10] 12.08 14.28 48.45 14.36 9.49 10.80 36.07 10.96
[−6, 6] 10.82 12.12 20.16 13.90 8.53 9.49 17.40 11.08
[−8,10] 15.95 14.77 30.95 16.65 11.23 11.10 25.18 12.37

RMI 0.009 0.128 1.173 0.132 0.001 0.123 1.326 0.157

Bounds N=30 N=40

[−3, 3] 6.62 7.68 9.15 7.48 4.73 5.45 7.55 5.73
[−3, 5] 7.32 9.64 16.58 8.36 5.31 6.81 13.17 6.44
[−4, 4] 7.19 8.81 11.61 8.34 5.25 6.43 10.16 6.24
[−4, 6] 6.85 8.57 16.34 8.69 5.00 6.37 13.30 6.61
[−4, 8] 7.16 7.88 28.85 8.53 5.15 5.68 19.70 6.41
[−5, 5] 7.44 7.29 14.29 8.95 5.43 5.63 11.33 6.41
[−5, 7] 7.90 9.21 19.07 8.79 5.78 7.09 14.30 6.67
[−5,10] 7.71 8.99 28.25 9.00 5.55 7.03 20.71 6.34
[−6, 6] 7.32 7.53 14.78 9.19 5.04 5.41 12.43 6.85
[−8,10] 8.72 9.49 21.76 10.03 6.02 6.61 17.06 7.05

RMI 0.002 0.150 1.423 0.181 0 0.174 1.702 0.219
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Table 4: MSEσ (×10−2) and RMIσ when the parameter of interest isθ = (μ, σ)

Methods Langlie ND1 D-S Two-stage Langlie ND1 D-S Two-stage

Bounds N=20 N=25

[−3, 3] 23.26 19.25 11.14 18.19 18.81 14.69 10.04 13.57
[−3, 5] 22.21 20.35 4.46 15.27 17.46 14.93 4.43 11.94
[−4, 4] 23.17 19.93 4.82 17.06 18.99 15.54 4.54 13.41
[−4, 6] 22.06 18.18 5.93 15.06 16.97 13.59 5.99 12.08
[−4, 8] 23.37 19.66 11.30 14.51 18.49 14.82 10.47 12.13
[−5, 5] 22.95 20.34 6.94 15.98 18.97 16.03 6.90 12.57
[−5, 7] 22.27 19.65 10.26 14.15 16.88 14.47 9.59 11.71
[−5,10] 23.13 21.07 22.54 12.92 19.24 16.10 17.08 10.66
[−6, 6] 22.76 19.43 10.65 14.68 18.14 15.09 9.38 12.23
[−8,10] 24.12 20.95 24.79 10.44 18.22 16.10 21.13 9.79

RMI 1.938 1.554 0.212 0.948 1.471 1.054 0.176 0.653

Bounds N=30 N=40

[−3, 3] 15.73 11.90 8.91 10.53 13.07 8.22 7.44 7.22
[−3, 5] 14.98 12.05 4.32 9.72 11.97 8.12 4.12 6.83
[−4, 4] 15.53 11.95 4.31 10.40 11.61 7.89 3.73 7.27
[−4, 6] 14.27 10.39 5.74 9.74 11.31 7.38 5.29 7.08
[−4, 8] 16.62 12.12 10.17 9.66 12.93 8.53 8.31 6.76
[−5, 5] 15.82 12.21 6.20 10.41 11.82 8.50 5.84 7.42
[−5, 7] 14.18 11.95 9.65 9.70 11.25 7.83 8.15 7.01
[−5,10] 16.19 12.65 14.04 8.79 12.00 8.22 9.98 6.78
[−6, 6] 14.36 11.71 8.97 10.34 11.12 7.96 7.67 7.39
[−8,10] 14.96 13.01 15.67 8.69 11.31 8.95 11.14 6.72

RMI 1.223 0.741 0.145 0.438 1.047 0.408 0.159 0.222
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Table 5: MSEμ (×10−2) and RMIμ when the parameter of interest isθ = μ

Methods ND1 Two-stage ND1 Two-stage

Bounds N=20 N=25

[−3, 3] 10.69 10.64 8.62 8.58
[−3, 5] 9.75 11.37 7.85 8.68
[−4, 4] 10.69 11.60 8.41 8.86
[−4, 6] 9.74 12.02 7.21 8.80
[−4, 8] 10.57 12.91 7.85 9.30
[−5, 5] 11.11 11.95 8.74 8.75
[−5, 7] 12.51 13.08 9.10 9.74
[−5,10] 13.72 13.64 9.69 9.14
[−6, 6] 11.19 11.07 8.36 8.52
[−8,10] 14.08 14.60 9.87 10.50

RMI 0.002 0.086 0.007 0.072

Bounds N=30 N=40

[−3, 3] 6.82 7.12 4.77 5.03
[−3, 5] 6.03 6.82 4.24 4.99
[−4, 4] 6.52 7.02 4.38 4.96
[−4, 6] 5.68 6.74 4.22 4.82
[−4, 8] 6.43 7.13 4.96 4.79
[−5, 5] 7.36 6.81 5.06 4.76
[−5, 7] 7.17 7.37 4.65 4.98
[−5,10] 7.08 7.11 4.62 4.86
[−6, 6] 6.95 6.58 4.69 4.78
[−8,10] 7.23 7.62 4.98 5.11

RMI 0.014 0.063 0.010 0.067
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Table 6: MSEσ (×10−2) and RMIσ when the parameter of interest isθ = σ

Methods ND1 ND1.5 Two-stage ND1 ND1.52-stage

Bounds N=20 N=25

[−3, 3] 14.40 22.19 13.87 11.07 17.34 10.61
[−3, 5] 13.34 19.33 13.44 10.01 14.57 10.59
[−4, 4] 13.59 21.61 14.19 10.97 16.37 10.82
[−4, 6] 12.25 19.34 12.23 10.11 14.81 9.76
[−4, 8] 12.26 22.66 11.39 9.85 16.75 9.38
[−5, 5] 13.95 21.30 13.74 10.43 16.30 10.79
[−5, 7] 10.96 21.37 11.80 9.41 15.82 9.58
[−5,10] 8.54 19.03 10.92 7.77 14.36 9.11
[−6, 6] 11.31 21.63 11.68 9.18 16.53 9.59
[−8,10] 7.28 19.75 6.82 7.13 14.60 6.91

RMI 0.020 0.875 0.044 0.018 0.691 0.033

Bounds N=30 N=40

[−3, 3] 8.88 13.37 8.32 5.96 7.99 5.89
[−3, 5] 7.86 11.11 8.56 6.18 7.19 6.00
[−4, 4] 8.71 12.47 8.66 6.36 7.94 6.13
[−4, 6] 8.46 11.28 7.94 5.62 7.21 5.71
[−4, 8] 8.31 12.91 7.69 5.93 8.00 5.77
[−5, 5] 8.55 12.59 8.63 6.32 7.82 6.23
[−5, 7] 7.87 12.32 7.87 5.43 7.72 5.67
[−5,10] 6.78 11.29 7.86 5.53 7.34 6.34
[−6, 6] 7.31 12.60 8.23 5.29 7.84 6.03
[−8,10] 6.64 11.41 6.36 5.70 7.53 5.43

RMI 0.026 0.578 0.038 0.017 0.339 0.035
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Table 7: Parameter estimates of type I product

Methods
No.1: N=15 No.2: N=25 No.3: N=25

μ̂ σ̂ μ̂ σ̂ μ̂ σ̂

Langlie 9.1673 0.2513 9.2283 0.0283 9.2118 0.3839

Neyer 9.3915 0.0306 9.3041 0.1823 9.3234 0.2946

Two-stage 9.5755 0.3567 9.2653 0.3438 9.34280.3003

Table 8: MSEμ (×10−2) when the concern parameterθ = (μ, σ)

Priors I II III IIIV I II III IIIV

Bounds N=20 N=25

[−3, 3] 24.52 23.38 19.89 10.58 19.72 19.27 16.35 9.46
[−3, 5] 27.69 26.27 24.20 22.73 21.97 20.89 20.56 18.34
[−4, 4] 27.83 26.95 22.34 14.92 22.60 22.23 19.17 13.30
[−4, 6] 30.89 30.09 27.76 24.38 25.04 25.14 23.30 19.86
[−4, 8] 33.69 35.51 32.45 43.17 27.51 28.49 27.02 34.36
[−5, 5] 31.18 28.25 27.20 17.75 24.81 23.01 22.54 16.53
[−5, 7] 34.86 33.07 29.91 28.10 27.19 26.83 24.73 23.22
[−5,10] 38.54 41.25 35.22 48.45 31.20 31.55 26.66 36.07
[−6, 6] 34.57 30.95 30.00 20.16 27.57 25.62 23.79 17.40
[−8,10] 43.23 40.86 39.44 30.95 34.08 32.99 31.0825.18

Bounds N=30 N=40

[−3, 3] 16.76 16.47 13.84 9.15 13.01 12.54 10.88 7.55
[−3, 5] 18.33 17.05 17.95 16.58 13.65 13.61 13.68 13.17
[−4, 4] 19.01 18.77 17.28 11.61 14.53 13.95 13.52 10.16
[−4, 6] 21.20 21.36 18.96 16.34 16.09 16.52 15.18 13.30
[−4, 8] 22.35 22.79 23.17 28.85 16.31 17.23 17.25 19.70
[−5, 5] 20.50 19.01 20.11 14.29 14.94 14.41 14.59 11.33
[−5, 7] 22.52 22.57 20.85 19.07 16.62 17.12 15.94 14.30
[−5,10] 24.99 26.43 21.96 28.25 18.58 19.87 16.44 20.71
[−6, 6] 23.01 22.09 20.14 14.78 17.32 17.03 16.65 12.43
[−8,10] 27.32 27.12 25.74 21.76 20.13 19.39 19.1417.06
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Table 9: MSEσ (×10−2) when the concern parameterθ = (μ, σ)

Priors I II III IIIV I II III IIIV

Bounds N=20 N=25

[−3, 3] 13.22 14.20 10.85 11.14 12.36 13.64 9.89 10.04
[−3, 5] 3.45 3.54 4.89 4.46 3.29 3.34 4.76 4.43
[−4, 4] 3.46 3.44 4.86 4.82 3.32 3.28 4.47 4.54
[−4, 6] 2.21 1.02 5.85 5.93 2.43 1.18 6.01 5.99
[−4, 8] 5.97 4.17 10.26 11.30 5.91 3.98 9.48 10.47
[−5, 5] 2.26 0.98 6.38 6.94 2.57 1.20 6.20 6.90
[−5, 7] 5.52 4.17 10.25 10.26 5.36 4.05 9.06 9.59
[−5,10] 14.93 14.86 18.73 22.54 12.77 13.08 16.67 17.08
[−6, 6] 6.14 3.97 10.08 10.65 5.80 3.92 10.00 9.38
[−8,10] 24.55 25.61 26.26 24.79 20.02 20.80 19.8221.13

Bounds N=30 N=40

[−3, 3] 11.62 13.12 8.94 8.91 10.31 12.18 7.36 7.44
[−3, 5] 3.20 3.20 4.62 4.32 2.94 2.94 4.36 4.12
[−4, 4] 3.18 3.08 4.29 4.31 2.95 2.85 4.14 3.73
[−4, 6] 2.63 1.33 5.95 5.74 2.81 1.51 5.24 5.29
[−4, 8] 5.95 3.97 9.04 10.17 5.23 3.91 7.38 8.31
[−5, 5] 2.76 1.37 6.10 6.20 2.83 1.52 5.81 5.84
[−5, 7] 5.27 3.96 8.61 9.65 4.79 3.77 7.14 8.15
[−5,10] 11.25 11.75 13.10 14.04 8.85 9.44 10.07 9.98
[−6, 6] 5.71 3.85 8.99 8.97 5.04 3.58 7.23 7.67
[−8,10] 16.36 17.63 15.88 15.67 11.63 13.06 11.8311.14
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(a) (b)

(c) (d)

Figure 1:Probabilities of achieving an overlap between three uniform designs. The total sample
sizes for (a)-(d) are 6, 7, 8 and 9.
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(a) (b)

(c) (d)

Figure 2: Comparison of probabilities of achieving an overlap for different choices of [xL, xU ]: (a)
[−3,3], (b) [−3,4], (c) [−4,4] and (d) [−4,7].
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