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In this work, we study the collective dynamics of phase oscillators in a mobile ad hoc network
whose topology changes dynamically. As the network size or the communication radius of individual
oscillators increases, the topology of the ad hoc network first undergoes percolation, forming a
giant cluster, and then gradually achieves global connectivity. It is shown that oscillator mobility
generally enhances the coherence in such networks. Interestingly, we find a new type of phase
synchronization/clustering, in which the phases of the oscillators are distributed in a certain narrow
range, while the instantaneous frequencies change signs frequently, leading to shuttle-run-like motion
of the oscillators in phase space. We conduct a theoretical analysis to explain the mechanism of this
synchronization and obtain the critical transition point.
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1 Introduction

A mobile ad hoc network (MANET) is a time-dependent
network self-organized by a collection of wireless mo-
bile devices, such as laptops and smartphones, without
the aid of any established network infrastructure or cen-
tralized administration (base stations) [1, 2]. In such a
network, each mobile node operates not only as a host
but also as a router, forwarding packets for other mo-
bile nodes in the network that may not be within direct
wireless transmission range of each other. A MANET has
the advantages of fast and easy deployment, as well as
decreased dependence on infrastructure. Therefore, wire-
less communications based on MANETs have great po-
tential for applications in diverse environments, such as
daily life, the battlefield, and disaster areas involving
firefighting or search-and-rescue.

In the past decade, synchronization in complex net-
works has been extensively investigated. In most pre-
vious works, the networks are assumed to have static
topologies [3–6]. However, in certain situations, synchro-
nization among moving physical agents might be impor-
tant, for example, in wireless sensor networks [7] or ad
hoc vehicular networks [8], where the mobility of agents

should naturally be considered. Although a few works in-
vestigated collective behaviors in time-dependent topolo-
gies [9, 10], overall we still know little about the interplay
between the network topology and dynamics in such net-
worked systems. Motivated by the idea that the MANET
represents a physical problem involving both synchro-
nization [11] and critical phenomena [12], in this work we
explore the collective behavior of moving agents forming
a MANET. Remarkably, we find a novel synchronization
(clustering) phenomenon: in a wide parameter regime,
the phases of coherent oscillators can become localized in
a certain narrow range, while their directions of motion
frequently reverse, leading to shuttle-run-like motion of
the oscillators in phase space. We further conduct a the-
oretical analysis to explain the mechanism of this inter-
esting synchronization. Moreover, we analytically obtain
the critical transition point of the synchronization.

The rest of the paper is organized as follows. In Section
2, we introduce the MANET model and the dynamical
model of phase oscillators. In Section 3, we investigate
the percolation of the MANET and characterize its topo-
logical properties. In Section 4, we describe the shuttle-
run synchronization in our model and characterize this
phenomenon in both macroscopic and microscopic terms.
In Section 5, we further conduct mean-field analysis to
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explain the observed shuttle-run synchronization and an-
alytically obtain the critical transition point. Finally, a
brief summary ends this paper.

2 Dynamical model

Our model consists of N moving oscillators in a two-
dimensional (2D) domain with size L×L. For a physical
picture, one can imagine that passengers with ad hoc mo-
bile phones roam in an airport or a railway station. All
oscillators stay in certain positions for a period τ and
then simultaneously move to their next positions with
constant velocity (speed) v but random directions. We
denote the direction of the jth oscillator as φj ∈ [0, 2π].
The positions of oscillators in the domain are governed
by the following equations:

xj(tm+1) = xj(tm) + v cosφj(tm) mod L,

yj(tm+1) = yj(tm) + v sinφj(tm) mod L, (1)

where tm denotes a discrete time step, tm+1 − tm = τ .
In this work, periodic boundary conditions are adopted.
Actually, this model belongs to the class of random way-
point models, which have been widely used in simula-
tions [2]. In our study, we also assumed that the oscilla-
tors have different velocities (i.e., speeds). For example,
the velocities of the oscillators take the uniform distri-
bution or Gaussian distribution. The simulations show
that these changes do not significantly affect the collec-
tive dynamics of the oscillators. Thus, in this paper, we
report the results assuming a uniform distribution.

The dynamics of the coupled oscillators are described
by the Kuramoto model [13, 14]:

θ̇n = ωn + λ

kn∑

j=1

anj sin(θj − θn), n = 1, . . . , N. (2)

Here θn (ωn) is the instantaneous phase (the natural fre-
quency) of the nth oscillator. The dot denotes the tem-
poral derivative, and λ is the global coupling strength.
Further, anj are the elements of the network’s adjacency
matrix, which is determined dynamically by the posi-
tions of oscillators governed by Eq. (1) (anj = 1 when
nodes n and j are connected, and anj = 0 otherwise).
In addition, kn =

∑N
j=1 anj is the degree of oscillator

(node) n.
The set of N natural frequencies {ωn} is drawn from a

certain frequency distribution (FD) g(ω). Without losing
generality, we consider typical FDs, such as the triangle,
Lorentzian, and uniform distributions. In Table 1, we
summarize the formula and parameters for these FDs.
We emphasize that under different FDs, the results ob-

tained are qualitatively the same.

Table 1 Summary of three typical FDs with parameters investi-
gated in this paper.

FD Formula Parameter

g(ω) = (πΔ − |ω|)/(πΔ)2,
Triangle |ω| < πΔ, 0 otherwise

Δ = 0.1

Lorentzian g(ω) = Δ/[π(ω2 + Δ2)] Δ = 0.1

g(ω) = 1/(πΔ),
Uniform |ω| < πΔ/2, 0 otherwise

Δ = 0.1

To characterize the phase synchronization in the
model, a global order parameter can be defined as

reiψ =
1
N

N∑

j=1

eiθj , (3)

where r and ψ are the module and argument of the mean
field, respectively. Geometrically, the complex order pa-
rameter can be regarded as a vector on the complex
plane. According to its definition, r is between 0 and 1.
Typically, r ≈ 0 indicates a totally random phase distri-
bution, i.e., the incoherent state, where oscillators rotate
almost according to their natural frequencies; in con-
trast, r > 0 indicates a (partially) phase-locking state,
i.e., the coherent or synchronized state, where some of
the oscillators become phase-locked to the mean field.
A larger r value indicates a more coherent system. For
the classical Kuramoto model, it has been shown that
as the coupling strength increases, the system will bi-
furcate from the incoherent state into the (partially) co-
herent state. This transition can usually be character-
ized as a second-order transition of the order param-
eter. Throughout this paper, numerical integrations of
coupled ordinary differential equations are computed by
the fourth-order Runge–Kutta method with time step
h = 0.01. The initial conditions for the phase variables
are random, and the initial positions of the oscillators in
the simulation domain are also random.

3 Percolation and topology

In our simulations, we set the dimensionless length of the
square domain L to 1000. The velocity of the oscillators v
is a constant between 0 and 100. Typically, 0 < v < 100.
The time interval τ is also a constant, typically τ = 0.1
(The integration time step h is 0.01.) We assume that
N oscillators move in the square domain. Each has an
effective communication radius denoted by R. If two os-
cillators are within the distance R of each other, they are
regarded as connected. Owing to the motion of the os-
cillators, this link may be maintained or break, yielding
a MANET with a dynamic topology.
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We first investigate the connectivity of this MANET.
Apparently, both N and R affect its topology. It is shown
that with sufficiently large N and R, all the oscillators
connect with each other to form a connected network.
In this case, we say that global connectivity has been
achieved. Here, by global connectivity, we mean that all
the oscillators have connected with each other to form a
giant cluster. We do not mean all-to-all coupling among
the oscillators. Figure 1(a) shows a snapshot of one such
MANET. Note that although the topology constantly
changes, the MANET as a whole remains a single con-
nected network. It is well known that global connectiv-
ity in a MANET is achieved through percolation. Figure
1(b) characterizes this transition when R is used as the
control parameter. We define f = Nc/N , where Nc is
the number of oscillators in the largest cluster. For small
R, oscillators connect with their neighbors to form many
small clusters, but those clusters are essentially isolated.
In this case, f ≈ 0. When R is increased to exceed a
critical value, a giant cluster forms whose size is compa-
rable to N . The point where f becomes greater than 0
indicates the transition point of percolation. As shown
in Fig. 1(b), the percolation belongs to the second or-
der, i.e., continuous percolation. Moreover, percolation
occurs at smaller R when N increases. After percola-

tion, f increases rapidly to reach 1, showing that the
MANET has achieved global connectivity. Similarly, we
observe continuous percolation when N is used as the
control parameter, as shown in Fig. 1(c). Figure 1(d)
shows the phase diagram on the N–R plane. The two
lines are guides to the eyes and mark percolation (dot-
dashed line) and full connectivity (dashed line). Because
static and homogeneous conditions are assumed, the den-
sity of oscillators in the physical domain is ρ = N/L2.
Global connectivity will be achieved when ρπR2 = 1.
Thus, N ∝ R−2. This approximately explains the power-
law relation between N and R in Fig. 1(d).

We now investigate the statistical properties of the
MANET with full connectivity. First, we study the de-
gree distribution. Figure 2(a) shows some examples. The
degree approximately satisfies a Poisson distribution.
With increasing R or N , the average degree increases.
Because an oscillator can connect only to its neighbors
within the distance R, on average its degree should
be proportional to the area of this circle and N ; i.e.,
〈k〉 = ρπR2 ∝ NR2. This relation is verified in Figs.
2(b) and (c). Then we calculate the clustering coefficient
of the MANET with global connectivity. It is found that
with increasing N , the clustering coefficient rapidly sat-
urates to 0.6 or so, as shown in Fig. 2(d). From the inset

Fig. 1 Characterization of percolation in the MANET. (a) Schematic plot of the MANET with global connectivity in the
physical domain. (b) f vs. R, where f is the ratio of the number of oscillators in the largest giant cluster to the total number
of oscillators N . R is the effective communication radius of individual oscillators. (c) f vs. N . From (b) and (c), we see
that second-order percolation occurs when R (or N) is increased. (d) Phase diagram in the N–R plane on double-log scale.
Dot-dashed (dashed) line corresponds to the percolation (global connectivity) transition. Both lines indicate power-law
relations. For (b) and (c), 100 numerical realizations with different initial conditions were averaged.
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Fig. 2 Characterization of the properties of the MANET. Averaging was performed over 100 numerical realizations with
different initial conditions. (a) Degree distributions; (b) Average degree 〈k〉 vs. R2; (c) 〈k〉 vs. N ; (d) Clustering coefficient
C vs. N and C vs. R (inset). From (b) and (c), we see that 〈k〉 is proportional to both R2 and N .

there, we can see that the same happens with respect
to R. The approximate clustering coefficient of such a
MANET can be analytically estimated as 0.59 [15]. The
simulation results agree well with the theory.

4 Shuttle-run synchronization

We now study the synchronization of Kuramoto phase
oscillators on the MANET. First, we explore an example
with N = 500 and R = 80. From the phase diagram
in Fig. 1(d), we know that the network has achieved
global connectivity with these parameters. Figure 3(a)
plots the order parameter r with respect to the coupling
strength λ. We find that the velocity plays an impor-
tant role in achieving synchronization in such a dynamic
network. Increasing the velocity of the oscillators will
generally enhance the synchronization. Remarkably, we
find that as long as the velocity of the oscillators is suffi-
ciently large, synchronization can also be induced in the
MANET even when it has not reached global connec-
tivity. Figure 3(b) shows a typical example of this case.
According to the phase diagram in Fig. 1(d), N = 500
andR = 50 does not lie in the regime of global connectiv-
ity. In fact, these parameters are located between the two

lines marking percolation and global connectivity; i.e., in
this case, only a giant cluster that does not contain all
the oscillators forms. As shown in Fig. 3(b), as the ve-
locity increases, oscillators can achieve synchronization
when the velocity is sufficiently large. This point can be
explained as follows. As shown in Ref. [9], the mobility
of the oscillators favors the exchange of information in
the network. In our model, a large velocity apparently
strengthens the interaction among the oscillators, thus
inducing or enhancing synchronization in such a system.

We then investigate the microscopic picture of the
synchronous (coherent) state. As shown in Fig. 4(a),
when the coupling strength is large, the order parameter
rapidly approaches 1, indicating that a coherent state
has been achieved in the system. Interestingly, the coher-
ent state here is essentially different from those observed
in previous studies of Kuramoto-like models, where the
phases of the oscillators in the coherent cluster are locked
to the phase of the mean field. As shown in Figs. 4(b)
and (c), in our model, the phases of the oscillators in
the coherent cluster are only loosely locked to the phase
of the mean field. Specifically, this state has two char-
acteristics. First, each oscillator in the coherent cluster
has a different phase lag with respect to the mean phase.
On the whole, the phases of synchronous oscillators are
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Fig. 3 Characterization of the synchronization by plotting r vs. λ. (a) N = 500 and R = 80. The MANET has achieved
global connectivity. (b) N = 500 and R = 50. The MANET has formed a giant cluster but not achieved global connectivity
yet. The Lorentzian FD is used for the natural frequencies of the oscillators, and 20 numerical realizations with different
initial conditions were averaged.

Fig. 4 Characterization of synchronization in the MANET. (a) Evolution of global order parameter r. (b) In the coherent
state at t = 100, the oscillators cluster within a narrow range on the unit circle. (c) and (d) Evolution of phases (c) and
instantaneous frequencies (d) of typical oscillators in coherent cluster. The time shown is the discrete steps. From (c) and
(d), we see that the phases of coherent oscillators are distributed around the mean field within a small range, and the
oscillators frequently reverse their directions of motion.

distributed within a narrow band around the phase of
the mean field. In phase space, they are concentrated
on a small arc of the unit circle [Fig. 4(b)]. Second, the
phases of coherent oscillators actually fluctuate within
a very small range. They are not constants as in typical
cases. This can be further verified in Fig. 4(d), where the
instantaneous frequencies of coherent oscillators are plot-
ted. The instantaneous frequencies all fluctuate around

the mean value, leading to the fluctuations of the phases.
Thus, the coherent state in our model can be regarded
as a weaker form of the phase synchronization observed
in classical Kuramoto-like models. In such a state, the
coherent oscillators are distributed in a narrow range in
phase space, and, most importantly, they keep rotating
in a manner resembling a shuttle run. For this reason, we
call this phenomenon shuttle-run phase synchronization.
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5 Theoretical analysis

To further reveal how this special coherent state is gen-
erated, we carefully examine the time series of oscilla-
tors in the network. The results are presented in Fig. 5,
in which the temporal evolution of some typical oscilla-
tors is plotted. From Fig. 5(a), we see that the phases of
the oscillators may increase or decrease, but very slowly.
This phenomenon can be explained by Fig. 5(c), which
shows that the instantaneous frequencies of the oscilla-
tors frequently change their signs. Because the sign of the
frequency represents the rotational direction of an oscil-
lator, this leads directly to the shuttle-run-like motion of
the oscillators in phase space. Furthermore, the instanta-
neous frequencies of the coherent oscillators are generally
small, which guarantees that the coherent oscillators can
only rotate forward and backward within a narrow range
in the unit circle. This situation will generally hold when
the characteristic time scale of the shuttle run is much
smaller than that of the dynamics of the oscillators.

To obtain insights on shuttle-run synchronization in
our model, we conduct an analysis based on mean-field
theory. We notice that the most important characteris-

tic in our model is the dynamic topology. To reveal how
this factor affects the collective behavior of oscillators,
we define a local parameter as

rneiψn =
1
kn

kn∑

j=1

eiθj , (4)

where kn is the degree of oscillator n. Then Eq. (2) can
be written in the mean-field form:

θ̇n = ωn + knλrn sin(ψn − θn), n = 1, . . . , N. (5)

From Eqs. (3) and (4), we have

r =
1
N

N∑

n=1

kn
〈k〉rn; (6)

i.e., the global order parameter r equals the weighted av-
erage of the local order parameter rn. If the network is
homogeneous, r ≈ rn. This condition can be well satis-
fied because in our model the degree distributions [Fig.
2(a)] are generally Poisson-like. Therefore, Eq. (5) can
be approximated as

θ̇n = ωn + knλr sin(ψ − θn), n = 1, . . . , N. (7)

Fig. 5 Illustration of the mechanism generating shuttle-run synchronization. The time shown is the discrete steps. (a)
and (c) Evolution of the phases and instantaneous frequencies of typical coherent oscillators. (b) and (d) Evolution of the
phase, instantaneous frequency, and degree fluctuation Δk = k − 〈k〉 (solid triangles) of a specific oscillator. From (c) and
(d), we find that τ dominates the time scale in shuttle-run synchronization.
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This equation has a similar form to that for the clas-
sical Kuramoto model. However, owing to the dynamic
topology, kn will constantly change. Thus, we cannot ex-
pect a rigorous steady state for Eq. (7), which requires
θ̇ = 0. The interesting physics here is that although the
instantaneous frequency for each oscillator in the coher-
ent cluster cannot be strictly 0, its average, 〈θ̇〉, could be
approximately 0. This point can be heuristically under-
stood on the basis of Eq. (7). Because the topology of
the MANET in our model turns out to be homogeneous,
as time passes, the instantaneous degree of the oscilla-
tors n will generally fluctuate around the mean degree
of the network. In addition, we find that the fluctuation
of kn depends crucially on the parameter τ . Note that τ
characterizes the time scale of changes in the positions
of the oscillators, which cause a relatively large pertur-
bation to the topology of the network. As shown in our
simulations, it is at these special moments that the de-
grees of the oscillators fluctuate most significantly [Fig.
5(c)]. According to Eq. (7), the fluctuation of the local
degree induces the fluctuation of the effective strength
of the mean field, i.e., knr. Consequently, the instan-
taneous frequency of the oscillator fluctuates around a
mean value (here it is 0) in the long term. As evidence,
Fig. 5(d) shows that the instantaneous frequency of an
arbitrary oscillator in the network is basically correlated
with the change in its degree. Therefore, we have suc-
cessfully revealed the mechanism of shuttle-run synchro-
nization observed in our model.

On the other hand, it is always desirable to obtain the
critical point in synchronization issues. For our model,
we can analytically obtain the critical coupling strength
for the synchronization transition using mean-field the-
ory. According to Ref. [11], under the constraint of fast
switching, we can perform an approximate analysis of
the synchronization properties of our model by replacing

the time-dependent coupling matrix A in Eq. (2) with its
time average Ā, where Ā is an all-to-all weighted matrix.
Eq. (2) then becomes

θ̇n = ωn + λ

N∑

j=1

ānj sin(θj − θn), n = 1, . . . , N, (8)

where all the elements in Ā are identical, and ānj = pN .
Here, p is the probability that a link is activated (i.e.,
that two oscillators are neighbors). Because p = πR2/L2

and the density of oscillators ρ = N/L2, ānj = pN =
ρπR2 = 〈k〉/N . Then Eq. (8) can be written as

θ̇n = ωn +
〈k〉λ
N

N∑

j=1

sin(θj − θn), n = 1, . . . , N. (9)

This is essentially the original Kuramoto model with an
effective coupling strength 〈k〉λ. In fact, if we approxi-
mate kn by 〈k〉 in Eq. (7), we obtain the same mean-field
form as Eq. (9).

According to Kuramoto’s theory, the critical transition
point for synchronization is at λKMc = 2/[πg(0)], given a
symmetric FD centered at 0. Therefore, the critical point
for Eq. (9) can be obtained by the scaling transformation
〈k〉λc = λKMc , which yields

λc = λKMc /〈k〉. (10)

Substituting 〈k〉 = ρπR2 = NπR2/L2 and g(0) =
1/(πΔ) (these are the same for all three FDs shown in
Table 1) into the above equation, we finally obtain the
critical point as

λc =
2ΔL2

NπR2
. (11)

This is approximately the critical point for our model,
Eq. (2). To verify the theoretical result in Eq. (11), we
conduct numerical simulations. As shown in Fig. 6, the

Fig. 6 Verification of the critical transition point to synchronization. (a) r vs. λ. (b) λc vs. R. With the parameters in
Table 1, the formula for the transition point, i.e., Eq. (11), is the same for the three FDs used in this paper, which agrees
well with the numerical results.
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analytical analysis agrees well with the numerical results.

6 Conclusion

In this work, we investigated synchronization in a
MANET. Interestingly, we found a novel synchroniza-
tion phenomenon in which the coherent phase oscillators
are distributed in a narrow range in phase space. They
continue to move slowly, but they frequently reverse di-
rections, just as in a shuttle run. Through numerical
simulations and a theoretical analysis, we revealed that
this special type of synchronization is induced by the
fluctuation of the mean field, which is a natural con-
sequence of the dynamic topology of a MANET. We
demonstrated that the characteristic time scale of the
shuttle-like motion is dominated by the time scale on
which the positions of the oscillators in the physical do-
main change. Using mean-field analysis, we successfully
explained the mechanism of shuttle-run synchronization
and obtained the critical transition point analytically.
The theory is well supported by the simulation results.
This work enhances our understanding of collective be-
haviors in time-dependent networks.
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