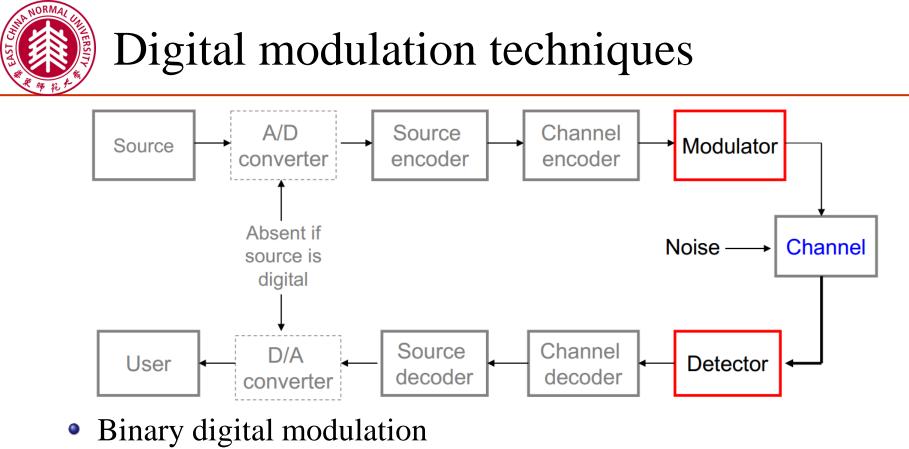


- Introduction
- Signal, random variable, random process and spectra
- Analog modulation
- Analog to digital conversion
- Digital transmission through baseband channels
- Signal space representation
- Optimal receivers

Digital modulation techniques

- Channel coding
- Synchronization
- Information theory



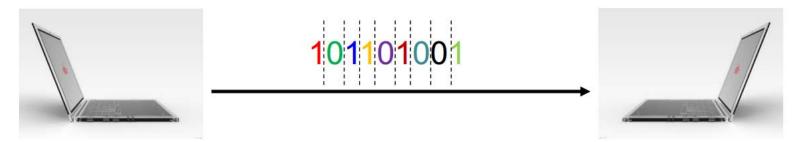
- M-ary digital modulation
- Comparison study

Chapter 8.2, 8.3.3, 8.5-8.7, 9.1-9.5, 9.7

Digital modulation techniques

- In digital communications, the modulation process corresponds to **switching** or **keying** the **amplitude**, **frequency**, or **phase** of a **sinusoidal** carrier wave corresponding to incoming digital data
- Three basic digital modulation techniques
 - 1. Amplitude-shift keying (ASK) special case of AM
 - 2. Frequency-shift keying (FSK) special case of FM
 - 3. Phase-shift keying (PSK) special case of PM
- We use signal space approach in receiver design and performance analysis

• In binary signaling, the modulator produces one of two distinct signals in response to one bit of source data at a time.



• Binary modulation type

Binary Phase-Shift Keying (BPSK)
 Modulation

"1"
$$\rightarrow s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t)$$

"0" $\rightarrow s_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t + \pi) = -\sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t)$

- \triangleright 0 \leq *t* < *T*_{*b*}, *T*_{*b*} bit duration
- $\succ E_b$: transmitted signal energy per bit, i.e.,

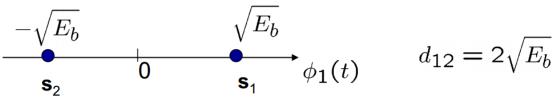
$$\int_0^{T_b} s_1^2(t) dt = \int_0^{T_b} s_2^2(t) dt = E_b$$

The pair of signals differ only in a 180-degree phase shift

- Binary Phase-Shift Keying (**BPSK**)
 - Signal space representation:

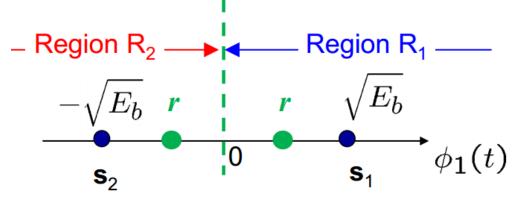
$$\phi_1(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t)$$
 with $0 \le t < T_b$

- > So $s_1(t) = \sqrt{E_b}\phi_1(t)$ and $s_2(t) = -\sqrt{E_b}\phi_1(t)$
- A binary PSK system is characterized by a signal space that is one-dimensional (N=1), and has two message points (M=2)



Assume that the two signals are equally likely, i.e., $P(s_1) = P(s_2) = 0.5$

- Binary Phase-Shift Keying (**BPSK**)
 - The optimal decision boundary is the midpoint of the line joining these two message points



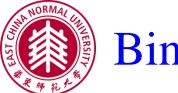
Decision rule:

- 1. Guess signal $s_1(t)$ (or binary 1) was transmitted if the received signal point r falls in region $R_1(r > 0)$
- 2. Guess signal $s_2(t)$ (or binary 0) was transmitted otherwise (r ≤ 0)

P(e|s

- Binary Phase-Shift Keying (**BPSK**)
 - > Probability of error analysis.
 - > The conditional probability of the receiver deciding in favor of $s_2(t)$ given that $s_1(t)$ was transmitted is $P(e|s_1) = P(r < 0|s_1)$ $= \int_{-\infty}^{0} \frac{1}{\sqrt{\pi N_0}} \exp\left\{-\frac{(r-\sqrt{E_b})^2}{N_0}\right\} dr = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$ Due to symmetry $P(e \mid s_2) = P(r > 0 \mid s_2) = Q\left(\sqrt{\frac{2E_b}{N_o}}\right)$ $p(r|s_2)$ $p(r|s_1)$ E_b

 $P(e|s_2)$

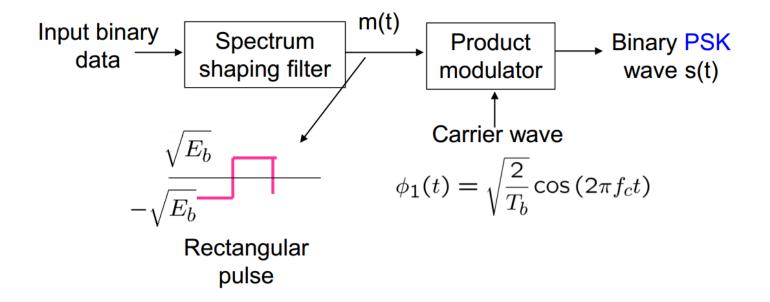


- Binary Phase-Shift Keying (**BPSK**)
 - > Probability of error analysis.
 - Since the signals s1(t) and s2(t) are equally likely to be transmitted, the average probability of error is

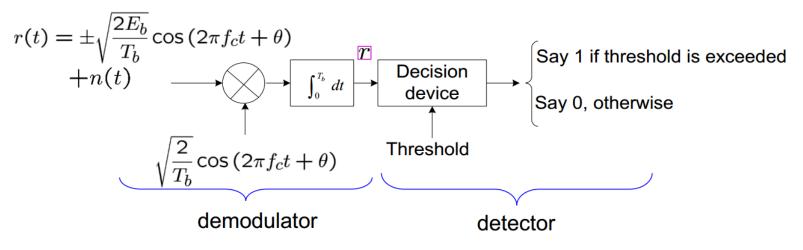
$$P_{e} = 0.5P(e|\mathbf{s}_{1}) + 0.5P(e|\mathbf{s}_{2}) = Q\left(\sqrt{\frac{2E_{b}}{N_{0}}}\right)$$
$$\bigcup$$
$$P_{e} \text{ depends on ratio } \frac{E_{b}}{N_{0}}$$

This ratio is normally called bit energy to noise density ratio (SNR/bit)

- Binary Phase-Shift Keying (**BPSK**)
 - > Transmitter.



- Binary Phase-Shift Keying (**BPSK**)
 - > Receiver.



- > θ is the carrier-phase offset, due to propagation delay or oscillators at the transmitter and receiver are not synchronous
- The detection is coherent in the sense of phase synchronization and timing synchronization

Binary Frequency-Shift Keying (BFSK)
 Modulation

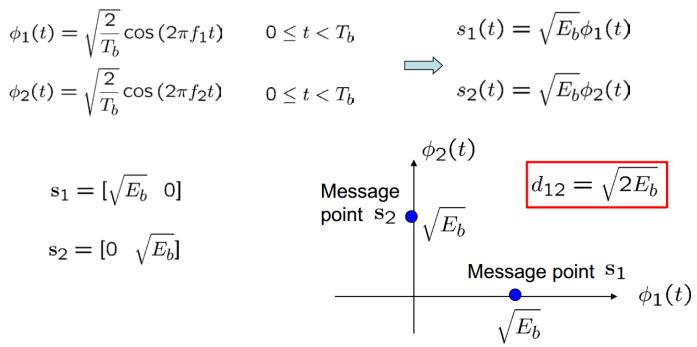
"1"
$$\rightarrow s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_1 t)$$

"0" $\rightarrow s_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$ $0 \le t < T_b$

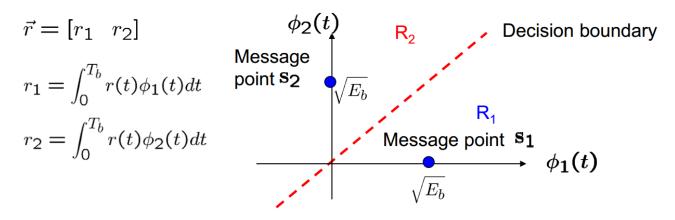
- ► E_b : transmitted signal energy per bit $\int_0^{T_b} s_1^2(t) dt = \int_0^{T_b} s_2^2(t) dt = E_b$ ► f_i : transmitted frequency with separation $\Delta f = f_1 - f_0$
- > f_i : transmitted frequency with separation $\Delta f = f_1 f_0$ > Δf is selected so that $s_1(t)$ and $s_2(t)$ are orthogonal, i.e., $\int_0^{T_b} s_1(t) s_2(t) dt = 0$

(Example?)

- Binary Frequency-Shift Keying (**BFSK**)
 - Signal space representation:



- Binary Frequency-Shift Keying (**BFSK**)
 - Decision regions:



- 1. Guess signal $s_1(t)$ (or binary 1) was transmitted if the received signal point *r* falls in region R_1 ($r_2 > r_1$)
- 2. Guess signal $s_2(t)$ (or binary 0) was transmitted otherwise (r ≤ 0)

- Binary Frequency-Shift Keying (**BFSK**)
 - > Probability of error analysis.
 - \succ Given that \mathbf{s}_1 is transmitted

$$r_1 = \sqrt{E_b} + n_1 \quad \text{and} \quad r_2 = n_2$$

Since the condition r₂>r₁ corresponds to the receiver making a decision in favor of symbol s₂, the conditional probability of error when s₁ is transmitted is given by

$$P(e|s_1) = P(r_1 < r_2|s_1) = P(\sqrt{E_b} + n_1 < n_2)$$

▶ n₁ and n₂ are i.i.d. Gaussian with $n_1, n_2 \in \mathcal{N}(0, N_0/2)$ ▶ Then $n = n_1 - n_2$ is Gaussian with $n \in \mathcal{N}(0, N_0)$

$$P(e|s_1) = P(n < -\sqrt{E_b}) = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

- Binary Frequency-Shift Keying (**BFSK**)
 - > Probability of error analysis.
 - \succ By symmetry, we also have

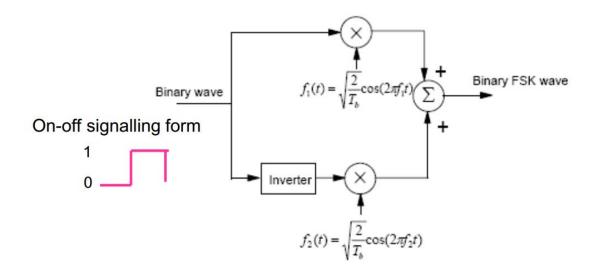
$$P(e|s_2) = P(r_1 > r_2|s_2) = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

Since the two signals are equally likely to be transmitted, the average probability of error for coherent binary FSK is $(\sqrt{E_t})$

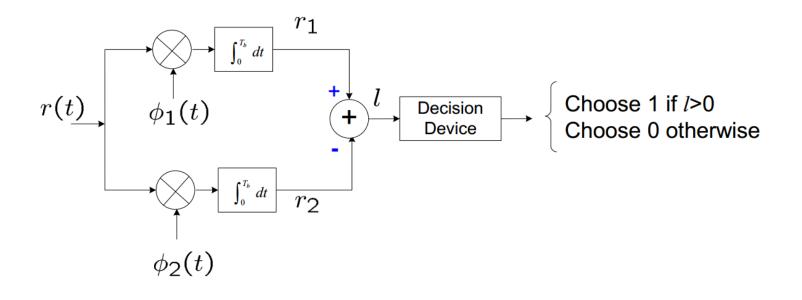
$$P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$
 \implies 3 dB worse than BPSK

To achieve the same P_e , BFSK needs 3dB more transmission power than BPSK

- Binary Frequency-Shift Keying (**BFSK**)
 - > Transmitter.



- Binary Frequency-Shift Keying (BFSK)
 - ➢ Receiver.



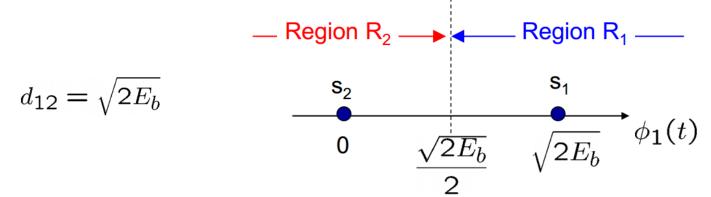
"1"
$$\rightarrow s_1(t) = \sqrt{\frac{2E}{T_b}} \cos(2\pi f_c t)$$

"0" $\rightarrow s_2(t) = 0$ $0 \le t < T_b$
(On-off signaling)

Average energy per bit $E \neq 0$

$$E_b = \frac{E+0}{2}$$
 i.e. $E = 2E_b$

Decision region



- Binary Amplitude-Shift Keying (BASK)
 - > Probability of error analysis.
 - Average probability of error

$$P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

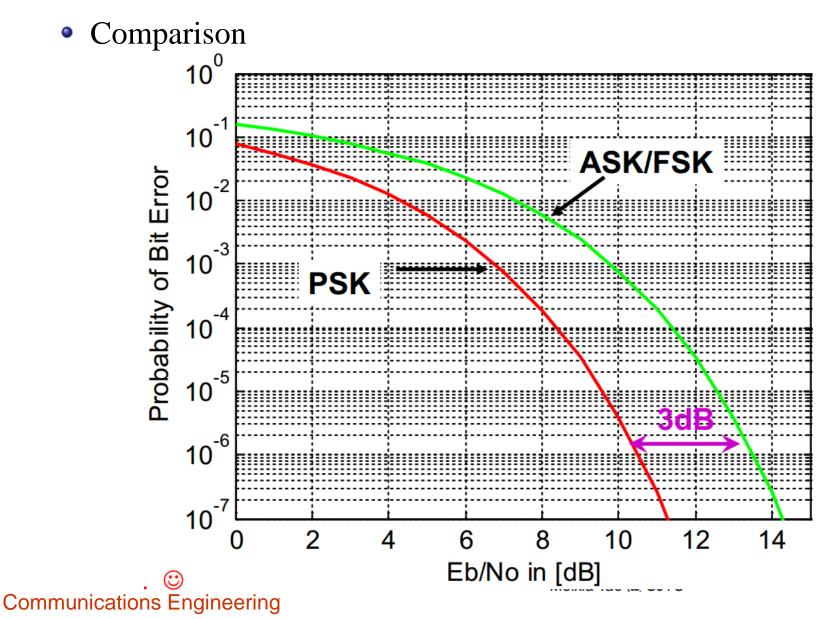
Identical to that of coherent binary FSK

• Comparison

BPSK	BFSK	BASK
$d_{1,2} = 2\sqrt{E_b}$	$d_{1,2} = \sqrt{2E_b}$	$d_{1,2} = \sqrt{2E_b}$
$P_e = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$	$P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$	$P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$

• In general,

$$P_e = Q\left(\sqrt{\frac{d_{12}^2}{2N_0}}\right)$$



- Example
 - Binary data are transmitted over a microwave link at the rate of 10⁶ bits/sec and the PSD of the noise at the receiver input is 10⁻¹⁰ watts/Hz.
 - Find the average carrier power required to maintain an average probability of error $P_e \leq 10^{-4}$ for coherent binary FSK.
 - > What if noncoherent binary FSK?

- Update
 - We have discussed coherent modulation schemes, e.g., BPSK, BFSK, BASK, which need coherent detection assuming that the receiver is able to detect and track the carrier wave's phase
 - In many practical situations, strict phase synchronization is not possible. In these situations, noncoherent reception is required.
 - We now consider non-coherent detection on binary FSK and differential phase-shift keying (DPSK)

- Non-coherent scheme: BFSK
 - > Consider a binary FSK system, the two signals are

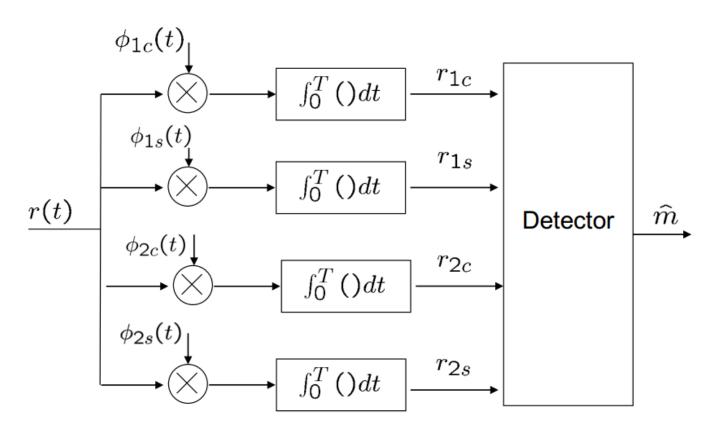
$$s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos\left(2\pi f_1 t + \theta_1\right)$$
$$0 \le t < T_b$$
$$s_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos\left(2\pi f_2 t + \theta_2\right)$$

 $> \theta_1, \theta_2$: unknown random phases with uniform distribution

$$p_{\theta_1}(\theta) = p_{\theta_2}(\theta) = \begin{cases} 1/2\pi & \theta \in [0, 2\pi) \\ 0 & \text{else} \end{cases}$$

- Non-coherent scheme: BFSK
 - Since $s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_1 t + \theta_1) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_1 t) \cos(\theta_1) - \sqrt{\frac{2E_b}{T_b}} \sin(2\pi f_1 t) \sin(\theta_1)$ $s_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t + \theta_2) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t) \cos(\theta_2) - \sqrt{\frac{2E_b}{T_b}} \sin(2\pi f_2 t) \sin(\theta_2)$
 - Choose four basis functions as $\phi_{1c}(t) = \sqrt{2/T_b} \cos(2\pi f_1 t) \quad \phi_{1s}(t) = -\sqrt{2/T_b} \sin(2\pi f_1 t)$ $\phi_{2c}(t) = \sqrt{2/T_b} \cos(2\pi f_2 t) \quad \phi_{2s}(t) = \sqrt{2/T_b} \sin(2\pi f_2 t)$
 - Signal space representation $\vec{s}_1 = [\sqrt{E_b} \cos \theta_1 \quad \sqrt{E_b} \sin \theta_1 \quad 0 \quad 0]$ $\vec{s}_2 = [0 \quad 0 \quad \sqrt{E_b} \cos \theta_2 \quad \sqrt{E_b} \sin \theta_2]$

- Non-coherent scheme: BFSK
 - > The vector representation of the received signal $\vec{r} = \begin{bmatrix} r_{1c} & r_{1s} & r_{2c} & r_{2s} \end{bmatrix}$



- Non-coherent scheme: BFSK
 - Decision rule:

Choose s_1 $f(\vec{r}|\vec{s_1}) \gtrsim f(\vec{r}|\vec{s_2})$ ML Choose s_2

Conditional pdf

 $f(\vec{r}|\vec{s}_{1},\theta_{1}) = \frac{1}{\pi N_{0}} \exp\left[-\frac{(r_{1c} - \sqrt{E_{b}}\cos\theta_{1})^{2} + (r_{1s} - \sqrt{E_{b}}\sin\theta_{1})^{2}}{N_{0}}\right]$ $\times \frac{1}{\pi N_{0}} \exp\left[-\frac{r_{2c}^{2} + r_{2s}^{2}}{N_{0}}\right]$ Similarly

$$f(\vec{r}|\vec{s}_2,\theta_2) = \frac{1}{\pi N_0} \exp\left[-\frac{r_{1c}^2 + r_{1s}^2}{N_0}\right] \\ \times \frac{1}{\pi N_0} \exp\left[-\frac{(r_{2c} - \sqrt{E_b}\cos\theta_2)^2 + (r_{2s} - \sqrt{E_b}\sin\theta_2)^2}{N_0}\right]$$

- Non-coherent scheme: BFSK
 - \succ For ML decision, we need to evaluate

$$f(\vec{r}|\vec{s}_{1}) \ge f(\vec{r}|\vec{s}_{2})$$

$$\frac{1}{2\pi} \int_{0}^{2\pi} f(\vec{r}|\vec{s}_{1},\theta_{1}) d\theta_{1} \ge \frac{1}{2\pi} \int_{0}^{2\pi} f(\vec{r}|\vec{s}_{2},\theta_{2}) d\theta_{2}$$

Removing the constant terms

$$\left(\frac{1}{\pi N_0}\right)^2 \exp\left[-\frac{r_{1c}^2 + r_{1s}^2 + r_{2c}^2 + r_{2s}^2 + E}{N_0}\right]$$

$$\blacktriangleright \text{ We have } \frac{1}{2\pi} \int_{0}^{2\pi} \exp\left[\frac{2\sqrt{E}r_{1c}\cos(\phi_1) + 2\sqrt{E}r_{1s}\sin(\phi_1)}{N_0}\right] d\phi_1$$
$$\geq \frac{1}{2\pi} \int_{0}^{2\pi} \exp\left[\frac{2\sqrt{E}r_{2c}\cos(\phi_1) + 2\sqrt{E}r_{2s}\sin(\phi_1)}{N_0}\right] d\phi_2$$

- Non-coherent scheme: BFSK
 - > By definition

$$\frac{1}{2\pi} \int_{0}^{2\pi} \exp\left[\frac{2\sqrt{E}r_{1c}\cos(\phi_{1}) + 2\sqrt{E}r_{1s}\sin(\phi_{1})}{N_{0}}\right] d\phi_{1} = I_{0}\left(\frac{2\sqrt{E}(r_{1c}^{2} + r_{1s}^{2})}{N_{0}}\right)$$

where $I_0()$ is a modified Bessel function of the zero-th order

> Thus, the decision rule becomes: choose s_1 if

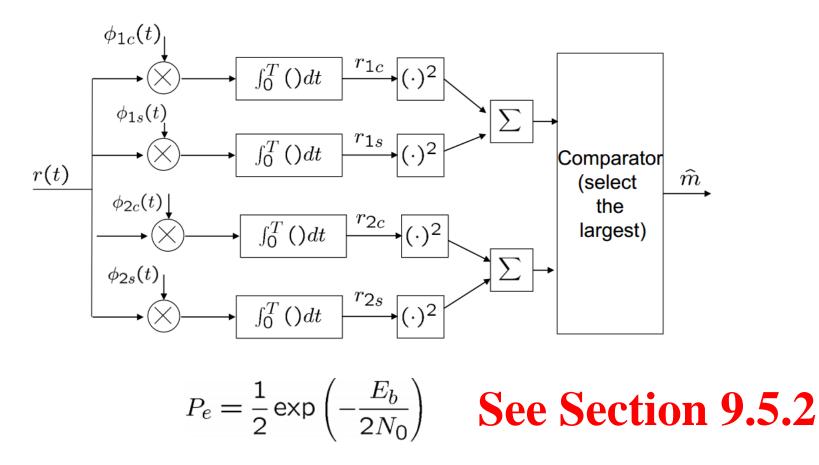
$$I_{0}\left(\frac{2\sqrt{E(r_{1c}^{2}+r_{1s}^{2})}}{N_{0}}\right) \ge I_{0}\left(\frac{2\sqrt{E(r_{2c}^{2}+r_{2s}^{2})}}{N_{0}}\right)$$

- Non-coherent scheme: BFSK
 - Note that this Bessel function is monotonically increasing. Therefore, we choose s₁ if

$$\sqrt{r_{1c}^2 + r_{1s}^2} \ge \sqrt{r_{2c}^2 + r_{2s}^2}$$

- 1. Useful insight: we just compare the energy in the two frequencies and pick the larger (**envelope detector**)
- 2. Carrier phase is irrelevant in decision making

- Non-coherent scheme: BFSK
 - Structure.

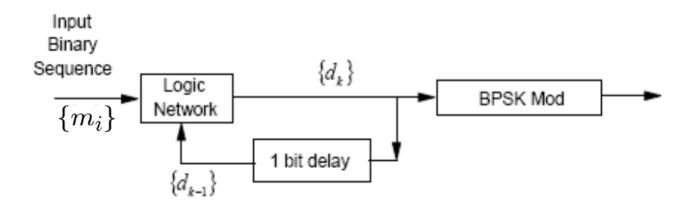


• Comparison 10⁰ 10⁻¹ ASK/FSK Probability of Bit Error 10⁻² NC FSK 10⁻³ BPSI 10⁻⁴ -5 10 10⁻⁶L 10⁻⁷ 2 10 12 14 6 8 0 4 Eb/No in [dB]

- Differential PSK (**DPSK**)
 - Non-coherent version of PSK
 - Phase synchronization is eliminated using differential encoding
 - 1. Encode the information in phase difference between successive signal transmission.
 - 2. Send "0", advance the phase of the current signal by 180°
 - 3. Send "1", leave the phase unchanged
 - Provided that the unknown phase θ contained in the received wave varies slowly (constant over two bit intervals), the phase difference between waveforms received in two successive bit intervals will be independent of θ

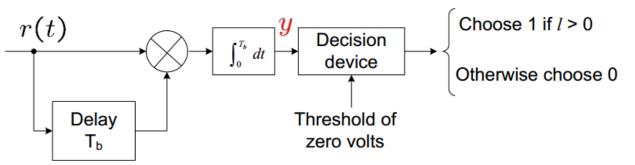
- Differential PSK (**DPSK**)
 - Generate DPSK signals in two steps
 - 1. Differential encoding of the information binary bits.
 - 2. Phase shift keying
 - Differential encoding starts with an arbitrary reference bit

- Differential PSK (**DPSK**)
 - Structure.



Binary digital modulation

- Differential PSK (**DPSK**)
 - > Differential detection.



> Output of integrator (assume noise free) $y = \int_0^{T_b} r(t)r(t - T_b)dt = \int_0^{T_b} \cos(w_c t + \psi_k + \theta) \cos(w_c t + \psi_{k-1} + \theta)dt$ $\propto \cos(\psi_k - \psi_{k-1})$

➤ The unknown phase θ becomes irrelevant. The decision becomes: if ψ_k - ψ_{k-1} = 0 (bit 1), then y>0; if $\psi_k - \psi_{k-1} = \pi \quad \text{(bit 0), then y<0}$ $P_e = \frac{1}{2} \exp\left(-\frac{E_b}{N_0}\right)$

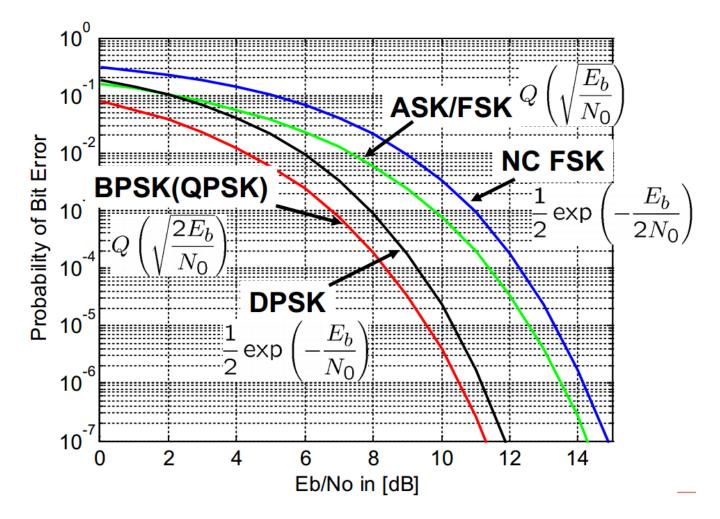
Binary digital modulation

• Comparison

Coherent PSK	$Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$
Coherent ASK	$Q\left(\sqrt{\frac{E_b}{N_0}}\right)$
Coherent FSK	$Q\left(\sqrt{\frac{E_b}{N_0}}\right)$
Non-Coherent FSK	$\frac{1}{2}\exp\left(-\frac{E_b}{2N_0}\right)$
DPSK	$\frac{1}{2}\exp\left(-\frac{E_b}{N_0}\right)$

Binary digital modulation

• Comparison



• Why?

- In binary data transmission, send only one of two possible signals during each bit interval Tb
- In M-ary data transmission, send one of M possible signals during each signaling interval T
- In almost all applications, M=2ⁿ and T=nT_b, where n is an integer
- Each of the M signals is called a **symbol**
- These signals are generated by changing the amplitude, phase, frequency, or combined forms of a carrier in M discrete steps.
- Thus, we have MASK, MPSK, MFSK, and MQAM

- M-ary Phase-shift Keying (MPSK)
 - Modulation: The phase of the carrier takes on M possible values

$$\theta_m = 2\pi(m-1)/M, \ m = 1,\ldots,M$$

Signal set

$$s_m(t) = \sqrt{\frac{2E_s}{T}} \cos\left[2\pi f_c t + \frac{2\pi(m-1)}{M}\right] \qquad \begin{array}{l} m = 1, \dots, M\\ 0 \le t < T \end{array}$$

- > Es=Energy per symbol, $f_c >> \frac{1}{T}$
- Basis functions

$$\phi_1(t) = \sqrt{\frac{2}{T}} \cos(2\pi f_c t)$$

$$\phi_2(t) = \sqrt{\frac{2}{T}} \sin(2\pi f_c t)$$

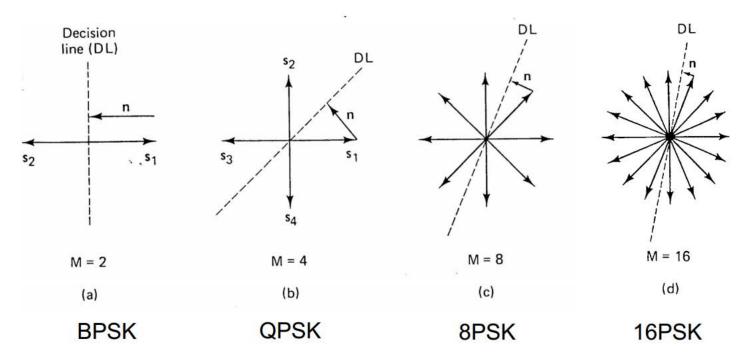
$$0 \le t < T$$

- M-ary Phase-shift Keying (MPSK)
 - ➢ Signal space representation.

$$s_m(t) = \sqrt{\frac{2E_s}{T}} \cos\left[2\pi f_c t + \frac{2\pi(m-1)}{M}\right]$$
$$= \sqrt{\frac{2E_s}{T}} \cos\left(2\pi f_c t\right) \cos\left[\frac{2\pi(m-1)}{M}\right]$$
$$-\sqrt{\frac{2E_s}{T}} \sin\left(2\pi f_c t\right) \sin\left[\frac{2\pi(m-1)}{M}\right]$$
$$= \sqrt{E_s} \cos\left[\frac{2\pi(m-1)}{M}\right] \phi_1(t) - \sqrt{E_s} \sin\left[\frac{2\pi(m-1)}{M}\right] \phi_2(t)$$
$$\mathbf{s}_m = \left[\sqrt{E_s} \cos\left(\frac{2\pi(m-1)}{M}\right) - \sqrt{E_s} \sin\left(\frac{2\pi(m-1)}{M}\right)\right]$$

$$m = 1, \ldots, M$$

- M-ary Phase-shift Keying (MPSK)
 - ➢ Signal constellations.



- M-ary Phase-shift Keying (MPSK)
 - Euclidean distance

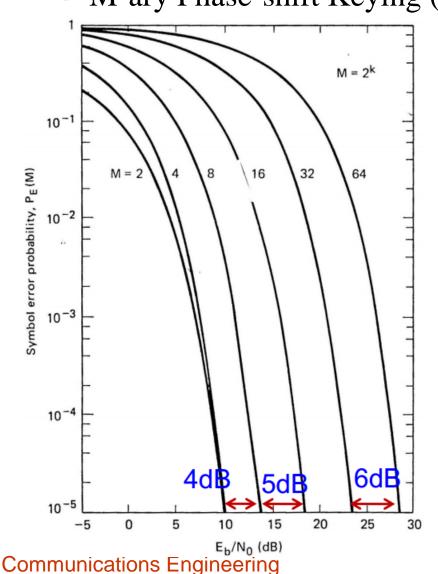
$$d_{mn} = \left\|\mathbf{s}_m - \mathbf{s}_n\right\| = \sqrt{2E_s \left(1 - \cos\frac{2\pi(m-n)}{M}\right)}$$

The minimum Euclidean

$$d_{\min} = \sqrt{2E_s \left(1 - \cos\frac{2\pi}{M}\right)} = 2\sqrt{E_s} \sin\frac{\pi}{M}$$

- > d_{\min} plays an important role in determining error performance as discussed previously (union bound)
- In the case of PSK modulation, the error probability is dominated by the erroneous selection of either one of the two signal points adjacent to the transmitted signal point
- ► Consequently, an approximation to the symbol error probability is $P_{MPSK} \approx 2Q \left(\frac{d_{min}/2}{\sqrt{N_0/2}}\right) = 2Q \left(\sqrt{\frac{2E_s}{N_0}} \sin \frac{\pi}{M}\right)$

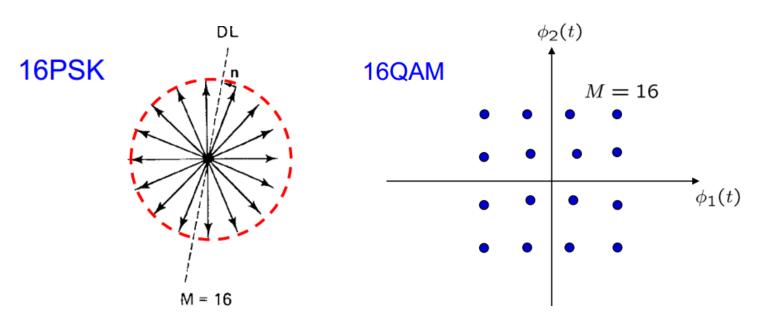
- M-ary Phase-shift Keying (MPSK)
 - Exercise: Consider the M=2, 4, 8 PSK signal constellations. All have the same transmitted signal energy Es.
 - > Determine the minimum distance d_{\min} between adjacent signal points
 - ➢ For M=8, determine by how many dB the transmitted signal energy Es must be increased to achieve the same d_{min} as M=4.



• M-ary Phase-shift Keying (MPSK)

For large M, doubling the number of phases requires an additional 6 dB/bit to achieve the same performance

- M-ary Quadrature Amplitude Modulation (MQAM)
 - In MPSK, in-phase and quadrature components are interrelated in such a way that the envelope is constant (circular constellation)
 - ➤ If we relax this constraint, we get M-ary QAM



- M-ary Quadrature Amplitude Modulation (MQAM)
 - Modulation:

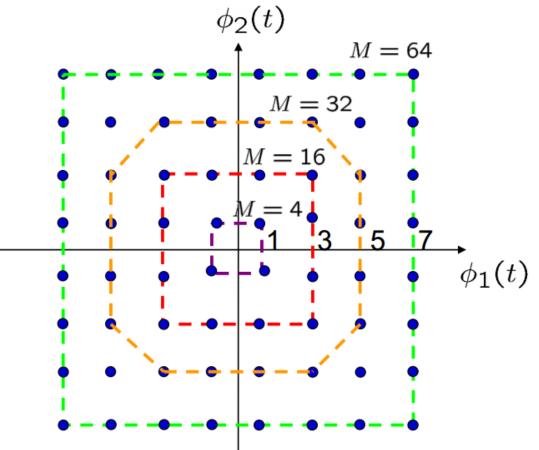
$$s_i(t) = \sqrt{\frac{2E_0}{T}} a_i \cos(2\pi f_c t) + \sqrt{\frac{2E_0}{T}} b_i \sin(2\pi f_c t)$$

$$\phi_1(t) = \sqrt{\frac{2}{T}} \cos(2\pi f_c t) \quad \phi_2(t) = \sqrt{\frac{2}{T}} \sin(2\pi f_c t) \quad 0 \le t < T$$

Signal space representation

$$\vec{s}_i = \begin{bmatrix} \sqrt{E_0} a_i & \sqrt{E_0} b_i \end{bmatrix}$$

- M-ary Quadrature Amplitude Modulation (MQAM)
 - ➢ Signal constellation.



- M-ary Quadrature Amplitude Modulation (MQAM)
 - Probability of error analysis.
 - Upper bound of the symbol error probability

$$P_e \le 4Q\left(\sqrt{\frac{3kE_b}{(M-1)N_0}}\right) \qquad \text{(for } M = 2^k\text{)}$$

Think about the increase in Eb required to maintain the same error performance if the number of bits per symbol is increased from k to k+1, where k is large.

- M-ary Frequency-shift Keying (MFSK) (Multitone Signaling)
 - ➤ Signal set:

$$s_m(t) = \sqrt{\frac{2E_s}{T}} \cos \left\{ 2\pi (f_c + (m-1)\triangle f) t \right\} \quad \begin{array}{l} m = 1, \dots, M \\ 0 \le t < T \end{array}$$

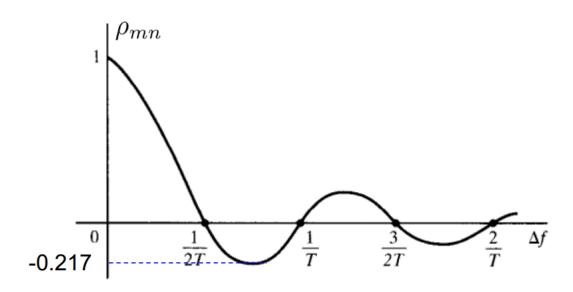
where $\triangle f = f_m - f_{m-1}$ with $f_m = f_c + m \triangle f$

Correlation between two symbols

$$\rho_{mn} = \frac{1}{E_s} \int_0^T s_m(t) s_n(t) dt$$
$$= \frac{\sin[2\pi(m-n)\triangle fT]}{2\pi(m-n)\triangle fT}$$

$$= \operatorname{sinc}[2(m-n) \triangle fT]$$

M-ary Frequency-shift Keying (MFSK) (Multitone Signaling)



For orthogonality, the minimum frequency separation is $\Delta f = \frac{1}{2T}$

• M-ary Frequency-shift Keying (MFSK) (Multitone Signaling)

➤ Geometrical representation.

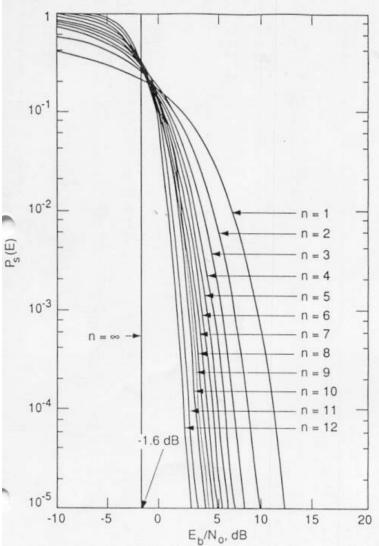
$$\mathbf{s}_{0} = \left(\sqrt{E_{s}}, 0, 0, \dots, 0\right)$$
$$\mathbf{s}_{1} = \left(0, \sqrt{E_{s}}, 0, \dots, 0\right)$$
$$\vdots$$
$$\mathbf{s}_{M-1} = \left(0, 0, \dots, 0, \sqrt{E_{s}}\right)$$

Basis functions.

$$\phi_m = \sqrt{\frac{2}{T}} \cos 2\pi \left(f_c + m\Delta f \right) t$$

• M-ary Frequency-shift Keying (MFSK) (Multitone Signaling)

> Probability of error.



- Notes
 - Pe is found by integrating conditional probability of error over the decision region, which is difficult to compute but can be simplified using union bound
 - Pe depends only on the distance profile of the signal constellation

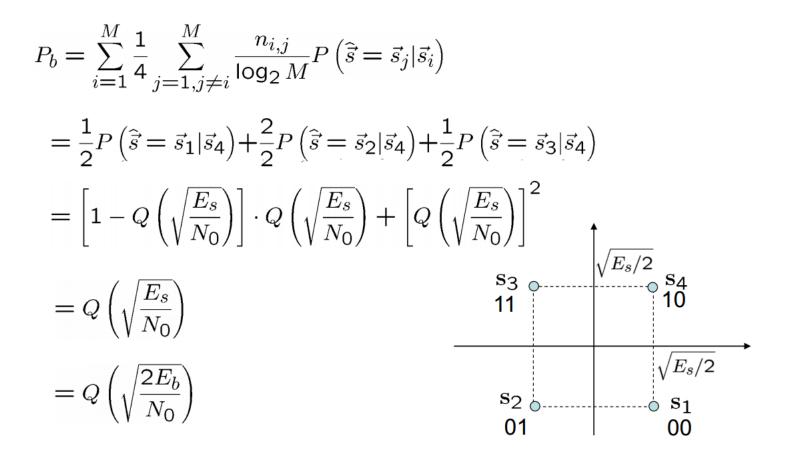
- Gray Code
 - Symbol errors are different from bit errors
 - > When a symbol error occurs, all k bits could be in error
 - ➤ In general, we can find BER using

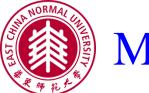
$$P_{b} = \sum_{i=1}^{M} P(\vec{s}_{i}) \sum_{j=1, j \neq i}^{M} \frac{n_{i,j}}{\log_{2} M} P\left(\hat{\vec{s}} = \vec{s}_{j} | \vec{s}_{i}\right)$$

n_{ij} the number of different bits between **s**_i and **s**_j

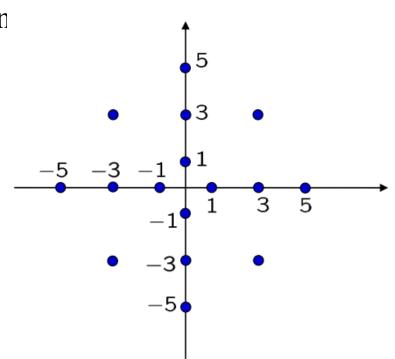
- Gray coding is a bit-to-symbol mapping, where two adjacent symbols differ in only one bit out of the k bits
- An error between adjacent symbol pairs results in one and only one bit error

• Gray Code





- Example
 - The 16-QAM signal constellation shown right is an international standard for telephone-line modems (called V.29)
 - Determine the optimum decision boundaries for the detector
 - Derive the union bound of the probability of symbol error assuming that the SNR is sufficiently high so that errors only occur between adjacent points
 - Specify a Gray code for this 16-QAM V.29 signal constellation



- Gray Code
 - For MPSK with Gray coding, we know that an error between adjacent symbols will most likely occur. Thus, bit error probability can be approximated by

$$P_b \approx \frac{P_e}{\log_2 M}$$

➢ For MFSK, when an error occurs, anyone of the other symbols may result equally likely. Thus, k/2 bits every k bits will on average be in error when there is a symbol error. The bit error rate is approximately half of the symbol error rate

$$P_b \cong \frac{1}{2} P_e$$

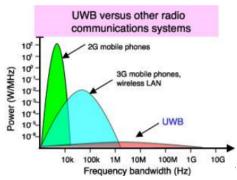
Think about why MQAM is more preferrable?

- Channel bandwidth and transmit power are two primary communication resources and have to be used as efficient as possible
 - Power utilization efficiency (energy efficiency): measured by the required Eb/No to achieve a certain bit error probability
 - Spectrum utilization efficiency (bandwidth efficiency): measured by the achievable data rate per unit bandwidth Rb/B
- It is always desired to maximize bandwidth efficiency at a minimal required Eb/N0

• Consider for example you are a system engineer in Huawei/ZTE, designing a part of the communication systems. You are required to design a modulation scheme for three systems using MFSK, MPSK or MQAM only. State the modulation level M to be low, medium or high

An ultra-wideband system

- Large amount of bandwidth
- Band overlays with other systems
- Purpose: high data rate



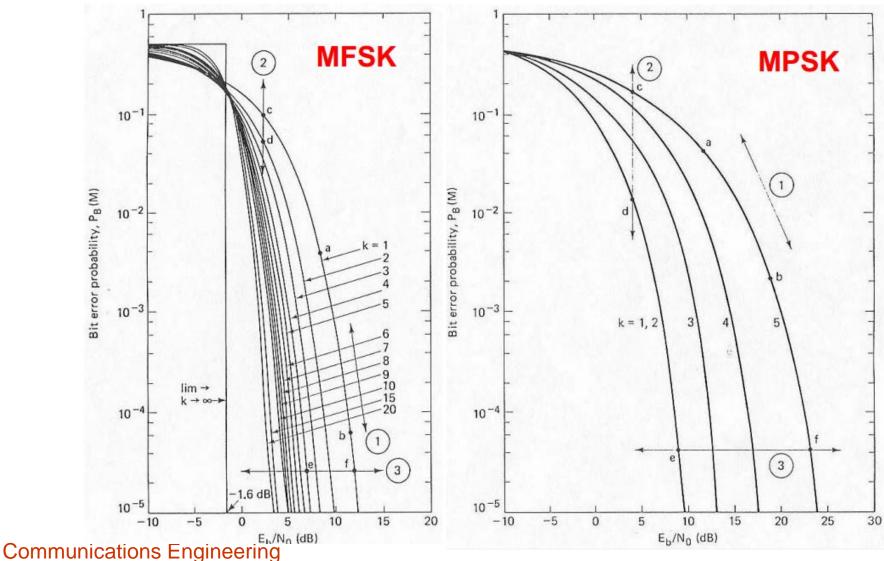
A wireless remote control system

- Use unlicensed band
- Purpose: control devices remotely

A fixed wireless system

- Use licensed band
- Transmitter and receiver fixed with power supply
- Voice and data connections in rural areas

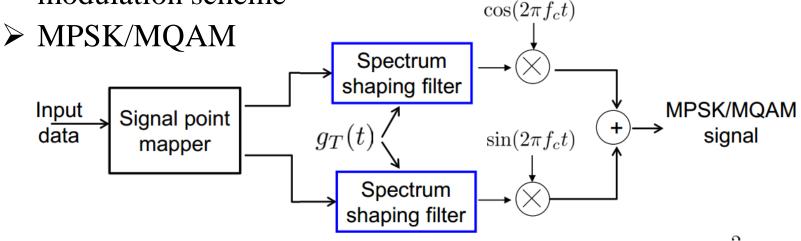
• Energy efficiency comparison



- Energy efficiency comparison
 - MFSK: At fixed Eb/No, increasing M can provide an improvement on Pb; At fixed Pb, increasing M can provide a reduction in the Eb/No
 - MPSK: BPSK and QPSK have the same energy efficiency. At fixed Eb/No, increasing M degrades Pb; At fxied Pb, increasing M increases the Eb/No requirement

MFSK is more energy efficient than MPSK

- Bandwidth efficiency comparison
 - To compare bandwidth efficiency, we need to know the power spectral density (power spectra) of a given modulation scheme



⇒ If $g_T(t)$ is rectangular, the bandwidth of main-lobe is $B = \frac{2}{T_s}$ ⇒ If it has a raised cosine spectrum, the bandwidth is $B = \frac{1+\alpha}{T_s}$

- Bandwidth efficiency comparison
 - ➤ In general, bandwidth required to pass MPSK/MQAM signal is approximately given by $B = \frac{1}{\pi}$
 - The bit rate is $R_b = \frac{\log_2 M}{T_s}$
 - > So the bandwidth efficiency may be expressed as

$$\rho = \frac{R_b}{B} = \log_2 M \text{ (bits/sec/Hz)}$$

➢ But for MFSK, bandwidth required to transmit MSFK signal is $B = \frac{M}{2T}$ Adjacent frequencie

$$\rho = \frac{R_b}{B} = \frac{2\log_2 M}{M} \quad \text{(bits/s/Hz)}$$

Adjacent frequencies need to be separated by 1/2T to maintain orthogonality

- Bandwidth efficiency comparison
 - ➤ In general, bandwidth required to pass MPSK/MQAM signal is approximately given by $B = \frac{1}{\pi}$
 - The bit rate is $R_b = \frac{\log_2 M}{T_s}$

 R_h

> So the bandwidth efficiency may be expressed as

MPSK/MQAM is more bandwidth efficient than MFSK

signal is

$$B = \frac{M}{2T}$$

Bandwidth efficiency

$$\rho = \frac{R_b}{B} = \frac{2\log_2 M}{M} \quad \text{(bits/s/Hz)}$$

Adjacent frequencies need to be separated by 1/2T to maintain orthogonality

- Fundamental tradeoff: Bandwidth Efficiency vs. Energy Efficiency
 - To see the ultimate power-bandwidth tradeoff, we need to use Shannon's channel capacity theorem:

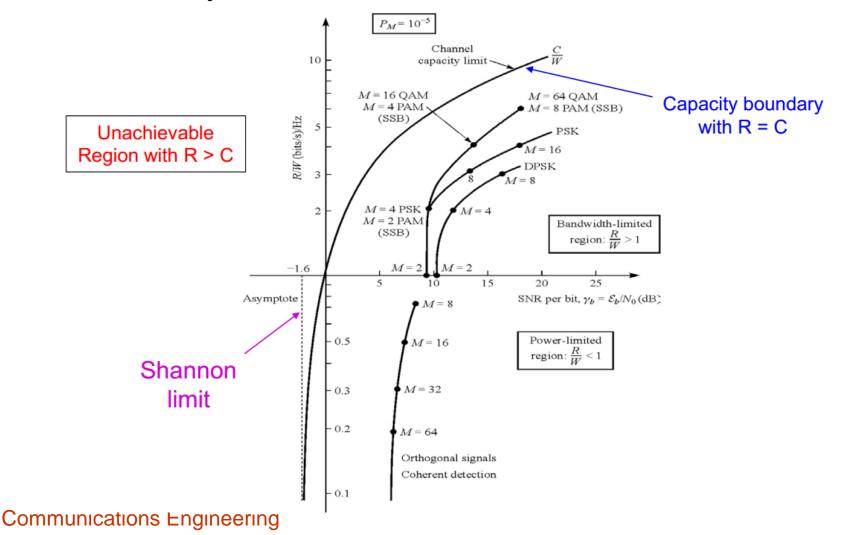
Channel capacity is the theoretical upperbound for the maximum rate at which information could be transmitted without error (Shannon 1948)

Specifically, for a bandlimited channel corrupted by AWGN, the maximum achievable rate is given by

$$R \le C = B \log_2(1 + SNR) = B \log_2(1 + \frac{P_s}{N_0 B})$$

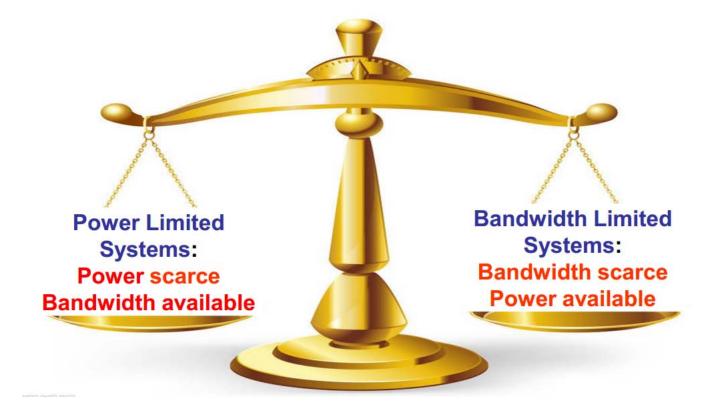
Note that $\frac{E_b}{N_0} = \frac{P_s T}{N_0} = \frac{P_s}{RN_0} = \frac{P_s B}{RN_0 B} = SNR \frac{B}{R}$
Thus, $\frac{E_b}{N_0} = \frac{B}{R}(2^{R/B} - 1)$

• Fundamental tradeoff: Bandwidth Efficiency vs. Energy Efficiency



- Fundamental tradeoff: Bandwidth Efficiency vs. Energy Efficiency
 - > In the limits as R/B goes to 0, we get $\frac{E_b}{N_0} = \ln 2 = 0.693 = -1.59dB$
 - This value is called the Shannon limit. Received Eb/No must be >-1.59 dB to ensure reliable communication
 - ➢ BPSK and QPSK require the same E_b/N₀ of 9.6 dB to achieve P_e=10⁻⁵. However, QPSK has a better bandwidth efficiency.
 - > MQAM is superior to MPSK
 - MPSK/MQAM increases bandwidth efficiency at the cost of energy efficiency
- MFSK trades energy efficiency at reduced bandwiidth efficiency Communications Engineering

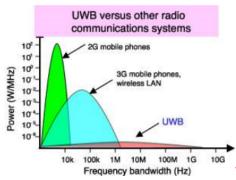
- Fundamental tradeoff: Bandwidth Efficiency vs. Energy Efficiency
 - \succ Which modulation to use?



 Consider for example you are a system engineer in Huawei/ZTE, designing a part of the communication systems. You are required to design a modulation scheme for three systems using MFSK, MPSK or MQAM only. State the modulation level M to be low, medium or high

An ultra-wideband system

- Large amount of bandwidth
- Band overlays with other systems
- Purpose: high data rate



A wireless remote control system

- Use unlicensed band
- Purpose: control devices remotely

A fixed wireless system

- Use licensed band
- Transmitter and receiver fixed with power supply
- Voice and data connections in rural areas

- Practical applications
 - BPSK: WLAN IEEE 802.11b (1 Mbps)
 - > QPSK:
- 1. WLAN IEEE 802.11b (2 Mbps, 5.5 Mbps, 11 Mbps)
 - 2. 3G WCDMA
 - 3. DVB-T (with OFDM)
- \blacktriangleright QAM: 1. Telephone modem (16-QAM)
 - 2. Downstream of Cable modem (64-QAM, 256-QAM)
 - 3. WLAN IEEE 802.11 a/g (16-QAM for 24 Mbps, 36 Mbps; 64-QAM for 38 Mbps and 54 Mbps)
 - 4. LTE cellular Systems
 - 5. 5G

≻ FSK:

- 1. Cordless telephone
- 2. Paging system