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Abstract—Code dissemination in a wireless sensor network
(WSN) is the process of propagating a new program image
or relevant commands to sensor nodes. As a WSN is usually
deployed in hostile environments, secure code dissemination is
and will continue to be a major concern. Most code dissemination
protocols are based on the centralized approach in which only
the base station has the authority to initiate code dissemination.
However, it is desirable and sometimes necessary to disseminate
code images in a distributed manner which allows multiple
authorized network users to simultaneously and directly update
code images on different nodes without involving the base
station. Motivated by this consideration, we develop a secure
and distributed code dissemination protocol named DiCode. A
salient feature of DiCode is its ability to resist denial-of-service
attacks which have severe consequences on network availability.
Further, the security properties of our protocol are demonstrated
by theoretical analysis. To verify the efficiency of the proposed
approach in practice, we also implement the proposed mechanism
in a network of resource-constrained sensor nodes.

Index Terms—Sensor networks, code dissemination, security,
denial-of-service, user privilege.

I. INTRODUCTION

CODE dissemination is the process of propagating a new
program image1 or relevant commands to sensor nodes

through wireless links after a wireless sensor network (WSN)
is deployed. Due to the need of removing bugs and adding new
functionalities, code dissemination is an important operation
function of WSNs. As a WSN is usually deployed in hostile
environments such as the battlefield, an adversary may exploit
the code dissemination mechanism to launch various attacks.
For example, the adversary may inject bogus code images to
take over the control of the whole WSN. Thus, secure code
dissemination is and will continue to be a major concern.

Several code dissemination protocols have been proposed
to propagate new code images in WSNs (e.g., [1]–[4]).
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throughout this paper.

Among these protocols, Deluge [2] is included in the TinyOS
distributions [5]. However, since the design of Deluge did
not take security into consideration, there have been several
extensions to Deluge to provide security protection for code
dissemination [6]–[12]. Among them, Seluge [12] enjoys both
strong security and high efficiency.

However, all these code dissemination protocols ( [2]–[4],
[6]–[12]) are based on the centralized approach which assumes
the existence of a base station and only the base station has the
authority to reprogram sensor nodes. As shown in Fig. 1(a),
when the base station wants to disseminate a new code image,
it broadcasts the signed code image and each sensor node
only accepts code images signed by it. Unfortunately, there
are WSNs having no base station at all. Examples of such
networks include a military WSN in a battlefield to monitor
enemy activity (e.g., troop movements), a WSN deployed
along an international border to monitor weapons smuggling
or human trafficking, and a WSN situated in a remote area
of a national park monitoring illegal activities (e.g., firearm
discharge, illicit crop cultivation). Having a base station in
these WSNs introduces a single point of failure and a very
attractive attack target. Obviously, the centralized approach is
not applicable to such WSNs. Also, the centralized approach
is inefficient, weakly scalable (i.e., inefficient for supporting
a large number of sensor nodes and users), and vulnerable to
some potential attacks along the long communication path.

Alternatively, a distributed approach can be employed for
code dissemination in WSNs. It allows multiple authorized
network users to simultaneously and directly update code
images on different nodes without involving the base station.
Another advantage of distributed code dissemination is that
different authorized users may be assigned different privileges
of reprogramming sensor nodes. This is especially important
in large scale WSNs owned by an owner and used by
different users from both public and private sectors [13],
[14]. Distributed service protocol in WSNs (e.g., decentralized
sensing [15]) is a research field that is getting increasingly
more attention. Very recently, an identity-based signature
scheme to achieve secure and distributed code dissemination is
proposed [16]. In this paper, we further extend this scheme in
three important aspects. Firstly, we consider denial-of-service
(DoS) attacks on code dissemination, which have severe
consequences on network availability, as well as propose and
implement two approaches to defeat DoS attacks. Secondly,
the proposed code dissemination protocol is based on a secure
and efficient proxy signature by warrant (PSW) technique,
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Fig. 1. A system overview of (a) centralized and (b) distributed reprogramming approaches.

which makes it stronger than the scheme of [16]. Thirdly, we
consider how to avoid reprogramming conflict and support
dynamic participation.

Similar to the centralized code dissemination protocols, a
secure distributed code dissemination protocol should satisfy
the following requirements: (1) Integrity of Code Images:
The source of a program image must be verified by a sensor
node prior to installation, ensuring that only a trusted source
can install a program. In addition, it must be possible to ensure
that a program has not been altered during its transmission.
(2) Freshness: An earlier version of a program image can-
not be installed over the program with the same or greater
version number, ensuring a node always installs the newest
version of a program image. (3) DoS Attacks Resistance:
A practical code dissemination mechanism should maintain
service availability even in the presence of DoS attacks [17].
(4) Node Compromise Tolerance: A compromised node must
be prevented from causing an uncompromised node to violate
the above security requirements.

Other than meeting the above requirements, a distributed
code dissemination protocol should also have the follow-
ing properties. (5) Distributed: Multiple authorized network
users are able to update code images on different nodes
simultaneously without involving the base station. At the
same time, the protocol should prevent unauthorized users
from updating sensor nodes. (6) Supporting Different User
Privileges: To ensure smooth functioning for a WSN, the
level of each user privilege should be limited by the network
owner. For example, a user is only allowed to reprogram the
nodes set with specified identities or/and within a particular
localized area during his/her subscription period. (7) Partial
Reprogram Capability: To prevent sensor nodes from being
totally controlled by network users, the special modules (e.g.,
authentication module for each new program image) on each
node cannot be overwritten by anyone except the network
owner. (8) Avoiding Reprogramming Conflicts: Multiple
users may be allowed to reprogram a node, which may
result in reprogramming conflicts. Some mechanisms should
be provided to avoid such conflicts. (9) User Traceability:

In most application scenarios, traceability is highly desir-
able, particularly for code dissemination, where it is used
for collecting the users’ activities for some purposes. (10)
Scalability: Firstly, the protocol needs to be efficient even
in a large-scale WSN with thousands of sensor nodes, and
secondly, the protocol should be able to support a large number
of users. (11) Dynamic Participation: New nodes can be
supplemented whenever they are needed, and the scheme
should allow dynamic addition of new users.

To satisfy the above requirements, we propose in this
paper a practical secure and distributed code dissemination
protocol named DiCode, which is built on the PSW technique.
Since the PSW was not originally designed for distributed
code dissemination, a direct application of the method cannot
satisfy requirements (3), (7), (8) and (11), which are very
challenging for ensuring feasibility, security and efficiency for
distributed code dissemination. To address these issues, some
additional mechanisms are incorporated into the design of
DiCode to enable it to achieve all requirements of distributed
code dissemination listed above, while keeping the merits of
both Deluge and Seluge.

We also implement the proposed protocol in a network
of MicaZ motes. Experimental results show its efficiency in
practice. This is also the first implemented DoS-resistant and
distributed code dissemination protocol for WSNs.

The rest of the paper is organized as follows. The network,
trust and threat models are summarized in Section II. DiCode
is presented in Section III in detail. Some approaches to defeat
DoS attacks are suggested in Section IV. Section V provides
theoretical analysis of the security of DiCode. Then in Sec-
tion VI, some important issues about DiCode are discussed.
Section VII describes the implementation and experimental
evaluation of DiCode in a network of MicaZ motes. Sec-
tion VIII concludes this paper.

II. NETWORK, TRUST AND THREAT MODELS

A. Network Model

As shown in Fig. 1(b), a WSN consists of a large number
of resource-constrained sensor nodes, many sensor network
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users and a single network owner. The network users use
mobile devices such as PDAs or laptop PCs to reprogram
the nodes. The network owner can be off-line, who has boot-
strapped the keying materials for the mobile devices to enforce
reprogramming privilege policy. It is assumed that the owner
cannot be compromised and has unlimited computational
power compared with sensor nodes. The nodes can perform
a limited number of asymmetric cryptographic operations
including signature verification in RSA, but they cannot afford
to perform many such operations due to their large energy
consumption. Note that all existing secure code dissemination
techniques [6]- [12] are based on public key cryptography
such as RSA. Also, many novel security techniques (e.g., [18])
based on public key cryptography have been proposed for
sensor networks. We assume Deluge as the underlying code
dissemination protocol. We also assume sensor nodes are
able to establish pair-wise keys between neighbor nodes, for
example, using the scheme of [19]. To enable each node to
check whether the subscription period of each authorize user
has expired, we assume there is a loose time synchronization
among the nodes with the help of some existing secure time
synchronization scheme [20].

B. Trust Model

The network owner delegates his/her code dissemination
privilege to the network users who are willing to register.
We assume the special modules (e.g., authentication module
for each new program image proposed in this paper, the
user access log module) reside in the bootloader section of
the program flash on each sensor node which cannot be
overwritten by anyone except the network owner. To achieve
this goal, some existing approaches can be employed such as
hardware-based approaches (e.g., security chips) and software-
based approaches (e.g., program code analysis [21]).

C. Threat Model

We assume that an adversary can launch both outsider
and insider attacks. In outsider attacks, the adversary does
not control any valid nodes in the WSN. The adversary
may eavesdrop, copy or replay the transmitted messages in
the WSN. He/she may also inject false messages or forge
non-existing links in the network by launching a wormhole
attack (e.g., [22]). With insider attacks, the adversary can com-
promise some users (or sensor nodes) and then inject forged
code dissemination packets, or exploit specific weakness of
the secure protocol architecture.

Additionally, the adversary may launch DoS attacks. The
adversary may jam the communication channel; however,
we assume that the adversary cannot constantly jam the
communication channel without being detected and removed.
As described in Section II.B, an authorized user cannot totally
control a node. However, the user may load malicious program
on some nodes. DiCode can provide user traceability, which
will be described in Section V. That is, a node can inform the
owner by delivering the identity of such a malicious user.

III. DICODE

Before giving the detailed description of DiCode, we first
discuss what kind of cryptographic techniques are suitable for
distributed code dissemination.

A. Cryptographic Techniques for Distributed Code Dissemi-
nation

Fig. 1(b) shows that a distributed code dissemination proto-
col consists of three kinds of participants, the network owner,
authorized network users and all sensor nodes. After the users
register to the owner, they can enter to the WSN and then
have pre-defined privileges to simultaneously and directly
reprogram the sensor nodes without involving the owner.

A naive solution is to pre-quip each node with multiple
public key/reprogramming privilege pairs, each of which
corresponds to one authorized user. This scheme allows a
user to sign a program image with his/her private key such
that each node can verify if the program image originates
from an authorized user. However, resource constraints on
sensor nodes often make it undesirable to implement such an
expensive algorithm. For example, in RSA-1024 public key
cryptosystem, the length of each public key is more than 1026
bits. Assuming that the length of reprogramming privilege
(including the valid periods of delegation and the nodes set
with specified identities or/and within a specific region) is 48
bytes, the length of each public key/reprogramming privilege
pair is more than 176 bytes. This means that not too many
public key/reprogramming privilege pairs can be stored in
a node. In this case, not too many users can be supported.
Moreover, it is clear that the network owner has no ability
to pre-define the reprogramming privileges of new users who
will join after the WSN deployment. Once a new user registers
to the network owner, the owner needs to sign a new public
key/reprogramming privilege pair and then broadcasts it to
all nodes. A more suitable approach is for each authorized
user to send a new program image to the nodes through a
standard group signature technique [23]. A group signature
scheme allows one member of the group to sign a message
such that any verifier can verify that the message originated
from a group member. Thus, only the group public key is
pre-loaded onto each sensor node. Unfortunately, a group
signature algorithm does not allow the network owner to
specify different reprogramming privileges for different users.

B. Overview of DiCode

In this paper, PSW is introduced into the design of DiCode.
This technique involves two kinds of participants, an original
signer and proxy signers. The original signer gives the proxy
signer a warrant, which specifies the identity of the proxy
signer, the identity of the original signer, the range of messages
to sign, the expiration time of the delegation of signing power,
etc. The proxy signer generates proxy signatures only with
the proxy signature key given by the original signer. Verifiers
validate proxy signatures only with the public key of the
original signer and pay attention to the legality of the warrant.
The detailed information about applying the PSW technique
into DiCode is as follows. The network owner plays the role
of original signer while the network users play the role of
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proxy signers. Through registration, the users obtain one or
more proxy signature keys from the network owner before
they enter a WSN. The key can subsequently be used to make
signature on a new code image sent to the sensor nodes. Thus,
authorized users generate valid code dissemination packets
only with the proxy signature keys given by the network
owner. The validity of each code dissemination packet can
be verified by any sensor node with the public key of the
network owner. In this way, the network owner can prevent
unauthorized program updates on sensor nodes and only the
public key of the network owner is pre-loaded on each node.
However, we notice that a direct application of the PSW
algorithms is still unable to meet requirements (3), (7), (8) and
(11) of a distributed code dissemination protocol. To address
these issues, some additional mechanisms are incorporated
into the design of DiCode.

Dozens of PSW schemes have been proposed since 1996.
However, some proposed PSW schemes are questionable in
the security assurance. Moreover, most of the reported PSW
schemes (e.g., [24]) take very long time to verify a signature,
which is critical for resource-limited WSNs. Therefore, after
a thorough evaluation, we choose the PSW scheme that was
introduced by Shao [25], which is secure and considered to
be best suited to the WSN application. However, as described
above, any other secure and effective PSW technique can be
applied easily in our protocol.

Referring to Fig. 1(b), DiCode consists of three phases,
system initialization, user pre-processing, and sensor node
verification. For our basic protocol, in system initialization
phase, the network owner as the original signer creates its
public and private keys and then delivers one or more proxy
signature keys to the authorized users. Only the network
owner’s public key is loaded on each node before deployment.
In user pre-processing phase, if a user enters to the WSN and
has a new program image, he/she will need to construct the
code dissemination packets and then send them to the nodes.
In sensor node verification phase, if the packets verification
passes then the nodes accept the program image. Based on
the basic protocol, our improved protocol goes one step
further by providing the functionalities of limiting the number
of reprogramming times of each authorized user and more
efficient DoS attack resistance, which are demanded by some
WSN application scenarios. The detailed description of each
phase is as follows.

C. The Basic Protocol

1) System Initialization: In this phase, the network owner
executes the following steps:

a) Randomly pick two large safe primes p and q, and
compute a public modulus n = pq. Then the network owner
chooses a public one-way hash function h().

b) Choose a pair of integers e and d satisfying the properties
e·d≡1 (modφ(n)) and d is a large positive number, where
φ(n) is the Euler-Totient function and e should be larger than
the output of the one-way hash function h(). Thus, the network
owner creates its RSA public/private key pair as {n, e} and d.

c) Choose the identity UIDj for the jth network user
in advance, where 1≤j≤M . Here we assume that the total

number of users is M , which should be set according to the
specific application scenario. Here the bit length of the identity
of each network user is set to 8. Only the public key of the
network owner is pre-loaded on each node before deployment.

d) We assume a user Uj registers to the network owner.
After verifying his/her registration information, the network
owner assigns an identity, say UIDj , for him. Then the
network owner computes a proxy signature key υj for user
Uj , which is given by

υj≡[h(mw)]
−d (modn) (1)

Here n is the public modulus defined earlier. The warrant mw

records UIDj , the identity of the network owner and the user
privilege such as the sensor nodes set with specified identities
or/and within a specific region that user Uj is allowed to
reprogram, and valid periods of delegation (i.e., the beginning
time and the end time). Note that equation (1) involves
modular exponentiation with a negative exponent, which can
be performed by finding the modular multiplicative inverse
u of h(mw) modulo n using the extended Euclidean algo-
rithm. That is, υj≡[h(mw)]

−d (modn)≡ud (modn), where
h(mw)·u≡1(modn). It should be noted that the multiplicative
inverse u of h(mw) modulo n exists if and only if h(mw)
and n are coprime (i.e.,gcd(h(mw), n) = 1). To ensure the
existence of u, a feasible approach is when the network owner
computes mw for a user, redundant bits may be appended into
mw such that h(mw) and n are coprime.

Fig. 2 shows an example of the format of the warrant mw

in DiCode. Here we assume that the length of the warrant
mw is 32 bytes. In future applications, the network users may
be allowed to update the program images by involving the
specified types of sensor data (e.g., humidity, light, temper-
ature). In that case, the reserved field of mw may contain
the sensor types set which user Uj is allowed to reprogram.
For example, the first bit represents the light. If the bit is
“1”, it indicates that the light sensor can be activated by the
network user. Additionally, we observe that in some of the
existing reprogramming protocols (e.g., [4]), the code image
on each sensor node is divided into multiple modules, each of
which corresponds to different functionality. Thus, in DiCode,
the network owner can define the reprogramming privilege of
each user according to different functionality. Of course, any
other simple ways to specify the reprogramming privilege can
be applied easily here.

Taking the lengths of mw and n (= p×q) as 32 bytes
and 1024 bits, respectively, we carry out the experiment of
coprime checking on desktop PCs with 2.4 GHz processor.
The experimental results show that 1 byte of redundancy data
is enough, and the search of appropriate redundancy data is
very fast (i.e., the execution time is 3 μs). In our experiment,
the same execution is run for 10-thousand times, and mw, p,
and q are randomly chosen for each time.

e) For each user Uj , the network owner returns the message
{υj ,mw} using a secure transmission protocol, such as the
wired Transport Layer Security (TLS) protocol. Afterward,
Uj can verify the proxy signature key υj by checking if
equation (2) is satisfied:
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Fig. 2. An example of the format of the warrant mw in DiCode. The byte size of each field is indicated below the label.

υj
eh(mw)≡1 (modn) (2)

Because υj≡ud (modn), u≡υj
e (modn),

u≡h(mw)
−1

(modn), υj
e (modn)≡h(mw)

−1
(modn).

2) User Pre-processing: Assume that user Uj enters to the
WSN and has a new program image. Uj takes the following
actions:

a) Uj partitions the program image to P fixed-size pages,
denoted as page 1 through page P . Uj splits page i (1≤i≤P )
into N fixed-size packets, denoted as Pkti,1 through Pkti,N .
The hash value of each packet in page P is appended to
the corresponding packet in page P − 1. For example, the
hash value of packet PktP,1, h(PktP,1), is included in packet
PktP−1,1. Here PktP,1 presents the first packet of page P .
Similarly, the hash value of each packet in page P − 1 is
included in the corresponding packet in page P − 2. This
process continues until Uj finishes hashing all the packets in
page 2 and including their hash values in the corresponding
packets in page 1. Then a Merkle hash tree [26] is used to
facilitate the authentication of the hash values of the packets
in page 1. We refer to the packets related to this Merkle
hash tree collectively as page 0. The root of the Merkle
hash tree, the meta data about the code image (e.g., version
number, targeted node identities set, program image size),
and a signature over all of them are included in a signature
message. The detailed information can be referred to [12].
Here we assume that the message m represents the root of
the Merkle hash tree and the meta data about the code image.
Essentially, the message m contains security bootstrap header,
which an authorized user sends to bootstrap the authentication
procedure. An example format of the message m is depicted in
Fig. 3. Note that in order to support a variety of applications,
the formats and lengths of the message m and the warrant mw

in DiCode should be set according to the specified application
scenario. Here the targeted node identities set field indicates
the identities of the sensor nodes which the user wishes to
reprogram. We assume that the length of the identity of each
sensor node is 2 bytes. Obviously, the targeted node identities
set field is set according to the warrant mw of the user.

Then Uj takes the following actions to construct the signa-
ture message:

b) Uj randomly chooses an integer t∈[1, n] and computes
r = te (modn).

c) With the message m, Uj computes k = h(m‖r).
d) Uj computes y = tυj

k (modn). Thus, Uj generates
the signature message {m,mw, y, k}, which serves as the
notification of the new code image.

Note that there are two different cases for user Uj to
reprogram the nodes. One case is that Uj wants to reprogram
one or more particular sensor nodes, say {S1, ..., Sv}, with
identities {ID1, ..., IDv}. Here v≥1. We assume that sensor

nodes do not know their geographical locations. Obviously,
this assumption makes DiCode more applicable in the real
world. In this case, the identities are added into the targeted
node identities set field of m. As will be proved in Section V,
the integrity of the message m (including the identities of
the targeted nodes) can be ensured by proxy-unprotected
signature. Therefore, no adversary can modify the identities
and then pass the verification of any sensor node. Of course,
reprogramming all nodes via broadcast also belongs to this
case. Referring to Fig. 3, by setting the targeted node identities
set field to “0”, it indicates that Uj wants to reprogram all
nodes. The other case is that Uj wants to reprogram the
nodes in a specific region. We assume that the nodes know
their geographical locations which can be acquired via deploy-
ment knowledge or many existing secure localization schemes
(e.g., [22]). In this case, Uj needs to add the information about
the specific region into the targeted node identities set field of
m.

3) Sensor Node Verification: Upon receiving a signature
message {m,mw, y, k}, each sensor node verifies it as fol-
lows:

a) The node firstly pays attention to the legality of the
warrant mw and the message m. For example, the node needs
to check whether the identity of itself is included in the node
identities set of the warrant mw. Also, according to the valid
periods of delegation field of warrant mw, the node can check
whether reprogramming service to a user is expired. Only if
they are valid, the verification procedure goes to the next step.

b) The sensor node computes r∗ = yeh(mw)
k (modn).

c) The sensor node checks whether h(m‖r∗) = k. Because

υe
j = h(mw)

−1 (modn),

r∗ = teυke
j h(mw)

k = te = r (modn)

Thus, h(m‖r∗) = h(m‖r) = k.

If the above verification passes, the node believes that the
message m and the warrant mw are from an authorized user.
Hence the node accepts the root of the Merkle hash tree
constructed for page 0. Thus, the node can authenticate the
hash packets in page 0 once it receives such packets, based
on the security of Merkle hash tree. The hash packets include
the hash values of the data packets in page 1. Therefore, after
verifying the hash packets, a node can easily verify the data
packets in page 1 based on the one-way property of hash
functions. Likewise, the data packets in page i have been
verified, a node can easily authenticate the data packets in
page i+ 1, where i = 1, 2, . . ., P − 1. Only if all verification
procedures described above pass, the sensor node accepts the
code image.
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Fig. 3. An example of the format of the message m of DiCode. The byte size of each field is indicated below the label.
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IV. SOME APPROACHES TO COMPLEMENT THE BASIC

PROTOCOL FOR RESISTING DOS ATTACKS

Similar to most secure centralized schemes of [6]–[12],
DiCode uses a digital signature technique for the authenti-
cation of the program image. This signature is vulnerable to
DoS attacks. That is, the adversary may flood a large number
of illegal signature messages to the nodes to exhaust their
resources and render them less capable of serving legitimate
users. To prevent the attacks, message specific puzzle and the
improved message specific puzzle are described here, which
can complement the basic protocol of DiCode. We assume the
entire network is partitioned into a set of regions. Each sensor
node belongs to exactly one region and a region may contain
multiple nodes. The size of a region is application specific and
sufficiently small to support the distributed reprogramming
resolution. For reducing communication costs we choose to
elect region (cluster) heads. That is, each region has a head
sensor node which is responsible for generating a puzzle and
then distributing it to all other nodes of the region.

A. Message Specific Puzzle Approach

To prevent the attacks, we adopt message specific puzzle
(also called client puzzles) of [27] into DiCode. The idea
is summarized as follows. In the system initialization phase,
the network owner sets a threshold for user reprogramming
rate. When there is no evidence of such an attack, each
sensor node processes the signature messages normally, that
is, indiscriminately. On the other hand, once a node finds
the rate of incoming signature message is more than the
threshold, it believes that it is under a DoS attack and only
performs verification on signature messages selectively. In
particular, the node attaches a unique puzzle into the beacon
messages which is periodically broadcasted to declare service
existence, and requires the solution of the puzzle to be at-
tached in each signature message. The node commits resources
to process a signature message only when the solution is
correct. In general, solving a puzzle requires a brute-force
search in the solution space, while solution verification is
very fast. Additionally, puzzles are deployed in conjunction
with conventional time-outs on node resources. Thus, in order
to create an interruption in service, an adversary must have

abundant resources to be able to promptly compute a large
enough number of puzzle solutions in line with his sending
rate of illegal signature messages. In contrast, although puzzles
slightly increase legitimate users’ computational load, they
are still able to obtain reprogramming services regardless the
existence of the attack. To incorporate this method into our
protocol, we add a MESSAGE SPECIFIC PUZZLE flag in the
beacon messages. If a node, say Sv , is not under attack, it sets
the MESSAGE SPECIFIC PUZZLE flag to “No”. It indicates
to the users that no puzzles are being distributed. And our
basic protocol is executed normally. If Sv is under attack, it
sets the MESSAGE SPECIFIC PUZZLE flag to “Yes”, and
adds a puzzle (i.e., a timestamp Tv, a random number a and
an integer l) into the beacon messages. In order to update the
program on Sv, a user must solve the puzzle within a specified
time interval. A valid solution Li is such a value that after
applying the hash function h() to (m‖mw‖y‖k‖Tv‖a‖Li), the
first l bits of the resulting image are all “0”, as illustrated in
Fig. 4. The parameter l determines the strength of the puzzle.
Before transmitting the signature message {m,mw, y, k}, a
user first tries to solve the puzzle by finding the puzzle solution
Li. Subsequently, the user sends the final signature message
{m,mw, y, k, Tv, a, Li} to Sv. Obviously, the puzzle solution
in every signature message can be efficiently verified by Sv

via a hash function operation and comparison. Only if this
verification is successful, Sv performs expensive verification
on the signature message {m,mw, y, k}.

B. An Improved Message Specific Puzzle Approach

To provide a more effective message specific puzzle ap-
proach, we can make use of the one-way hash chain [28].
However, this requires more changes to the basic protocol of
DiCode. For brevity, we just present the parts that need to be
changed.

1) System Initialization: c) In addition to the activity
described in step c) of the system initialization phase of
the basic protocol, the network owner generates M one-
way key chains. A one way key chain is based on a public
cryptographic hash function h(), which is easy to compute but
computationally hard to invert. A key chain with length b is
generated by applying h() on the initial selected element Kbj

repeatedly b times. The last output of applying h() b times, is
called the committed value of the key chain. In DiCode, the
length (i.e., b) of every key chain must be exactly the number
of times the respective user Uj is allowed to reprogram the
sensor nodes. For user Uj , the ith element in the hash chain
is denoted as Kij . Then we have Kij = h(K(i+1)j), 0≤i≤b.
Here a key chain is not only used to limit the number of
reprogramming times, but also generate a message specific
puzzle to mitigate DoS attacks against signature messages.
The detailed description will be given in the following. The
mapping table between the jth user’s identity UIDj and
the committed value of the corresponding key chain K0j
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Fig. 5. The Improved Message specific puzzle.

(UIDj↔K0j) are pre-loaded on every sensor node, where
1≤j≤M . As the output of a hash function (e.g., SHA-1), the
byte length of K0j is 20.

e) In addition to the message transmitted by step e) of the
system initialization phase of our basic protocol, the network
owner delivers Kbj to user Uj using the wired TLS protocol.

2) User Pre-processing: d) In addition to the activity
described in step d) of the user pre-processing phase of the
basic protocol, user Uj does b − i hash operations on the
value Kbj , and obtains Kij , and then uses it to generate a
puzzle. As described in Section III.C.2).d, here we consider
the signature message of version i code image, denoted as
{m,mw, y, k}. The signature message {m,mw, y, k} and the
puzzle key Kij constitute a message specific puzzle. A valid
solution Li is such a value that after applying the hash function
h() to (m‖mw‖y‖k‖Kij‖Li), the first l bits of the resulting
image are all “0”, as illustrated in Fig. 5. The parameter l
determines the strength of the puzzle. Before transmitting the
signature message, user Uj first tries to solve the puzzle by
finding the puzzle solution Li. Subsequently, user Uj sends the
finial signature message {m,mw, y, k,Kij , Li} to the nodes.

3) Sensor Verification: a) As step a) of the sensor ver-
ification phase of the basic protocol, if the warrant mw

and the message m are valid, the sensor node obtains the
identity UIDj of user Uj from the warrant mw. According
to UIDj , the node can extract the corresponding puzzle key
K(i−1)j from its memory. Thus the node can verify whether
the received puzzle key Kij is valid by comparing whether
h(Kij) equals K(i−1)j . At the same time, the node needs
to confirm that Kij has not been used along with a valid
signature message before. Only if these two verifications are
successful, the node replaces K(i−1)j with Kij . If the puzzle
solution is valid, the node goes to the next step. Therefore,
without first solving some message specific puzzles with a
fresh puzzle key, the adversary cannot force a node to verify
signatures in forged messages. Also, in the above procedure,
since the node replaces K(i−1)j with Kij for each successful
verification and does just one hash operation for comparison,
an adversary cannot claim a puzzle key close to the end of
key chain and fool the node to perform a large number of
unnecessary hash operations, causing a DoS attack.

Compared to the message puzzle approach presented in
Section IV.A, this improved approach can more effectively
mitigate DoS attacks against signature message, especially
in some application scenarios where the adversary and a
legitimate user may be incomparable in computation power.

This is because that although it takes the same effort for
both an authorized user and adversary to solve a puzzle, the
authorized user has a clear advantage over the adversary due
to the prior knowledge of the puzzle keys. The authorized user
has enough time to solve a puzzle off-line before disseminating
a new code image. In contrast, the adversary has a very tight
time limit of solving the puzzle; it cannot begin to solve
the puzzle until it has intercepted the puzzle key when the
user transmits the signature massage, but has to finish solving
the puzzle before the puzzle key becomes invalid when the
signature message reaches the targeted sensor nodes. Although
this improved approach requires the mapping table to be stored
on each node and the scale of the mapping table increases
linearly with the number of authorized users, the evaluation
results in Section VII.B will show that this improved approach
is able to support a large number of users.

Note that the proposed approach is also robust against
distributed DoS attacks with multiple collaborative attackers
in two aspects. Firstly, because each sensor node can detect
DoS attacks, the attacked node(s) can marshal the aid of other
legitimate nodes and impose filters to discard the attacking
traffic closer to its point of origin. Secondly, all sensor nodes
will notify the network owner of each distributed DoS attack.
Thus, the network owner can analyze all attacks and then take
some more effective measures.

V. SECURITY ANALYSIS OF DICODE

In the following, we will analyze the security of DiCode to
verify that the security requirements mentioned in Section I
are satisfied.

Integrity of Code Images: In DiCode, an authorized
network user uses a digital signature technique (more exactly,
proxy-unprotected signature by warrant) to authenticate the
root of the Merkle hash tree in page 0, with the proxy signature
key only known to himself/herself and the network owner. All
the sensor nodes know the public key of the network owner,
and thus can verify the signature message. Under the assump-
tion that the adversary cannot compromise the network owner,
it is guaranteed that all sensor nodes can authenticate any
received signature message as well as the root of the Merkle
hash tree contained there. As described in Section III.C.3, if
an adversary injects a forged modified program image, each
receiving node can detect it easily because of the (immediate)
authentication of code dissemination packets.

Ensurance of Freshness: Similar to [16], there are two
cases for the users to administrate the program update of a
WSN. In the first case, each user has the privilege to reprogram
the nodes in different zones (or different sets of sensor nodes
according to their identities) and there exists no node which
is allowed to be reprogrammed by two users. In step a) of the
sensor node verification phase, a node first checks whether
the version number from the received signature message is
valid. Only if it is valid, the verification procedure goes to
the next step. Therefore, the use of the version number of the
updated program image can ensure the freshness of DiCode.
The other case is that a node may be assigned to multiple users
by the network owner. A feasible approach is that a timestamp
is used instead of the version number of the updated code
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image. In step a) of the sensor node verification phase, a node
first checks whether the timestamp included in the message m
is fresh. This can ensure that a node always installs the most
recent version of a program. More information about this issue
will be given in Section VI.A.

Resistance to DoS Attacks: As described in [12], there
are three types of DoS attacks against Deluge-based code
dissemination: One is DoS attacks exploiting authentication
delays, another is DoS attacks exploiting the expensive sig-
nature verifications, and the other is DoS attacks exploiting
the Deluge propagation and suppression mechanisms. Since
DiCode is a secure extension to Deluge, these attacks are also
applicable in DiCode.

Because of the page-by-page dissemination strategy, Di-
Code can immediately authenticate any packet it receives in
the current page, and successfully prevent from DoS attacks
exploiting authentication delays. Further, due to the use of
message specific puzzles, each node can perform an efficient
hash function operation and comparison to detect fake sig-
nature message. Therefore, DiCode provides the resistance to
DoS attacks exploiting the expensive signature verifications.
Finally, similar to Seluge, DiCode uses cluster keys to au-
thenticate each advertisement or SNACK packet. As a result,
an adversary cannot convince regular nodes to misuse the
propagation or suppression mechanisms. For a more detailed
analysis, readers are referred to [12].

Resistance to Node Compromised Attack: As described
in Section IV.B, even for the improved protocol, only the
public key of the network owner and the mapping table
(UIDj↔K0j) are pre-loaded on every sensor node, where
1≤j≤M . That is, even if an adversary compromises some
sensor nodes, the adversary just obtains the public key of the
network owner and the mapping table (UIDj↔K0j). Thus,
the adversary cannot impersonate any authorized network user
by compromising sensor nodes.

Distributed: As described in Sections III.C, in order to
pass the signature verification of sensor nodes, each user has
to obtain a proxy signature key from the network owner. In
addition, it is clear that the authorized users are able to carry
out code dissemination in a distributed manner.

Supporting Different User Privileges: The network owner
can restrict each network user’s activities by defining the
warrant mw, which records the user privilege. Because every
proxy signature key is generated based on the corresponding
warrant mw, nobody except the network owner can modify
the user privilege included in the warrant mw and then pass
the signature verification from the sensor nodes. Moreover, by
introducing the key chain, the number of times each user is
allowed to reprogram the sensor nodes is limited.

User Traceability: In DiCode, a node obtains the identity of
a user from the warrant mw included in the signature message,
and then informs the network owner the reprogramming
activity of the user through submitting the signature message
{m,mw, y, k}. Visits by the network owner are sporadic.
Consequently, sensor nodes must accumulate the records in
situ and wait for an explicit upload signal. Alternatively, there
are also hybrid WSNs where the set of nodes, in addition
to sensors, includes some small number of collector nodes,
each serving as a temporary repository of the reprogramming

records for their constituent sensors. The network owner
later obtains the records directly from the collector nodes.
Since every proxy signature key is generated based on the
corresponding warrant mw, nobody except the network owner
can modify the identity of the network user included in the
warrant mw and then pass the signature verification from the
network owner. Also, without knowing the proxy signature
key of a user, the adversary (including some compromised
sensor nodes) cannot modify the user identity information
in signature messages. Therefore, DiCode can provide user
traceability.

Note that each node only submits the whole signature
messages to the network owner, without explicitly stating
whether a network user is adversary. Thus, bad-mouthing
attack cannot be launched by compromised sensor nodes.
Though the network owner needs to go through the same
procedure as the sensor node verification, it will not be over-
loaded for two reasons. Firstly, experimental results described
in Section VII have shown that the signature verification
cost is low even for resource-limited sensor nodes such as
MicaZ motes. Since the network owner usually has much
more processing power, it is thus able to verify a large
number of signature messages forwarded by sensor nodes.
Secondly, in real-world applications, it is desirable for a WSN
to have a long lifetime but reprogramming is an operation
with high energy consumption. Therefore, it is expected that
reprogramming frequency is low.

VI. DISCUSSION

So far, we have elaborated the operations of DiCode. By
the protocol, we can achieve secure and distributed code
dissemination. However, some important issues need further
discussion.

A. Avoiding Reprogramming Conflicts

When multiple users are allowed to reprogram a node, some
approaches should be employed as follows. In the user pre-
processing phase, each network user, say Uj , needs to add
the chosen TP to every updated program image, where TP

denotes the time duration that a node will be occupied for
reprogramming. Therefore, during this period, only user Uj is
permitted to reprogram the nodes. Here TP must be less than a
fixed number, which is set by the network owner and then pre-
loaded on each node. Generally, a user needs to reprogram a
set of nodes which may only be available at different time. Our
protocol allows a user to execute the reprogramming of nodes
individually, without waiting for all nodes to be available.

B. Dynamic Participation

1) New User Joining Phase: This phase is invoked when a
user, say Uj+1, hopes to obtain code dissemination privilege
after the network is deployed. Here we consider the improved
protocol, as described in Section IV.B, when user Uj+1

registers to the network owner, the network owner chooses an
identity, say UIDj+1, and the respective key chain. Then the
network owner computes a proxy signature key υj+1 for user
Uj+1. As before, the warrant mw records the identity UIDj+1
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TABLE I
THE CODE SIZE OF VERIFICATION IMPLEMENTATION OF SIGNATURE

MESSAGES IN DICODE

The length of n (bits) 1024 768 512
Code size on ROM (bytes) 40,840 40,572 40,316
Code size on RAM (bytes) 1,572 1,334 1,096

TABLE II
THE WHOLE CODE SIZE ON MICAZ

ROM RAM
Deluge (bytes) 50,562 673
Seluge (bytes) 92,642 2,556

DiCode (n=1024 bits) (bytes) 75,222 2,931
DiCode (n=768 bits) (bytes) 74,960 2,675
DiCode (n=512 bits) (bytes) 74,706 2,419

of user Uj+1 and the user privilege. Subsequently, the network
owner delivers the message {υj+1,mw,Kn(j+1)} to user
Uj+1 using the wired TLS protocol. Note that the mapping
information (UIDj+1↔K0(j+1)) has been pre-loaded in each
sensor node. Now this new user Uj+1 can reprogram the
sensor nodes. For the basic protocol, in this phase, the network
owner just needs to transmit the message {υj+1,mw} to user
Uj+1 using the wired TLS protocol.

2) Adding New Node Phase: This phase is invoked when
a new node, say Sw+1, is to be added into the network by
the network owner. For the basic protocol, the public key of
the network owner is preloaded on Sw+1. For the improved
protocol, the public key of the network owner and the mapping
table (UIDj↔K0j) needs to be preloaded on Sw+1, where
1≤j≤M . After that, Sw+1 can be deployed in the network.

Additionally, when a network user leaves the system or
has his/her privilege updated, whether the old warrant should
be invalidated or not should be set according the specific
application. If it does not need to be invalidated, it is clear that
no extra processing is needed. Otherwise, the network owner
needs to notify the related sensor nodes (i.e., these nodes’
identities have been included in the targeted node identities
set field of the old warrant).

VII. IMPLEMENTATION AND PERFORMANCE EVALUATION

We evaluate DiCode by implementing all components on
an experimental test-bed. Since it has been demonstrated that
Seluge [12] exceeds the security and efficiencies of other
centralized code dissemination techniques, here we choose
Seluge for performance comparison.

A. Implementation and Experimental Setup

Our implementation has the network owner, network user
and sensor node side programs. The owner side programs
are C programs using OpenSSL [29] running on a 3.2 GHz
desktop PC. The network user side programs are C programs
using OpenSSL running on a 2.4 GHz laptop PC. In addition,
the sensor node side programs are written in nesC and runs on
MicaZ motes. Each MicaZ platform uses an ATmega128 CPU
that operates at 7.7 MHz. Our MicaZ motes run TinyOS [5]
version 1.x. We use an indoor test-bed consisting of MicaZ
motes to evaluate the efficiency of DiCode.

We add the following functionalities in the Java tools on the
network user side: Computation of the hash values of the data

TABLE III
THE EXECUTION TIME FOR EACH PHASE OF DICODE

The length of n (bits) 1024 768 512
Proxy signature key generation (ms) 9.7 4.4 1.8
Proxy signature key verification (ms) 1.8 1.2 0.5

Proxy signing (ms) 3.3 2.2 1.0
Verifying a puzzle solution(ms) 32.2 27.6 23.0

Signature verification (s) 19.3 7.4 3.6
System initialization (ms) 5.5 1.7 0.6

packets from the last to the first page, construction of page
0 (i.e., Merkle hash tree) and hashing packets from the hash
values of the page 1, and construction of the proxy signature
message from the root of the Merkle hash tree and the meta
data of the program image. We include the message specific
puzzle method developed in both the Java tools and the sensor
programs. When a network user generates a message specific
puzzle, the lengths of Tv, a and Li are assumed to be 2, 2,
and 4 bytes, respectively.

We modify the PacketVerifier module of the Seluge nesC li-
brary to perform verification of signature messages (including
both puzzle and proxy signature verification), hash packets,
and data packets. The public key of the network owner is
generated by OpenSSL [29], and then pre-distributed to all
sensor nodes. The pairwise keys used to distribute cluster keys
and the mapping table (UIDj↔K0j) are also pre-distributed
to all nodes. The h() used throughout DiCode is SHA-1.

B. Evaluation Results

We use the memory overhead, execution time and prop-
agation delay to evaluate DiCode. The memory overhead
measures the exact amount of data space required in the real
implementation. Similarly, the execution time measures the
time duration for each operation of DiCode. The propagation
delay is the time required to finish disseminating a code image
to all the nodes in the network. Table I shows the code size of
verification implementation of signature message in DiCode.
Among this code, the parameters (e.g., public key {n, e} and
proxy signature {y, k}) take a lot of memory space.

Table II shows the ROM and RAM usages of DiCode on
MicaZ motes. The code size of Deluge and Seluge are also
included for reference purposes. It is clear that DiCode takes
less ROM than Seluge. Note that in the improved protocol,
the mapping table (UIDj↔K0j) is pre-loaded in each sensor
node. We assume that the byte lengths of UIDj and K0j are
1 and 20, respectively. Therefore, assuming that the improved
protocol supports 1,000 network users, the code size of the
mapping table is about 20 KB.

Table III gives the execution time of each operation in
DiCode when the length of the parameter modulus n varies.
Here system initialization indicates the generation of the
network owner’s public key and private key. As shown in
Table III, the time for proxy signing on 2.4 GHz laptop PC
is 3.3 ms when the length of n is 1024 bits. Considering the
clock frequency of a typical PDA is more than 1 GHz, our
protocol is efficient for most of mobile devices (e.g., laptop
PCs or PDAs). Note that for the cryptographic operations on
desktop PC and laptop PC, we perform the same operation one
thousand times and take an average over them. It is easy to see
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TABLE IV
THE EXECUTION TIME FOR SOLVING BASIC AND IMPROVED MESSAGE-SPECIFIC PUZZLES IN DICODE

The length of n (bits) 1024 768 512
basic improved basic improved basic improved

The execution time (l=16)(s) 0.081 0.084 0.078 0.079 0.062 0.063
The execution time (l=18)(s) 0.327 0.328 0.318 0.322 0.241 0.248
The execution time (l=20)(s) 1.297 1.326 1.257 1.295 0.979 1.009
The execution time (l=22)(s) 5.099 5.156 5.005 5.119 3.938 3.971
The execution time (l=23)(s) 10.309 10.399 10.299 10.386 7.806 7.819
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Fig. 6. Propagation delay comparison of three mechanisms.

that verifying a puzzle solution at a receiver (i.e., MicaZ mote)
is extremely efficient. For example, the time for verifying a
message-specific puzzle on a MicaZ mote is 27.6 ms when
the length of n is 768 bits. Our experiments show that the
time for signature verification on a MicaZ mote is 7.4 seconds
when the length of n is 768 bits. Note that the proportion of
this signature verification time in the total code dissemination
time is very small. Considering Seluge as an example, the
total code dissemination time for a 40-KByte program image
is longer than 380 seconds in a WSN consisting of 65 MicaZ
nodes. Further, the signature verification time of DiCode takes
less than 2% of the total dissemination time. Considering
the benefits that DiCode provides, this time consumption is
acceptable.

Table IV gives the time required to solve the basic and
improved message-specific puzzles for different length of n
in OpenSSL implementation. For example, the time required
to solve a basic puzzle and an improved puzzle are 5.005
seconds and 5.119 seconds, respectively, when the parameter
l is set to 22 and the bit length of n is 768. As described
in Section IV, these time consumptions are enough to defeat
DoS attacks. Moreover, since the improved puzzle imposes a
very tight time constraint for adversaries to obtain the puzzle
solution, it is much more effective to mitigate DoS attacks than
the basic puzzle even though they require similar computation
time to obtain puzzle solutions.

To further investigate the impact of signature verification
on the propagation delay of code dissemination in multi-
hop networks, a multi-hop experiment was conducted. In this
experiment, 6 MicaZ motes were deployed in a line with the
same intervals, where a code image is propagated from one

side to the other side. Here the length of n is set to 768 bits.
Fig. 6 shows the propagation delays of Deluge, Seluge and
DiCode measured from the experiment. As the code image
size increases, the propagation delays of all schemes increase
almost linearly. From Fig. 6, it is concluded that the signature
verification by sensor nodes in DiCode only has low impact
on the propagation delay of code dissemination. For example,
when the code size of a program is 20-KByte, propagation
delay of DiCode is only 4.5% more than that of Deluge. This
is because upon receiving the signature packet, each sensor
node can start to check the validity of the signature packet.
At the same time, it transmits the packet to next-hop node.
Considering the security benefits that DiCode provides, this
cost is acceptable.

Researchers have justified [30] that when a sensor node’s
radio is always on during the code dissemination process, the
energy consumption of the node depends chiefly on the com-
pletion time (i.e., propagation delay). The above experiment
shows that the energy overhead of DiCode is similar to Deluge
or Seluge.

VIII. CONCLUSION

In this paper, a distributed and DoS-resistant code dissem-
ination protocol named DiCode has been proposed. Besides
analyzing the security of DiCode, this paper has also reported
the evaluation results of DiCode in a network of resource-
limited sensor nodes, which shows the efficiency of our
protocol in practice. We believe the performance can be
improved by using more powerful sensor node (e.g., Imote2
has 416 MHz processor). To the best of our knowledge, until
now our protocol is the only one that allows authorized users
to reprogram sensor nodes in a DoS-resistant and distributed
manner.
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