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Synchronization in a frequency-weighted Kuramoto model with a uniform frequency distribution is
studied. We plot the bifurcation diagram and identify the asymptotic coherent states. Numerical
simulations show that the system undergoes two first-order transitions in both the forward and back-
ward directions. Apart from the trivial phase-locked state, a novel nonstationary coherent state, i.e.,
a nontrivial standing wave state is observed and characterized. In this state, oscillators inside the
coherent clusters are not frequency-locked as they would be in the usual standing wave state. Instead,
their average frequencies are locked to a constant. The critical coupling strength from the incoherent
state to the nontrivial standing wave state can be obtained by performing linear stability analysis.
The theoretical results are supported by the numerical simulations.
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1 Introduction

Synchronization phenomena are collective behaviors
emerging in dynamical systems, which are widely ob-
served in physics, chemistry, biology, and social science
[1, 2]. Synchronization in systems of coupled oscillators
has been extensively investigated theoretically. For ex-
ample, the Kuramoto model [3] is a successful prototype
in studies of synchronization. The Kuramoto model and
its variants have been studied for decades and have been
found to exhibit a continuous (second-order) phase tran-
sition from incoherence to synchrony [4, 5]. However, re-
cent works reveal that a discontinuous (first-order) syn-
chronization transition could also occur in some gener-
alized Kuramoto models [6–11]; for example, the Ku-
ramoto model in a scale-free (SF) network [6, 12] and
a star network [7], the frequency-weighted Kuramoto
model [8–10], the Kuramoto model in adaptive and mul-
tilayer networks [11], and the Kuramoto model with both
conformists and contrarians [13].

In particular, the frequency-weighted Kuramoto model
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has been intensively investigated under various fre-
quency distributions, including unimodal distributions
(Lorentzian, Gaussian, and triangular) [8, 9], the half-
Gaussian distribution [8], asymmetric unimodal distri-
butions (Lorentzian, Gaussian, triangular, and Rayleigh)
[10], and the bimodal distribution [9, 14]. Nevertheless,
for the most simple frequency distribution, i.e., the uni-
form distribution, a thorough study of both the bifur-
cation diagram and the possible coherent states is still
lacking. For this purpose, in this work, we focus on
the first-order synchronization (i.e., explosive synchro-
nization) transitions in a frequency-weighted Kuramoto
model with a uniform frequency distribution.

We obtain two main results via both theoretical and
numerical studies. First, a detailed bifurcation diagram
is plotted. Interestingly, it shows that as the coupling
strength increases/decreases, the system successively un-
dergoes two first-order transitions toward synchroniza-
tion/incoherence, which are typically characterized by
hysteresis loops when both forward and backward tran-
sitions are considered. Second, we identify three asymp-
totic states to which the long-term dynamics of the sys-
tem evolves, i.e., the incoherent state, the nontrivial
standing wave (NSW) state (see detailed description be-
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low), and the phase-locked state. Remarkably, in the
NSW state, the synchronous oscillators split into two
clusters, which are always counter-rotating, just as in
the usual standing wave state. However, in these coher-
ent clusters, the instantaneous frequencies of the oscilla-
tors are not the same. Instead, their average frequencies
are equal to constant values. This NSW state, in fact,
is a type of nonstationary coherent state in a coupled
oscillator system. Here, “nonstationary” means that in
this state, the probability density function of the oscilla-
tors is time-dependent. Through linear stability analy-
sis, we analytically obtain the critical coupling strength
at which the system bifurcates from the incoherent state
to the NSW state. In addition, the bifurcation bound-
aries between the three asymptotic states are identified
numerically.

This paper is organized as follows. In Section 2,
we briefly introduce the frequency-weighted Kuramoto
model with a uniform frequency distribution. In Section
3, we discuss the bifurcation diagram and characterize
the NSW state in detail. Section 4 discusses the linear
stability of the incoherent state. Finally, we summarize
our work in Section 5.

2 The dynamical model

In the frequency-weighted Kuramoto model [8–10], N
phase oscillators are governed by the following dynamical
equation:

θ̇i = ωi +
κ|ωi|
N

N∑
j=1

sin(θj − θi), i = 1, · · · , N, (1)

where θi and ωi are the phase and natural frequency of
the ith oscillator, respectively. The dot denotes a time
derivative, and κ is the global coupling strength. The
most important characteristic of this model is that the
ith oscillator is coupled to the mean field via the effec-
tive coupling strength κ|ωi|, which is proportional to the
magnitude of its natural frequency. In the mean-field
approximation, this model is equivalent to the classical
Kuramoto model in a SF network [6].

Typically, the natural frequencies of oscillators in
Kuramoto-like models are drawn from a certain distri-
bution g(ω). As mentioned above, this model has been
studied under various frequency distributions other than
the simple uniform distribution to date. Therefore, in
this work, we investigate this system when the natural
frequencies satisfy the following uniform distribution:

g(ω) =


1

2γ
for |ω| ≤ γ,

0 for |ω| > γ.

(2)

Without loss of generality, we take γ = 1
2 in the fre-

quency distribution in this work.
In order to characterize the degree of phase coherence

in the model, an order parameter can be defined as

Reiψ =
1

N

N∑
j=1

eiθj , (3)

where R and ψ are the module and argument of the
mean field, respectively. Geometrically, the complex or-
der parameter can be regarded as a vector on the complex
plane. By definition, R is between 0 and 1. Typically,
R = 0 indicates a totally random phase distribution, i.e.,
the incoherent state, whereas R > 0 indicates a (par-
tially) phase-locked state, i.e., the coherent or synchro-
nized state. As the system becomes more coherent, R
will gradually approach 1.

In this work, coupled ordinary differential equations
are numerically integrated using the fourth-order Runge–
Kutta method with a time step of 0.01. The initial condi-
tions for the phase variables are random. Typically, the
total number of oscillators is N = 10 000. We explore
both the forward and backward transitions adiabatically
to test whether hysteresis exists in the synchronization
transitions. For each control parameter, the order pa-
rameter is averaged in a time window after the transient
stage. Such numerical schemes are adopted throughout
this paper.

3 Bifurcations and the NSW state

We first study the bifurcation diagram of model (1)
with a uniform frequency distribution. The results
of extensive numerical simulations are summarized in
Fig. 1. Specifically, we observed three types of asymp-
totic states: the incoherent state, NSW state, and phase-
locked state. Interestingly, as the coupling strength in-
creases, we find two first-order phase transitions [Fig. 1].
The first is from the incoherent state to the NSW state,
and the second is from the NSW state to the phase-
locked state. Inversely, when the system starts from the
coherent state and as the coupling strength decreases, it
also experiences two first-order phase transitions. How-
ever, the bifurcation points are smaller than those of the
forward transitions. We use κf1, κf2, κb1, and κb2 to
denote the critical points. Here the subscripts f1 and b1
denote the forward and backward critical points, respec-
tively, for the first transition, and f2 and b2 are those for
the second transition. Numerically, they are identified as
κf1 = 1.798, κf2 = 2.006, κb1 = 1.728, and κb2 = 2.00.
Thus, the bifurcation diagram can be divided into five
parameter regimes as follows: (I) 0 < κ < κb1, where
only the incoherent state is stable; (II) κb1 < κ < κf1,
where both the incoherent state and the NSW state are
stable; (III) κf1 < κ < κb2, where only the NSW state is
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Fig. 1 (a) Bifurcation diagram (R vs. κ) characterizing both the forward and backward synchronization transitions in
model (1) with a uniform frequency distribution. (b) Enlargement of (a) that clearly shows two hysteresis loops, i.e., two
first-order transitions, and five dynamical regimes. As κ increases, the first forward transition occurs at κf1 = 1.798, where
the system jumps from the incoherent state to the NSW state. Then, at the second transition point, κf2 = 2.006, the NSW
state jumps into the phase-locked state. For the backward direction, the system first jumps from the phase-locked state to
the NSW state at κb2 = 2.00. Then the NSW state jumps into the incoherent state at κb1 = 1.728. N = 10 000, γ = 0.5.

stable; (IV) κb2 < κ < κf2, where both the NSW state
and the phase-locked state are stable; and (V) κf2 < κ,
where only the phase-locked state is stable. These five
parameter regimes are clearly shown in Fig. 1(b).

We now investigate the asymptotic states in model
(1) with a uniform frequency distribution. The long-
term dynamics of the system are found to evolve to
one of three states: the incoherent state, NSW state,
or phase-locked state. In the following, we take the for-
ward transition process as an example for description.
When the coupling strength is below the critical point
κf1, all the oscillators are desynchronized. This incoher-
ent state is shown in Fig. 2(a). When κf1 < κ < κf2,
the system evolves to a new NSW state. Figures 2(b)
and (c) demonstrate two such examples at κ = 1.85 and
κ = 1.95, respectively. In these states, the oscillators
in the system have been only partially entrained. The
coherent oscillators split into two groups corresponding
to the positive and negative natural frequencies, respec-
tively. They coexist with the drifting (desynchronized)
ones. These two coherent clusters counter-rotate along
the unit circle. Overall, this scenario resembles the nor-
mal SW state [5, 15]. Interestingly, however, this NSW
state differs essentially from the normal SW state, in
which the oscillators within each cluster are frequency-
locked. A careful examination of the NSW state re-
veals that the oscillators in the coherent clusters are not
frequency-locked; i.e., their instantaneous frequencies are
not the same. This novel property can be clearly seen in
Figs. 2(b3) and (c3), where the snapshots show that the
instantaneous frequencies inside either coherent cluster
are not locked. However, they are correlated in a cer-
tain way such that, surprisingly, the average frequencies

are locked to a constant. These important characteris-
tics can be immediately seen by comparing the smooth
cusped patterns in Figs. 2(b3) and (c3) with the staircase
structures in Figs. 2(b2) and (c2).

In Fig. 3, we further characterize the typical NSW
state corresponding to Fig. 2(b) from both macroscopic
and microscopic perspectives. As the instantaneous fre-
quency characterizes the rotations of the oscillators along
the unit circle, the system exhibits a very interesting col-
lective motion of the oscillators. Figure 3(a) shows two
snapshots of the instantaneous phase distributions. The
system clearly splits into two symmetric groups that are
counter-rotating. Furthermore, the shapes of the instan-
taneous phase distributions change continuously within
one period. This implies that the oscillators inside one
coherent cluster are correlated in a complicated way,
rather than simply being frequency-locked. In the latter
case, i.e., the usual SW state, the oscillators inside one
coherent cluster behave like a giant cluster, and the phase
distribution does not change its shape but keeps moving
as a whole. In Fig. 3(b1), we show that the instanta-
neous frequencies of oscillators inside the same cluster
evolve periodically, but different oscillators follow differ-
ent periodic patterns. In other words, the instantaneous
rotational speed of each oscillator varies uniquely with
time. This characteristic can also be seen in Fig. 3(b2),
where the evolutions of the instantaneous phases corre-
sponding to Fig. 3(b1) are plotted. This novel feature
makes the observed NSW state essentially different from
the usual SW states previously reported in Kuramoto-
like models, in which oscillators are typically frequency-
locked inside the coherent cluster [5, 15]. In brief, it
is the average frequencies rather than the instantaneous
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Fig. 2 Typical asymptotic states in model (1) with a uniform frequency distribution during the forward transition. Snap-
shots of the instantaneous phases θi (upper plots), the average frequencies (average speeds) ⟨θ̇i⟩ (middle plots), and the
instantaneous frequencies (speeds) θ̇i (lower plots) vs. natural frequencies {ωi} of the oscillators. (a) Incoherent state at
κ = 1.79. (b) NSW state at κ = 1.85. (c) NSW state at κ = 1.95. (d) Phase-locked state at κ = 2.01. As shown
in Fig. 1, the system bifurcates first from the incoherent state to the NSW state and then to the phase-locked state, and
these two transitions are both first-order ones. In (b), two coherent clusters are formed, where their average frequencies
are distributed symmetrically with respect to 0, i.e., the cluster with positive frequencies and that with negative frequen-
cies have the same average rotational speed but rotate in opposite directions (b2). However, the instantaneous frequencies
(speeds) of oscillators in the coherent clusters are time-dependent and generally differ from one another (b3). In (c), as the
coupling strength increases, more oscillators are entrained to join the coherent clusters. In the phase-locked state (d), the
instantaneous frequencies of the coherent oscillators are locked to a constant. Therefore, this state is stationary and it differs
essentially from the nonstationary NSW states in (b) and (c).

frequencies that are locked in this NSW state. The order
parameters for the coherent clusters collectively exhibit
complicated orbits in phase space, as shown in Fig. 3(c).
The amplitude of the overall order parameter oscillates
nearly periodically with time [Fig. 3(d1)]. In addition,
its phase is found to be approximately binary during its
evolution [Fig. 3(d2)].

We emphasize that during the backward transition,
the NSW state can also be observed when κb1 < κ <
κb2. As the coupling strength decreases, the system first
jumps into the NSW state from the coherent state and
then jumps into the incoherent state when κ is below
κb1.

Note that the above results are based on numerical
studies of a specific system with size N = 10 000. In fact,
we have conducted extensive simulations with different
system sizes, for example, N = 5000 and N = 20 000.
We found that the size effect could change the bifurcation

points slightly, particularly the forward ones. Neverthe-
less, the entire bifurcation diagram is qualitatively the
same.

4 Critical coupling strength

From a theoretical viewpoint, it is desirable to solve the
critical coupling strength for the system in the thermo-
dynamic limit. Recently, a method based on the Ott–
Antonsen (OA) ansatz was successfully used for this pur-
pose in many systems [16]. It can effectively reduce
the dynamics of coupled oscillators to a low-dimensional
manifold and thus, greatly facilitate the analysis. How-
ever, the use of the OA method depends on several con-
ditions. In particular, it requires analytical continuation.
In the frequency-weighted model, i.e., Eq. (1), there is
a term of absolute value |ωi|, which hinders analytical
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Fig. 3 Characterization of the NSW state in Fig. 2(b). (a) Snapshots of the instantaneous phase distributions at different
moments in one period. Red and blue denote clusters with positive and negative frequencies, respectively. In this nonsta-
tionary state, two coherent clusters rotate in opposite directions with nonuniform speeds, and the shapes of the clusters
are also time-dependent. (b) Time series of the instantaneous speeds (b1) and instantaneous phases (b2) for two sample
coherent oscillators. Although the instantaneous frequencies of these two oscillators are different, their average frequencies
during one period are the same. A comparison of (b1) with (b2) reveals that during one loop along the unit circle, the
instantaneous speeds of the oscillators exhibit two periods. (c) Order parameters for all oscillators (including the drifting
ones) with positive (red oval) and negative (blue oval) frequencies, and the order parameter for all oscillators (green line).
(d) Time series of the global order parameters R(t) and ψ(t), which are typically oscillatory. As the global order parameter
oscillates approximately along the green line in (c), its phase is found to be binary, as shown in (d2).

continuation when the OA method is applied, the OA
method has failed to treat this model to date. In the
following, we turn to the traditional method of linear
stability analysis.

In order to obtain the critical coupling strength κf1 for
the synchronization transition in model (1), we perform
linear stability analysis of the incoherent state. In the
mean-field form, Eq. (1) can be written as

θ̇i = ωi + κ|ωi|R sin(ψ − θi), (4)

where R and ψ are the order parameters defined in
Eq. (3). Following the analysis in Refs. [4, 9], the crit-
ical equation relating the coupling strength κ and the
eigenvalue λ is [9]

2

κ
=

∫ +∞

−∞

λ|ω|
λ2 + ω2

g(ω)dω. (5)

Substituting the uniform distribution of Eq. (2) into the

integration of Eq. (5), we get

2

κ
= 2

∫ γ

0

λω

λ2 + ω2
· 1

2γ
dω =

λ

2γ
ln

(
1 +

γ2

λ2

)
. (6)

Then Eq. (5) becomes

4γ

κ
= λ ln

(
1 +

γ2

λ2

)
= f(λ). (7)

When λ crosses the imaginary axis, the incoherent state
loses its stability. Thus, setting λ = iy, we have

f(iy) = iy ln
(
1− γ2

y2

)
. (8)

If |y| > γ, f(iy) is a pure imaginary number. Thus,
Eq. (7) has no solution because its left-hand side is real.
If |y| < γ, 1− γ2

y2 < 0, and ln
(
1− γ2

y2

)
= ln

(
γ2

y2 − 1
)
−iπ.

We have

f(iy) = iy ln
(
γ2

y2
− 1

)
+ πy. (9)
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Combining Eq. (7) with Eq. (9), we obtain

y ln
(
γ2

y2
− 1

)
= 0, (10)

4γ

κf1
= πy. (11)

From Eq. (10), y has a nontrivial solution y = γ√
2
, which

leads to the critical coupling strength

κf1 =
4
√
2

π
≈ 1.8. (12)

The above analysis reveals that κf1 is independent of the
width of the uniform distribution. Physically, this arises
from the properties of the frequency-weighted model. As
shown in Eq. (4), the effective coupling strength for an
oscillator interacting with the mean field is proportional
to its frequency. Thus, the influence of the natural fre-
quency is balanced by the effective coupling strength.

Moreover, according to Ref. [9], the critical coupling
strength κb2 is universal, regardless of the details of spe-
cific frequency distributions. For a symmetric unimodal
frequency distribution,

κb2 = 2 (13)

still holds. During the backward transition, the system
bifurcates from the phase-locked state to the NSW state
at this point.

Note that we cannot yet provide a suitable description
of the NSW state. Therefore, it is difficult to obtain the
other two bifurcation points, κf2 and κb1, by applying
linear stability analysis to the NSW state.

5 Conclusion

We studied explosive synchronization in a frequency-
weighted Kuramoto model with a uniform frequency dis-
tribution. Numerical simulations and theoretical anal-
ysis revealed that the system exhibits two first-order
transitions in both the forward and backward directions.
In these transitions, the system bifurcates among three
asymptotic states: the incoherent state, NSW state, and
phase-locked state. Among them, the NSW state, a new
coherent state in this model, was further characterized.
In the coherent clusters in this state, it is the average
frequencies rather than the instantaneous frequencies of
the oscillators that are locked. Physically, the NSW
state is a weaker coherence (compared with the phase-
locked state) achieved by the coupled oscillators when
the coupling strength is in the intermediate regime. It is
between the incoherent state (full asynchrony) and the
phase-locked state (full synchrony) and thus exhibits re-
markable dynamical properties. Recently, a quantized,

time-dependent clustered state, called the Bellerophon
state, was revealed in globally coupled oscillators [14, 17].
The NSW state reported in this paper can be classi-
fied as a special type of Bellerophon state in which only
two coherent clusters coexist. These results are helpful
for understanding the complicated collective behavior in
generalized Kuramoto models.
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