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The proof of empty discrete spectrum when K is sufficiently small. The key point to prove this is to
demonstrate that the left side of Eq. (30) (in the main text) is bounded for any real x, y. Actually, the left
side of Eq. (30) (in the main text) is less than∫ 1

−∞

x|ω|g(ω)

x2 + (ω − y)2
dω +

∫ ∞
1

x|ω|g(ω)

x2 + (ω − y)2
dω +

∫ 1

−1

xg(ω)

x2 + (ω − y)2
dω. (1)

It has been proved that the last term in (1) is bounded for any real values x and y [34]. Now we only need
to prove the boundedness of the first and second term in (1). We notice that the second term of (1) can be
rewritten as ∫ y−δ

1

xωg(ω)

x2 + (ω − y)2
dω +

∫ ∞
y+δ

xωg(ω)

x2 + (ω − y)2
dω +

∫ y+δ

y−δ

xωg(ω)

x2 + (ω − y)2
dω, (2)

provided that y > 1 and δ > 0 is small. Evidently, the first and second terms in (2) are also bounded since
there is no singularity in the finite integrating range. In addition, the third term in (2) can be calculated
through integration by parts as

xω

x2 + (ω − y)2
G(ω)

∣∣∣y+δ

y−δ
+

∫ y+δ

y−δ

x(ω2 − x2 − y2)

[x2 + (ω − y)2]2
G(ω)dω, (3)

where G(ω) is the primitive function of distribution density g(ω), i.e., G(ω) is continuous, G(−∞) = 0
and G(+∞) = 1. Thus the first term of (3) is bounded, and the second term of which can be reduced as∫ δ

0

x(ω2 − x2)

(x2 + ω2)2
[G(y + ω) +G(y − ω)] dω +

∫ δ

−δ

2xωy

(x2 + ω2)2
G(ω + y)dω. (4)

The last term of (4) is also bounded and the first term in (4) could be estimated by the mean value theorem
of integral as

2G(y)

(
− xξ

x2 + ξ2

)
+ [G(y + δ) +G(y − δ)]

(
xξ

x2 + δ2
− xδ

x2 + δ2

)
, (5)

where 0 ≤ ξ ≤ δ. Considering the property ofG(ω), (5) is also bounded for any real x and y. Therefore, the
second term in (1) is bounded. Similarly, the same strategy could also be adopted to prove the boundedness
of the first term in (1).
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The center manifold calculation for the bifurcation of the incoherent state. Based on the center man-
ifold reduction, Ref. [37] provided a paradigmatic framework to obtain the amplitude equations near the
critical point in classical Kuramoto model. Following this framework, we find that the frequency-weight
Kuramoto model can also be treated. Considering Eqs. (34)-(37) in the main text, the important feature for
the perturbed equation is its symmetry. The group O(2) is generated by the rotations

φ · (θ, ω) = (θ − φ, ω), (6)

and the reflection

κ · (θ, ω) = (−θ,−ω), (7)

which act on function µ(θ, ω) in the usual way

(γ · µ)(θ, ω) = µ(γ−1(θ, ω)), γ ∈ O(2). (8)

One notes that the evolution equation for µ(θ, ω) has O(2) symmetry, provided that g(ω) = g(−ω). More
specifically, the equations are invariant under the actions of rotations and reflections, i.e., γ · (L · µ) =
L (γ · µ) and γ ·N (µ) = N (γ · µ) for all γ ∈ O(2).

The Fourier expansion for µ(θ, ω, t) is

µ(θ, ω, t) =
∞∑

l=−∞

µl(ω, t)e
ilθ, (9)

and the corresponding linear operator L can be rewritten as

L · µ =
∞∑

l=−∞

(Ll Nl)e
ilθ, (10)

where

Ll µl = −il(ω − ilD)µl +
K|ω|

2
(δl ,1 + δl ,−1) ·

∫ ∞
−∞

dω′ · g(ω′)µl(ω
′), (11)

Note that the normalization condition for the density function implies µl=0 = 0.
An adjoint operator for L can be defined as

(A,LB) ≡ (L †A,B), (12)

and the inner product is defined as

(A,B) ≡
∫ 2π

0

dθ

∫ ∞
−∞

dωA(θ, ω)∗B(θ, ω). (13)

The definitions above yield

L †µ =
∞∑

l=−∞

(L †
l Nl)e

ilθ. (14)

In term of the Fourier expansion

(L †
l µl(ω)) = il(ω + ilD)µl(ω) +

g(ω)K

2
(δl ,1 + δl ,−1) ·

∫ ∞
−∞

dω′|ω′|µl(ω
′). (15)
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The eigenvalue equation for the linear operator L reads

L Ψ = λΨ, (16)

which could be treated in each Fourier subspace. We let

Ψ(θ, ω) = eilθψ(ω). (17)

Then Eq. (16) reads

Ll ψ = λψ. (18)

After scaling the eigenvalue λ = −ilz, Eq. (18) becomes

[(ω − z)− ilD]ψ = −ilK|ω|
2

(δl ,1 + δl ,−1)

∫ ∞
−∞

dω′ g(ω′)ψ(ω′). (19)

From the analysis above, when |l | 6= 1, the eigenvalue solution of Eq. (19) corresponds to a continuous
spectrum for L . However, for the case of |l | = 1, Eq. (19) becomes

[(ω − z)− ilD]ψ = −ilK|ω|
2

∫ ∞
−∞

dω′ g(ω′)ψ(ω′), (20)

imposing the normalization condition for ψ(ω)∫ ∞
−∞

dω′ g(ω′)ψ(ω′) = 1, (21)

consistency between (20) and (21) requires z to be a root of the following special function

Λl(z) = 1 +
ilK

2

∫ ∞
−∞

dω′
g(ω′)|ω′|

ω′ − z − ilD
, (22)

i.e., the roots of Eq. (22) determine the eigenvalues. Recall that the projection operator P̂λ onto the gener-
alized eigenspace for an isolated eigenvalue λ = −ilz0 is defined by a contour integral [37]

P̂λ · A =
1

2πi

∮
Γ0

dλ′(λ′ −L )−1A, (23)

where Γ0 is a small loop enclosing λ in a counter clockwise sense. The resolvent operator (λ−L )−1 can
be expressed as

(λ−L )−1A =
∞∑

−l=−∞

(λ−Ll)
−1Al =

∞∑
l=−∞

Rl(λ)Al(ω), (24)

where

(λ−L )Al = [λ+ ilω + l2D]Al −
K

2
|ω|(δl ,1 + δl ,−1)

∫ ∞
−∞

dω′g(ω′)Al(ω
′), (25)

multiplying (λ−Ll) for both sides of Eq. (24), one obtains

Al = (λ−L )Rl(λ)Al(ω)

= [λ+ ilω + l2D]Rl(λ)Al(ω)− K

2
|ω|(δl ,1 + δl ,−1)

∫ ∞
−∞

dω′g(ω′)Rl(λ)Al(ω
′).

(26)
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Multiplying [λ+ ilω + l2D]−1 for both sides of Eq. (26) and doing inner product with g(ω), we get

∫ ∞
−∞

dω′g(ω′)Rl(λ)Al(ω
′) =

∫∞
−∞

Al(ω
′)g(ω′)

λ+ ilω′ + l2D
dω′

1− K

2
(δl ,1 + δl ,−1)

∫∞
−∞ dω

′ g(ω′)

λ+ ilω′ + l2D

. (27)

Substituting (27) into the Eq. (25) we find that the projection could be simplified to

P̂λ · A =
eiθ

2πi

∮
Γ0

dλ′R1(λ′)A1 +
e−iθ

2πi

∮
Γ0

dλ′R−1(λ′)A−1, (28)

where

Rl(λ)Al(ω) =
Al(ω)

ilω + l2D + λ
+

K|ω|(δl ,1 + δl ,−1)/2

Λl(ilλ)(ilω + l2D + λ)

∫ ∞
−∞

dω′
g(ω′)Al(ω

′)

ilω′ + l2D + λ
. (29)

A rigorous analysis of the nature of the eigenvalue should take the real and complex, the simple roots and
the semi-simple ones into consideration respectively [37]. Since in the frequency-weighted model, a pair
of conjugated complex and simple roots z0 of Λl(z) emerge near the critical coupling strength Kc , which
means

Λ1(z0) = 0, Λ′1(z0) 6= 0. (30)

Hence, we will focus our attention on this situation. From Eq. (20) ∼ Eq. (22) the eigenvalue λ = −ilz0

has eigenvector Ψ(θ, ω) and κ ·Ψ(θ, ω), where

Ψ(θ, ω) = eiθψ(ω) = eiθ
−iK/2|ω|
ω − z − iD

. (31)

Meanwhile, its complex conjugate λ∗ has the eigenvector Ψ(θ, ω)∗ and κ · Ψ(θ, ω)∗, corresponding to Ψ
and κ ·Ψ. There are adjoint eigenvectors

L † · Ψ̃ = λ∗Ψ̃, (32)

L †(κ · Ψ̃) = λ∗(κ · Ψ̃), (33)

where

Ψ̃(θ, ω) =
eiθ

2π

−g(ω)

ω − z∗0 + iD

1

Λ′1(z0)∗
. (34)

These eigenvectors satisfy the orthogonal relations

(Ψ̃,Ψ) = (κ · Ψ̃, κ ·Ψ) = 1, (35)

(Ψ̃, κ ·Ψ) = (κ · Ψ̃,Ψ) = 0. (36)

Furthermore, the projection P̂λ in Eq. (28) can be evaluated through residue theorem and the final result
has the simplified form

P̂λ · µ = (Ψ̃, µ)Ψ + (κ · Ψ̃, µ)κ ·Ψ. (37)
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Defining the amplitudes (α, β)

α(t) = (Ψ̃, µ), (38)

β(t) = (κ · Ψ̃, µ), (39)

the distribution function µ(θ, ω, t) decomposes as

µ(θ, ω, t) = P̂λ · µ+ P̂λ∗ · µ+ S(θ, ω, t)

= [α(t)Ψ(θ, ω) + β(t)κ ·Ψ(θ, ω) + c.c.] + S(θ, ω, t),
(40)

where S(θ, ω, t) is the remaining degree of freedom and (Ψ̃, S) = (κ ·Ψ̃, S) = 0. Inserting Eq. (40) into the
perturbed equation Eq.(35) (in the main text) and projecting with Ψ and κ · Ψ̃, we can obtain the following
equation in terms of the Fourier exponents [37]

dα

dt
= λα− πK(α∗ + β + 〈g, S−1〉)〈ψ̃, S2〉, (41)

dβ

dt
= λβ − πK(α + β∗ + 〈g, S1〉)〈κ · ψ̃, S−2〉, (42)

∂S

∂t
=L S − πK{eiθ(α∗ + β + 〈g, S−1〉)[S2 − 〈ψ̃, S2〉ψ

− 〈κ · ψ̃∗, S2〉κ · ψ∗] + 2ei2θ[(α∗ + β + 〈g, S−1〉)S3(ω)

− (α + β∗ + 〈g, S1〉)(αψ + β∗κ · ψ∗ + S1)]+∑
l≥3

leilθ[(α∗ + β + 〈g, S−1〉)Sl+1(ω)− (α + β∗+

〈g, S1〉)Sl−1(ω)] + c.c.},

(43)

where 〈A,B〉 =
∫∞
−∞ dω A

∗B. For a solution on the center manifold near the incoherent state, the time
dependence of S(θ, ω, t) can be expressed as

S(θ, ω, t) = H(θ, ω, α(t), α(t)∗, β(t), β(t)∗)

=
∞∑

l=−∞

Hl(ω, α(t), α(t)∗, β(t), β(t)∗)eilθ.
(44)

Besides, if µ(θ, ω) corresponds to a point on the center manifold and γ ∈ O(2), then γ · µ still lies on the
center manifold. This symmetry imposes the constraints on the form of H . The density function µ(θ, ω, t)
can be rewritten as

µ(θ, ω, t) =αΨ(θ, ω) + βκ ·Ψ(θ, ω) + α∗Ψ(θ, ω)∗+

β∗κ ·Ψ(θ, ω)∗ +H(θ, ω, α(t), α∗(t), β(t), β∗(t)).
(45)

Because of the O(2) symmetry, any action of γ ∈ O(2) on µ(θ, ω, t) keeps the same form as (45), i.e.,

γ · µ(θ, ω, t) =α′Ψ(θ, ω) + β′κ ·Ψ(θ, ω) + α∗
′
Ψ(θ, ω)∗+

β∗
′
κ ·Ψ(θ, ω)∗ +H(θ, ω, α′(t), α∗

′
(t), β′(t), β∗

′
(t)).

(46)
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Following the definition, the mode amplitude transforms according to

φ · (α, β) = (e−iφα, eiφβ), (47)

κ · (α, β) = (β, α). (48)

Hence, H(θ, ω, α(t), α∗(t), β(t), β∗(t)) must satisfy

H(θ − φ, ω, α, α∗, β, β∗) = H(θ, ω, e−iφα, eiφα∗, eiφβ, e−iφβ∗), (49)

and

H(−θ,−ω, α, α∗, β, β∗) = H(θ, ω, β, β∗, α, α∗). (50)

The Fourier coefficient of H satisfies

eilφHl(ω, α, α
∗, β, β∗) = Hl(ω, e

−iφα, eiφα∗, eiφβ, e−iφβ∗), (51)

and

Hl(−ω, α, α∗, β, β∗) = Hl(ω, β, β
∗, α, α∗). (52)

The constraint (51) implies that the function (α∗)lHl is invariant under rotations, so it can only depend on
the basic rotation invariants |α|2, |β|2, αβ, and α∗β∗. We assume (α∗)lHl takes the form

(α∗)lHl =
l∑

j=0

|α|2j(α∗β∗)l−jH(j)
l (ω, |α|2, |β|2, αβ, α∗β∗), (53)

The Fourier coefficients of H have the form

Hl =
l∑

j=0

αl(β∗)l−jH
(j)
l (ω, |α|2, |β|2, αβ, α∗β∗), (54)

for l > 0. Hence H(j)
l are functions of |α|2, |β|2, αβ, α∗β∗, and ω that satisfy

H
(j)
l (−ω, |α|2, |β|2, αβ, α∗β∗)∗ = H

(l−j)
l (ω, |α|2, |β|2, αβ, α∗β∗). (55)

For l = 1 and l = 2, in terms of the components in Eq. (54) and Eq. (55), we have

H1 = αH
(1)
1 + β∗H

(0)
1 , (56)

H2 = α2H
(2)
2 + αβ∗H

(1)
2 + (β∗)2H

(0)
2 , (57)

Near the critical point the amplitude is small, so H could be expressed in terms of the Taylor series. Since
the center-manifold geometry requires that the Taylor expansion of H begins at second order, the leading
term of H is

H1 = O(3), (58)

H2 = α2h
(2)
2 (ω) + αβ∗h

(1)
2 (ω) + (β∗)2h

(0)
2 (ω) + O(3). (59)
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The high-order terms could be neglected to determine the cubic term in the amplitude equation. The four-
dimensional vector field Eq. (41) ∼ Eq. (42) could be transformed to the Poincare-Birkhoff normal form
which introduces a “phase shift invariant” characterizing the Hopf normal form. In the normal form the
four-dimensional equation reads(

α̇

β̇

)
= λ

(
α
β

)
− πK

(
α[〈ψ̃, h(2)

2 〉|α|2 + 〈ψ̃, h(1)
2 〉|β|2]

β[〈κ · ψ̃, h(0)∗
2 〉|β|2 + 〈κ · ψ̃, h(1)∗

2 〉|α|2]

)
+ O(5). (60)

Let |α|2 =
(u− δ)

2
and |β|2 =

(u+ δ)

2
, Eq. (60) becomes(

α̇

β̇

)
=[λ− πK

2
(〈ψ̃, h(2)

2 〉+ 〈ψ̃, h(1)
2 〉)u+ O(4)]

(
α
β

)
+ [

πK

2
(〈ψ̃, h(2)

2 〉 − 〈ψ̃, h
(1)
2 〉) + O(2)]δ

(
α
−β

)
,

(61)

where h(1)
2 , h

(2)
2 can be determined consistently from the evolution of Eq. (43) based on the balance equation

of α. After similar calculations we obtain

h
(2)
2 (ω) =

−iπK|ω|ψ(ω)

ω − z0 − i2D
, (62)

h
(1)
2 (ω) =

−iπK|ω|(ψ(ω) + κ · ψ(ω)∗)

ω − iImz0 − i2D
, (63)

and the cubic coefficients Pu and r read

Pu(0) =
πK

2
lim
D→0+

Re〈ψ̃, (h(1)
2 + h

(2)
2 )〉, (64)

r(0) =
−πK

2
lim
D→0+

Re〈ψ̃, (h(1)
2 − h

(2)
2 )〉. (65)

Finally, the stability and direction of the bifurcation for the traveling wave and standing wave are deter-
mined by the cubic coefficients Pu and r. Ref. [37] provided the detailed bifurcation diagram for Hopf
bifurcations in the Pu− r parameter plane. Totally, there are six different types of bifurcation mechanisms.


