
5348 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 60, NO. 11, NOVEMBER 2013

Security Analysis and Improvement of a Secure and
Distributed Reprogramming Protocol for

Wireless Sensor Networks
Daojing He, Student Member, IEEE, Chun Chen, Member, IEEE, Sammy Chan, Member, IEEE,

Jiajun Bu, Member, IEEE, and Laurence T. Yang, Member, IEEE

Abstract—Wireless reprogramming in a wireless sensor net-
work (WSN) is the process of propagating a new code image or
relevant commands to sensor nodes. As a WSN is usually deployed
in hostile environments, secure reprogramming is and will con-
tinue to be a major concern. While all existing insecure/secure
reprogramming protocols are based on the centralized approach,
it is important to support distributed reprogramming in which
multiple authorized network users can simultaneously and di-
rectly reprogram sensor nodes without involving the base station.
Very recently, a novel secure and distributed reprogramming
protocol named SDRP has been proposed, which is the first work
of its kind. However, in this paper, we identify an inherent design
weakness in the user preprocessing phase of SDRP and demon-
strate that it is vulnerable to an impersonation attack by which an
adversary can easily impersonate any authorized user to carry out
reprogramming. Subsequently, we propose a simple modification
to fix the identified security problem without losing any features
of SDRP. Our experimental results demonstrate that it is possible
to eliminate the design weakness by adding 1-B redundant data
and that the execution time of the suggested solution in a 1.6-GHz
laptop PC is no more than 1 ms. Therefore, our solution is feasible
and secure for real-world applications. Moreover, we show that,
in order to further improve the security and efficiency of SDRP,
any better established identity-based signature algorithm can be
directly employed in SDRP. Based on implementation results, we
demonstrate efficiency improvement over the original SDRP.

Index Terms—Reprogramming, security, sensor networks, user
privilege.

I. INTRODUCTION

W IRELESS reprogramming is the process of propagating
a new code image or relevant commands to sensor

Manuscript received May 4, 2012; revised August 7, 2012; accepted
August 17, 2012. Date of publication September 12, 2012; date of current
version June 6, 2013. This work was supported in part by the National Science
Foundation of China under Grant 61070155, by the Program for New Century
Excellent Talents in University under Grant NCET-09-0685, and by a grant
from the Research Grants Council of Hong Kong (Project CityU 111208). The
work of L. T. Yang was supported by the Natural Sciences and Engineering
Research Council of Canada and the Canada Foundation for Innovation.

D. He, C. Chen, and J. Bu are with the Zhejiang Provincial Key Lab-
oratory of Service Robot, College of Computer Science, Zhejiang Univer-
sity, Hangzhou 310027, China (e-mail: hedaojinghit@gmail.com; chenc@cs.
zju.edu.cn; bjj@zju.edu.cn).

S. Chan is with the Department of Electronic Engineering, City University
of Hong Kong, Kowloon, Hong Kong (e-mail: eeschan@cityu.edu.hk).

L. T. Yang is with the School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China, and
also with the Department of Computer Science, St. Francis Xavier University,
Antigonish, NS B2G 2W5, Canada (e-mail: ltyang@stfx.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2012.2218562

nodes through wireless links after a wireless sensor network
(WSN) is deployed. Due to the need of removing bugs and
adding new functionalities, reprogramming is an important
operation function of WSNs [1]–[9]. As a WSN is usually
deployed in hostile environments such as the battlefield, an
adversary may exploit the reprogramming mechanism to launch
various attacks. Thus, secure programming is and will continue
to be a major concern.

There has been a lot of research focusing on secure repro-
gramming, and many interesting protocols have been proposed
in recent years [10]–[18]. However, all of them are based on
the centralized approach which assumes the existence of a
base station, and only the base station has the authority to
reprogram sensor nodes, as shown in the upper subfigure in
Fig. 1. Unfortunately, the centralized approach is not reliable
because, when the base station fails or when some sensor
nodes lose connections to the base station, it is impossible to
carry out reprogramming. Moreover, there are WSNs having
no base station at all, and hence, the centralized approach is not
applicable. Also, the centralized approach is inefficient, weakly
scalable, and vulnerable to some potential attacks along the
long communication path.

Alternatively, as shown in the lower subfigure in Fig. 1,
a distributed approach can be employed for reprogramming
in WSNs. It allows multiple authorized network users to si-
multaneously and directly update code images on different
nodes without involving the base station. Another advantage
of distributed reprogramming is that different authorized users
may be assigned different privileges of reprogramming sen-
sor nodes. This is particularly important in large-scale WSNs
owned by an owner and used by different users from both public
and private sectors [19], [20].

Quite recently, He et al. have proposed a secure and dis-
tributed reprogramming protocol named SDRP [21], which is
the first work of its kind. Since a novel identity-based signature
scheme is employed in generating public/private key pair of
each authorized user, SDRP is efficient for resource-limited
sensor nodes and mobile devices in terms of communication
and storage requirements. Furthermore, SDRP can achieve
all requirements of distributed reprogramming listed in [21],
while keeping the merits of the well-known mechanisms such
as Deluge [22] and Seluge [17]. Also, SDRP has been im-
plemented in a network of resource-limited sensor nodes to
show its high efficiency in practice. However, in this paper,
we demonstrate that a design weakness exists in the user

0278-0046/$31.00 © 2012 IEEE

HE et al.: SECURITY ANALYSIS AND IMPROVEMENT OF SECURE AND DISTRIBUTED REPROGRAMMING PROTOCOL 5349

Fig. 1. System overview of centralized and distributed reprogramming approaches.

preprocessing phase of SDRP, and an adversary can easily
impersonate any authorized user to carry out reprogramming.
To eliminate the identified security vulnerability, we propose
a simple modification on SDRP without losing any features
(such as distributed reprogramming, supporting different user
privileges, dynamic participation, scalability, high efficiency,
and robust security) of the original protocol.

Moreover, we show that, for security and efficiency consid-
eration, any efficient identity-based signature algorithm which
has survived many years of public scrutiny can be directly
employed in SDRP. This paper also reports the experimental
results of the improved SDRP in laptop PCs and resource-
limited sensor nodes, which show its efficiency in practice.

The remainder of this paper is organized as follows. We
briefly review SDRP in Section II and then identify its security
weakness in Section III. Section IV presents a modification
which remedies the identified weakness. Section V provides
an approach to further improve the security and efficiency of
SDRP. Section VI concludes this paper and points out future
research directions.

II. BRIEF OVERVIEW OF SDRP

The SDRP consists of three phases: system initialization,
user preprocessing, and sensor node verification. In the system
initialization phase, the network owner creates its public and
private keys and then assigns the reprogramming privilege and
the corresponding private key to the authorized user(s). Only
the public parameters are loaded on each sensor node before
deployment. In the user preprocessing phase, if a network user
enters the WSN and has a new code image, it will need to
construct the reprogramming packets and then send them to the
sensor nodes. In the sensor node verification phase, if the packet
verification passes, then the nodes accept the code image.

A. System Initialization Phase

The network owner executes the following steps.

1) Let G be a cyclic additive group and GT be a
cyclic multiplicative group of the same primer order q.

Let P be a generator of G. Let ê : G×G → GT be a
bilinear map.

2) Pick random s ∈ Z
∗
q as the master key, and compute

public key PKowner = s · P .
3) Choose two secure cryptographic hash functions

H1 and H2, where H1 : {0, 1}∗ → G and
H2 : {0, 1}∗ → Z

∗
q . Then, the public parameters

{G,GT , ê, q, P, PKowner, H1, H2} are loaded in each
sensor node before deployment.

4) For a user Uj with identity UIDj ∈ {0, 1}∗, the
network owner sets Uj’s public key as PKj =
H1(UIDj‖Prij) ∈ G, computes the private key SKj =
s · PKj , and then sends {PKj , SKj , P rij} back to Uj

using a secure channel, such as the wired transport layer
security protocol. Here, Prij denotes the level of user
privilege (e.g., the sensor node set within a specific region
that user Uj is allowed to reprogram) and subscription
period.

B. User Preprocessing Phase

User Uj takes the following actions.

1) Uj partitions the code image to Y fixed-size pages, de-
noted as page 1 through page Y . Uj splits page i (1 ≤ i ≤
Y) into N fixed-size packets, denoted as Pkti,1 through
Pkti,N . The hash value of each packet in page Y is
appended to the corresponding packet in page Y − 1. For
example, the hash value of packet PktY,1 h(PktY,1) is
included in packet PktY −1,1. Here, PktY,1 presents the
first packet of page Y . Similarly, the hash value of each
packet in page Y − 1 is included in the corresponding
packet in page Y − 2. This process continues until Uj

finishes hashing all the packets in page 2 and including
their hash values in the corresponding packets in page 1.
Then, a Merkle hash tree [23] is used to facilitate the
authentication of the hash values of the packets in page 1.
We refer to the packets related to this Merkle hash tree
collectively as page 0. The root of the Merkle hash tree,
the metadata about the code image (e.g., version number,
targeted node identity set, and code image size), and a
signature over all of them are included in a signature

5350 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 60, NO. 11, NOVEMBER 2013

message. The detailed information can be referred to
in [17]. Assume that the message m represents the root
of the Merkle hash tree and the metadata about the code
image. Then, in order to ensure the authenticity and
integrity of the new code image, Uj takes the following
actions to construct the signature message.

2) With the private key SKj , Uj can compute the signature
σj of the message m, where σj = H2(m) · SKj .

3) Uj transmits to the targeted nodes the signature message
{UIDj , P rij ,m, σj}, which serves as the notification
of the new code image. SDRP relies on the underlying
Deluge protocol to distribute packets for a given code
image.

C. Sensor Node Verification Phase

Upon receiving a signature message {UIDj , P rij ,m, σj},
each sensor node verifies it as follows.

1) The sensor node first pays attention to the legality of the
programming privilege Prij and the message m. Only
if they are valid, the verification procedure goes to the
next step.

2) Given the public parameters, the sensor node performs
the following verification:

ê(σj , P) = ê (H2(m) ·H1(UIDj |Prij), PKowner) . (1)

If the equation holds, the signature σj is valid.
3) If the aforementioned verification passes, the sensor node

believes that the message m and the privilege Prij are
from an authorized user with identity UIDj . Hence, the
sensor node accepts the root of the Merkle hash tree
constructed for page 0. Thus, the nodes can authenticate
the hash packets in page 0 once they receive such packets,
based on the security of the Merkle hash tree. The hash
packets include the hash values of the data packets in
page 1. Therefore, after verifying the hash packets, a node
can easily verify the data packets in page 1 based on
the one-way property of hash functions. Likewise, once
the data packets in page i have been verified, a sensor
node can easily authenticate the data packets in page
i+ 1, where i = 1, 2, . . . , Y − 1. Only if all verification
procedures described previously pass, the sensor node
accepts the code image.

III. SECURITY WEAKNESS OF SDRP

Recall that, in the user preprocessing phase of SDRP, the
signature σi is computed as H2(m) · SKj . This is, however,
a design weakness because it enables an adversary A to obtain
the private key SKj of user Uj as shown in the following.

1) While Uj transmits to the targeted nodes the signa-
ture message {UIDj , P rij ,m, σj}, the adversary A
can obtain {m,σj} by eavesdropping. With the pub-
lic parameter H2, the adversary A can compute υ =
(H2(m))−1 (mod q), where H2(m) ∈ Z

∗
q .

Note that the aforementioned equation involves modu-
lar exponentiation with a negative exponent, which can be
performed by finding the modular multiplicative inverse

u of H2(m) modulo q using the extended Euclidean al-
gorithm. That is, υ = (H2(m))−1 (mod q) = u (mod q),
where u ·H2(m) ≡ 1(mod q). It should be noted that
any integer in Z

∗
q has a multiplicative inverse if and

only if that integer is relatively prime to q. That is, the
multiplicative inverse u of H2(m) modulo q exists if and
only if H2(m) and q are coprime (i.e., gcd(H2(m), q) =
1). In SDRP, since q is prime, all of the nonzero integers
in Z

∗
q are relatively prime to q, and therefore, there exists

a multiplicative inverse for all of the nonzero integers
in Z

∗
q .

2) The adversary A computes the private key SKj = υ · σi.
Consequently, the adversary A can impersonate user

Uj to inject bogus code images to take over the control
of the whole WSN. Of course, the damage which the ad-
versary A can make is consistent with the reprogramming
privilege of user Uj .

IV. SECURITY IMPROVEMENT OF SDRP

Obviously, if H2(m) and q are not coprime, an adversary
cannot compute the private key SKj . Therefore, the design
weakness of the user preprocessing phase does not exist, and
the resulting attack is invalid. To achieve this goal, the following
step is suggested to be added into SDRP.

In the system initiation phase, the order q of cyclic additive
group G and cyclic multiplicative group GT should be set to a
large composite number. Note that Boneh et al. have introduced
composite-order bilinear groups [24], which have been used to
successfully solve many challenging problems in cryptography.
In the user preprocessing phase, when user Uj computes m, it
can check whether H2(m) and q are coprime. If yes, before
a signature on m is computed, redundant bits are appended
into m such that H2(m) and q are not coprime; otherwise, as
described in Section II-B, user Uj directly computes a signature
on m. On the other hand, the sensor node verification phase
remains the same. That is, compared to the original SDRP,
the suggested modification does not incur any overhead on the
sensor node side.

In the design of SDRP, the length of m is 29 B. Also assume
that the hash function H2 is implemented using SHA-1 with a
20-B output. Taking q as a 160-b random composite number,
we carry out experiments of coprime checking on laptop PCs
with different computational powers. In each experiment, q is
randomly generated for 1000 times. For each q, m is randomly
generated for 1000 times. Thus, each experiment has one mil-
lion measurements. The experimental results show that, without
the addition of any redundant bit, the probability that H2(m)
and q are not coprime is 58.0212%. Also, our implementation
results about the average search time of appropriate redundant
data and the failure rate with the addition of one or two
redundant bytes are summarized in Table I. Here, we consider a
1.6-GHz processor and the addition of one redundant byte as an
example. The failure rate for searching appropriate redundant
data is 0.4597% for this experiment (i.e., the probability that
H2(m) and q are not coprime is 1− 0.4597% = 99.5403%),
and the search of appropriate redundant data is very fast (i.e.,
the average execution time is 68.12 μs). Clearly, failure rates

HE et al.: SECURITY ANALYSIS AND IMPROVEMENT OF SECURE AND DISTRIBUTED REPROGRAMMING PROTOCOL 5351

TABLE I
FAILURE RATES AND SEARCH TIME FOR THE ADDITION OF ONE OR TWO REDUNDANT BYTES WHEN q IS A COMPOSITE NUMBER

TABLE II
SEARCH TIME FOR THE ADDITION OF ONE OR TWO REDUNDANT BYTES WHEN q IS AN EVEN NUMBER

only depend on the bit length of the added redundant data but
not on processor speed.

Furthermore, taking q as a 160-b random even number, we
repeat the aforementioned experiments of coprime checking.
The experimental results show that, without the addition of any
redundant bit, the probability that H2(m) and q are not coprime
is 59.4491%. Also, with the addition of one or two redundant
bytes, the failure rates for searching appropriate redundant data
are all zero for each experiment (i.e., the probability that H2(m)
and q are not coprime is 100%). On the other hand, our imple-
mentation results about the average search time of appropriate
redundant data of 1 or 2 B are summarized in Table II. It can
be seen that the search of appropriate redundant data is very
fast. For example, with the addition of one redundant byte,
the average execution times are 40.38 and 36.50 μs on 1.6-
and 1.8-GHz laptop PCs, respectively. Here, it is suggested
to only use one redundant byte when q is a 160-b random
even number. With this setting, not only zero failure rate is
achieved but also many advantages in the user preprocessing
procedure are obtained in terms of computation, memory usage,
and transmission and reception powers.

As shown in Tables I and II, our experimental results demon-
strate that the search time for 2-B redundant data is no more
than 1 ms in a 1.6-GHz laptop PC. Considering that the clock
frequencies of typical mobile devices (e.g., iPhones or laptop
PCs) are more than 1 GHz, the suggested modification is ef-
ficient for most of mobile devices. According to the aforemen-
tioned analysis, the suggested solution is feasible and secure for
real-world applications.

V. FURTHER IMPROVEMENT OF SDRP

Designing a secure reprogramming protocol is a difficult
task, because there are so many details involved (e.g., the com-
plicated interactions with the environment) that the designer can
only try his/her best to make sure his/her protocol is infallible.
This holds regardless of whether security proofs are supported
by heuristic arguments or formal ways. In reality, the degree of
confidence accompanying a security mechanism increases with
time only if the underlying algorithms can survive many years
of public scrutiny [18].

SDRP is based on a novel and newly designed identity-
based signature algorithm. The simple modification presented
in Section III can fix the identified security problem of this
signature algorithm, but it is still uncertain whether there is

any other security weakness in this modified identity-based
signature algorithm. To address this issue, it is suggested that,
instead of this novel identity-based signature algorithm, some
efficient identity-based signature algorithms which have sur-
vived many years of public scrutiny can be directly employed
in SDRP. For example, we can choose the provably secure
identity-based signature proposed by Barreto et al. [25]. Aside
from providing better security, the method by Barreto et al.
also improves the efficiency of SDRP due to the following two
reasons. First, its signature verification operation only needs
one pairing computation and, hence, is among the most efficient
ones. Second, the length of its signature is reduced due to
bilinear pairing.

A. Improved SDRP

1) System Initialization Phase: The network owner exe-
cutes the following steps.

1) Key setup: Generate the public parameters
params = {G1, G2,G3, g1, g2, g, ê, ψ,Qpub, H3, H4},
and load them in each sensor node before deployment,
where (G1,G2,G3) represents bilinear groups
of large prime order p with generators g2 ∈ G2,
g1 = ψ(g2) ∈ G1, and g = ê(g1, g2). The network owner
picks a random number s ∈ Zp as the master key and
computes public key Qpub = s · g2 ∈ G2. H3 and H4 are
cryptographic hash functions, where H3 : {0, 1}∗ → Zp

and H4 : {0, 1}∗ ×G3 → Z
∗
p.

2) User public/private key generation: For a user Uj

with identity UIDj ∈ {0, 1}∗, the network owner
sets Uj’s public key as Pj = H3(UIDj‖Prij) ∈
Z
∗
p, computes the private key Sj = (1/(Pj + s)) ·

g1 = (1/(H3(UIDj‖Prij) + s)) · g1, and then sends
{Pj , Sj , P rij} back to Uj through a secure channel.
Here, Prij denotes the level of user privilege (e.g., the
sensor node set within a specific region that user Uj is
allowed to reprogram) and subscription period.

2) User Preprocessing Phase: User Uj takes the following
actions.

1) This step is the same as step 1) of the user preprocessing
phase of the original SDRP.

2) With the private key Sj , Uj can compute the signature
σj of the message m as described in the following.
Pick a random number x ∈ Z

∗
p, and compute r = gx.

5352 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 60, NO. 11, NOVEMBER 2013

TABLE III
RUNNING TIME FOR EACH PHASE OF THE IMPROVED SDRP (EXCEPT THE SENSOR NODE VERIFICATION PHASE)

Set h = H4(m, r) ∈ Z
∗
p, and compute W = (x+ h) ·

Sj . The signature σj is the pair (h,W) ∈ Z
∗
p ×G1.

3) This step is the same as step 3) of the user preprocessing
phase of the original SDRP.

3) Sensor Node Verification Phase: Upon receiving a signa-
ture message {UIDj , P rij ,m, σj}, each sensor node verifies
it as follows.

1) This step is the same as step 1) of the sensor node
verification phase of the original SDRP.

2) Given the public parameters, the sensor node computes

h∗ = H4

(
m, e (W,H3(UIDj‖Prij) · g2 +Qpub) g

−h
)

and then sees whether h∗ is equal to h or not, where h is
from σj . If the result is positive, the signature σj is valid;
otherwise, the node simply drops the signature.

3) This step is the same as step 3) of the sensor node
verification phase of the original SDRP.

B. Implementation and Performance Evaluation

First, we evaluate the performance of the improved SDRP
with respect to the protocols operated by the network owner and
user. In our experiment, the network owner and sensor network
user side programs have been implemented in C++ (using the
integer arithmetic in the publicly available cryptographic li-
brary A Multiprecision Integer and Rational Arithmetic C/C++
Library (MIRACL) [26]) and executed in laptop PCs (with
2-GB RAM) under Ubuntu 11.04 environment with different
computational powers. The ηT [27] pairing algorithm over
the field F397 is used (using Barreto’s open-source code [28]).
Thus, the pairing is symmetric, the length of each element of
G1 is 20 B, and the length of each element of Z∗

p is also 20 B.
As the original SDRP, in our implementation, the byte lengths
of UIDj , Prij , and m are set to 2, 16, and 29. Table III gives
the execution time of some major operations in the improved
SDRP. We have executed each operation for 20 000 times and
taken an average over them. For example, the execution times
of the network owner for the key setup phase and generating
public/private key operation (for each network user) are 3.505
and 0.7205 ms on a 2.6-GHz laptop PC, respectively. Also, the
signature generation time for a network user is 6.6175 ms on a
1.6-GHz laptop PC.

Next, we consider the signature message overhead of the
improved SDRP without considering packet headers. The over-
head is |UIDj |+ |Prij |+ |m|+ |σj | = 2 + 16 + 29 + 20 +
20 = 87 B. Obviously, the transmission overhead of the im-
proved SDRP is very low, which is very suitable for low-
bandwidth WSNs.

TABLE IV
CODE SIZES OF VERIFICATION IMPLEMENTATION OF SIGNATURE

MESSAGES IN THE ORIGINAL SDRP AND THE IMPROVED SDRP

TABLE V
EXECUTION TIME FOR SIGNATURE VERIFICATION OF THE ORIGINAL

SDRP AND THE IMPROVED SDRP

In typical WSNs, sensor nodes are usually resource con-
strained and battery limited, and they may not be able to execute
expensive cryptographic operations efficiently and thus become
the bottleneck of a security protocol. Compared to the signature
verification algorithm of the original SDRP which mainly re-
quires two pairing, one hash-to-point (with 18-B message (i.e.,
(UIDj‖Prij)) as input), and one point scalar multiplication
operations on a sensor node, the signature verification algorithm
of the improved SDRP mainly requires one pairing, one point
scalar multiplication, and one exponentiation (over the field
F(397)6) operations on a sensor node and, thus, is more efficient.

We use the following two metrics to compare the original
SDRP with the improved SDRP, namely, memory overhead
and execution time. The memory overhead measures the exact
amount of data space required in the real implementation.
Similarly, the execution time measures the time duration for the
signature verification operation of the two protocols.

The sensor node side programs are written in nesC and run
on two kinds of resource-limited sensor nodes, i.e., MicaZ and
TelosB motes. Our motes run TinyOS [29] version 2.x. The
MicaZ mote features an 8-b 8-MHz Atmel microcontroller with
4-kB RAM and 128-kB ROM. Also, the TelosB mote has an
8-MHz CPU, 10-kB RAM, 48-kB ROM, 1 MB of flash mem-
ory, and an 802.15.4/ZigBee radio.

Different from that in [21], here, the implementation of
sensor node side programs is completely based on TinyPairing
(a pairing-based cryptographic library) [30], and we do not
do any optimization. For example, the pairing, point scalar
multiplication, and SHA-1 hash operations from TinyPairing
are employed. This implementation mainly involves Pairing,
BaseField, ExtField2, SHA1, PointArith, and NN components
of TinyPairing. According to Barreto’s open-source code for
the ηT pairing operation, we implement the exponentiation
operation over the field F(397)6 based on TinyPairing.

HE et al.: SECURITY ANALYSIS AND IMPROVEMENT OF SECURE AND DISTRIBUTED REPROGRAMMING PROTOCOL 5353

TABLE VI
EXECUTION TIME FOR EACH CRYPTOGRAPHIC OPERATION ON MICAZ AND TELOSB MOTES

Table IV shows the code sizes of verification implementation
in the original SDRP and the improved SDRP. For example,
the implementation of signature verification in the improved
SDRP on a MicaZ mote uses only 816 B of RAM and 24 216 B
of ROM. On the other hand, it uses only 864 B of RAM and
22 504 B of ROM on a TelosB mote. The resulting size of
our implementation for the improved SDRP corresponds to
only 19.92% and 18.47% of the RAM and ROM capacities of
MicaZ, respectively. It is clear that the memory overhead of the
improved SDRP is comparable to that of the original SDRP.

Table V gives the execution time for signature verification
of the original SDRP and the improved SDRP. For example,
with respect to the improved SDRP, the execution times for
signature verification on a MicaZ mote and TelosB mote are
about 10.65 and 24.85 s, respectively. As demonstrated in [21],
the proportion of this signature verification time in the total
reprogramming time is very small. Clearly, our experiment
results show that, for the signature verification operation on
sensor nodes, the improved SDRP is more efficient than the
original SDRP.

Table VI gives the execution time for each cryptographic
operation on MicaZ and TelosB motes. For example, the ηT
pairing operation takes 5.3216 and 13.0137 s on a MicaZ mote
and a TelosB mote, respectively. For the results in Tables V and
VI, we perform each operation 200 times and take an average
over them.

Note that the time for signature verification on sensor nodes
can be reduced through the use of the optimized cryptographic
operations. For example, in our implementation, the exponenti-
ation operation can be optimized.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have pointed out an inherent design weak-
ness in the user preprocessing phase of SDRP. The identified
design weakness allows an adversary to impersonate any autho-
rized user to reprogram sensor nodes. We have also presented
a modification to fix the problem without sacrificing any desir-
able feature of SDRP. Moreover, we have chosen the identity-
based signature algorithm by Barreto et al. as an example
to show that, for security and efficiency consideration, any
efficient identity-based signature algorithm which has survived
many years of public scrutiny can be directly employed in SDRP.

Although Deluge is a de facto standard and has been included
in TinyOS distributions [29], several more efficient central-
ized reprogramming protocols have recently been proposed
for WSNs, such as Rateless Deluge [31] and DIssemination
Protocol (DIP) [32]. For example, compared to Deluge, Rate-
less Deluge has many advantages such as reducing latency at
moderate levels of packet loss, being more scalable to dense
networks, and generally consuming far less energy, a premium

resource in WSNs. Thus, in order to further improve the re-
programming efficiency of SDRP, future work should focus on
how to integrate SDRP with a more efficient reprogramming
protocol like Rateless Deluge, leading to more secure and
efficient distributed reprogramming.

In some applications, the network owner and users are differ-
ent entities. A user may want to hide his/her reprogramming pri-
vacy from anyone else, including the network owner. In future
work, we will study how to support user privacy preservation in
distributed reprogramming.

REFERENCES

[1] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks:
Challenges, design principles, and technical approaches,” IEEE Trans.
Ind. Electron., vol. 56, no. 10, pp. 4258–4265, Oct. 2009.

[2] V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges
of wireless sensor networks in smart grid,” IEEE Trans. Ind. Electron.,
vol. 57, no. 10, pp. 3557–3564, Oct. 2010.

[3] J. Chen, X. Cao, P. Cheng, Y. Xiao, and Y. Sun, “Distributed collabora-
tive control for industrial automation with wireless sensor and actuator
networks,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4219–4230,
Dec. 2010.

[4] X. Cao, J. Chen, Y. Xiao, and Y. Sun, “Building-environment control with
wireless sensor and actuator networks: Centralized versus distributed,”
IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3596–3604, Nov. 2010.

[5] J. Carmo, P. Mendes, C. Couto, and J. Correia, “A 2.4-GHz CMOS short-
range wireless-sensor-network interface for automotive applications,”
IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1764–1771, May 2010.

[6] V. Naik, A. Arora, P. Sinha, and H. Zhang, “Sprinkler: A reliable and
energy efficient data dissemination service for extreme scale wireless
networks of embedded devices,” IEEE Trans. Mobile Comput., vol. 6,
no. 7, pp. 762–776, Jul. 2007.

[7] L. Mottola and G. Picco, “Programming wireless sensor networks: Funda-
mental concepts and state of the art,” ACM Comput. Surv., vol. 43, no. 3,
pp. 1–51, Apr. 2011.

[8] H. Song, V. Shin, and M. Jeon, “Mobile node localization using fusion
prediction-based interacting multiple model in cricket sensor network,”
IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4349–4359, Nov. 2010.

[9] R. C. Luo and O. Chen, “Mobile sensor node deployment and asyn-
chronous power management for wireless sensor networks,” IEEE Trans.
Ind. Electron., vol. 59, no. 5, pp. 2377–2385, May 2012.

[10] H. Tan, J. Zic, S. Jha, and D. Ostry, “Secure multihop network program-
ming with multiple one-way key chains,” IEEE Trans. Mobile Comput.,
vol. 10, no. 1, pp. 16–31, Jan. 2011.

[11] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler, “Securing the deluge
network programming system,” in Proc. IPSN, 2006, pp. 326–333.

[12] C. Lim, “Secure code dissemination and remote image management using
short-lived signatures in WSNs,” IEEE Commun. Lett., vol. 15, no. 4,
pp. 362–364, Apr. 2011.

[13] I. Doh, J. Lim, and K. Chae, “Code updates based on minimal backbone
and group key management for secure sensor networks,” Math. Comput.
Model., 2012, to be published.

[14] Y. Law, Y. Zhang, J. Jin, M. Palaniswami, and P. Havinga, “Secure rate-
less deluge: Pollution-resistant reprogramming and data dissemination
for wireless sensor networks,” EURASIP J. Wireless Commun. Netw.,
vol. 2011, no. 1, pp. 1–21, Jan. 2011.

[15] C. Parra and J. Garcia-Macias, “A protocol for secure and energy-aware
reprogramming in WSN,” in Proc. IWCMC, 2009, pp. 292–297.

[16] N. Bui, O. Ugus, M. Dissegna, M. Rossi, and M. Zorzi, “An integrated
system for secure code distribution in wireless sensor networks,” in Proc.
PERCOM, 2010, pp. 575–581.

[17] S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: Secure and DoS-resistant
code dissemination in wireless sensor networks,” in Proc. IPSN, 2008,
pp. 445–456.

5354 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 60, NO. 11, NOVEMBER 2013

[18] D. He, S. Chan, C. Chen, and J. Bu, “Secure and efficient dynamic pro-
gram update in wireless sensor networks,” Secur. Commun. Netw., vol. 5,
no. 7, pp. 823–830, Jul. 2012.

[19] Geoss, 2011. [Online]. Available: http://www.epa.gov/geoss/
[20] NOPP, 2012. [Online]. Available: http://www.nopp.org/
[21] D. He, C. Chen, S. Chan, and J. Bu, “SDRP: A secure and efficient

reprogramming protocol for wireless sensor networks,” IEEE Trans. Ind.
Electron., vol. 59, no. 11, pp. 4155–4163, Nov. 2012.

[22] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemina-
tion protocol for network programming at scale,” in Proc. SenSys, 2004,
pp. 81–94.

[23] R. Merkle, “Protocols for public key cryptosystems,” in Proc. IEEE Secur.
Privacy, 1980, pp. 122–134.

[24] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-DNF formulas on ci-
phertexts,” in Proc. TCC, 2005, vol. 3378, pp. 325–341.

[25] P. Barreto, B. Libert, N. McCullagh, and J.-J. Quisquater, “Efficient and
provably-secure identity-based signatures and signcryption from bilinear
maps,” in Proc. ASIACRYPT , 2005, pp. 515–532.

[26] M. Scott, “MIRACL—A multiprecision integer and rational arithmetic
C/C++ library,” Shamus Softw. Ltd., Dublin, Ireland, 2005.

[27] P. Barreto, S. Galbraith, C. O. hEigeartaigh, and M. Scott, “Efficient pair-
ing computation on supersingular abelian varieties,” Des., Codes Cryp-
togr., vol. 42, no. 3, pp. 239–271, Mar. 2007.

[28] Paulo S. L. M. Barreto’s Main-Page , 2012. [Online]. Available: http://
www.larc.usp.br/~pbarreto/

[29] TinyOS, “An open-source OS for the networked sensor regime,” 2012.
[Online]. Available: http://www.tinyos.net/

[30] X. Xiong, D. S. Wong, and X. Deng, “TinyPairing: A fast and light-
weight pairing-based cryptographic library for wireless sensor networks,”
in Proc. IEEE WCNC, 2010, pp. 1–6.

[31] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless Deluge:
Over-the-air programming of wireless sensor networks using random lin-
ear codes,” in Proc. ACM/IEEE IPSN, 2008, pp. 457–466.

[32] K. Lin and P. Levis, “Data discovery and dissemination with DIP,” in Proc.
IPSN, 2008, pp. 433–444.

Daojing He (S’09) received the B.Eng. and M.Eng.
degrees in computer science from Harbin Institute of
Technology, Harbin, China, in 2007 and 2009, re-
spectively. He is currently working toward the Ph.D.
degree at Zhejiang University, Hangzhou, China.

His research interests include network and sys-
tems security with focus on wireless security. He
is an Associate Editor or on the Editorial Boards
of international journals such as Wiley’s Wireless
Communications and Mobile Computing, Wiley’s
Security and Communication Networks, and KSII

Transactions on Internet and Information Systems.
Mr. He has served as a Member of the Technical Program Committees for

IEEE Globecom 2011, IEEE Symposium on Personal, Indoor, Mobile, and
Radio Communications 2011–2012, IEEE International Conference on Com-
munications 2012–2013, and IEEE Wireless Communications and Networking
Conference 2011–2012, among others.

Chun Chen (M’06) received the B.S. degree
in mathematics from Xiamen University, Xiamen,
China, in 1981, and the M.S. and Ph.D. de-
grees in computer science from Zhejiang University,
Hangzhou, China, in 1984 and 1990, respectively.

He is currently a Professor with the College of
Computer Science, Zhejiang University, where he is
also the Director of the Institute of Computer Soft-
ware. His research activity is in image processing,
computer vision, and embedded system.

Sammy Chan (S’87–M’90) received the B.E. and
M.Eng.Sc. degrees in electrical engineering from
The University of Melbourne, Melbourne, Australia,
in 1988 and 1990, respectively, and the Ph.D. degree
in communication engineering from the Royal
Melbourne Institute of Technology, Melbourne,
in 1995.

From 1989 to 1994, he was with Telecom
Australia Research Laboratories, where he was, first,
a Research Engineer and, then, a Senior Research
Engineer and a Project Leader between 1992 and

1994. Since December 1994, he has been with the Department of Electronic
Engineering, City University of Hong Kong, Kowloon, Hong Kong, where he
is currently an Associate Professor.

Jiajun Bu (M’06) received the B.S. and Ph.D. de-
grees in computer science from Zhejiang University,
Hangzhou, China, in 1995 and 2000, respectively.

He is currently a Professor with the College of
Computer Science, Zhejiang University, where he is
also the Deputy Director of the Institute of Computer
Software. His research interests include embedded
systems, mobile multimedia, and data mining.

Laurence T. Yang (M’97) received the B.E. de-
gree in computer science from Tsinghua University,
Beijing, China, and the Ph.D. degree in computer
science from the University of Victoria, Victoria, BC,
Canada.

He is currently a Professor with the School of
Computer Science and Technology, Huazhong Uni-
versity of Science and Technology, Wuhan, China,
and the Department of Computer Science, St. Fran-
cis Xavier University, Antigonish, NS, Canada. His
research interests include parallel and distributed

computing and embedded and ubiquitous computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

