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Digital modulation techniques

------------------
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o Binary digital modulation
o M-ary digital modulation

o Comparison study Chapter 8.2, 8.3.3, 8.5-8.7,
9.1-9.5, 9.7
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)) Digital modulation techniques

o |n digital communications, the modulation process
corresponds to switching or keying the amplitude,
frequency, or phase of a sinusoidal carrier wave
corresponding to incoming digital data

° Three basic digital modulation techniques

1. Amplitude-shift keying (ASK) - special case of AM
2. Frequency-shift keying (FSK) - special case of FM
3. Phase-shift keying (PSK) - special case of PM

o \We use signal space approach in receiver design and
performance analysis

Communications Engineering



Binary digital modulation

* |n binary signaling, the modulator produces one of two
distinct signals In response to one bit of source data at a
time.

X 10110100 7
i S > /

o Binary modulation type

Binary PSK Binary FSK Binary ASK
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Binary digital modulation

o Binary Phase-Shift Keying (BPSK)
> Modulation 0111, 0 10 01

|0 ¥ P i i
g — | ; 3 i '
Vi, AR
! |
‘0" —s55(t) = 1/2TE;)COS iwact + w]l = —\/%Ebbcos (27 fet)

» 0<t<T,,T, bit duration

> fc :carrier frequency, chosen to be n¢/1} for some
fixed integer n¢ or f, >>1/T,

» Ly, . transmitted signal energy per bit, I.e.,
Ty 5 _ [P 5 i
/O s2(t)dt = /O s2(t)dt =

» The pair of signals differ only in a 180-degree phase
shift
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Binary digital modulation

o Binary Phase-Shift Keying (BPSK)
» Signal space representation:

2 .
$1(t) = ﬂ/_T cos(2nfet) with 0<t<T,
b

> S0 s1(t) = \/Epp1(t) and sa(t) = —/Byé1(t)

» A binary PSK system is characterized by a signal space
that is one-dimensional (N=1), and has two message
points (M=2)

@

!O O =Q51(t) d12 = 2\/55

S, S

» Assume that the two signals are equally likely, I.e.,
P(Sl) = P(SQ) = 0.5
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Binary digital modulation

o Binary Phase-Shift Keying (BPSK)
» The optimal decision boundary is the midpoint of the

line joining these two message points
|

— Region R, ...:4 Region R,

o—o
S, : S

“1(t)

> Decision rule:

1. Guess signal si(t) (or binary 1) was transmitted if the
received signal point» falls in region R, (+ > 0)

2. Guess signal s2(t) (or binary 0) was transmitted
otherwise (r <0)

Communications Engineering



9 Binary digital modulation

o Binary Phase-Shift Keying (BPSK)
» Probability of error analysis.

» The conditional probability of the receiver deciding In

favor of s2(t) given that si(t) was transmitted 1s
P(e|s1) = P(r < 0l|s1)
) - 2
_ /0 1 exp{_(r VEp) }dT: Q ( @)
J =00 7TNO
» Due to symmetry

P(e|52)=P(r>0|52)=Q( %j

0
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9 Binary digital modulation

o Binary Phase-Shift Keying (BPSK)
» Probability of error analysis.

» Since the signals si(t) and sz(t) are equally likely to be
transmitted, the average probability of error Is

Pe = 0.5P(e|s1) + 0.5P(efs2) = @ (\/%)

P, depends on ratio

» This ratio i1s normally called bit energy to noise density
ratio (SNR/bit)

Communications Engineering



Binary digital modulation

o Binary Phase-Shift Keying (BPSK)

> Transmitter.

Input binary
data ’

Spectrum

m(t)

shaping filter |

/B

/

B

Rectangular

pulse

Communications Engineering

Product
modulator

, Binary PSK

wave s(t)

Carrier wave

¢1(t) = \/%COS (2m fet)
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Binary digital modulation

o Binary Phase-Shift Keying (BPSK)

> Recelver.
r(t) = £,/ 228 cos (2mfet + 0)
Ty, [’ — Say 1 if threshold is exceeded
-I—n(t) ) Ir,, PR De0|§|on .
° de\]{lce Say 0, otherwise
\E cos (21 fut + 0) Threshold
N AN _/
Y N
demodulator detector

» 0 1S the carrier-phase offset, due to propagation delay or
oscillators at the transmitter and receiver are not
synchronous

» The detection Is coherent in the sense of phase
synchronization and timing synchronization

Communications Engineering 11



9 Binary digital modulation

o Binary Frequency-Shift Keying (BFSK)
» Modulation 0 1:i1: 100800 1!

- A AAANA m\f\ A
v en0 = Freserng N vvw VARV \/AUM
“0° . so(t) = \/?ibcos (2rfot) 0L t< Ty

> Ey : transmitted signal energy per bit
T, Ty
/o s7(t)dt :/O s3(t)dt =
> f; . transmitted frequency with separationas = 1, - f,
> Ar 1S selected so that si(t) and s2(t) are orthogonal, 1.e.,
k/OTb s1()sp(t)dt = 0
(Example?)

Communications Engineering 12



Binary digital modulation

o Binary Frequency-Shift Keying (BFSK)
» Signal space representation:

p1(t) = \/%COS (2m f1t)
Po(t) = \/sz cos (27 fot)

s1=[\/E, O]
so=1[0 /By

Communications Engineering

0<t<T, s1(t) = \/Eyo1 (1)
—>
0<t<T, s2(t) = /Bypda(t)
 92()
Message d12 = /2L

point SO @ /. E,

Message point S1

® > ¢1(t)

JE,
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Binary digital modulation

o Binary Frequency-Shift Keying (BFSK)
» Decision regions:

7= [r1 ro] $2(t) R, _» Decision boundary
Message s

T, .
n=['r®éiwa PONtS2 @
T, /’ R,

T = / r(t)po(t)dt _+" Message point 81
0 1 ® > ¢91(t)

1. Guess signal si(t) (or binary 1) was transmitted if the
received signal point r falls in region r, (r2>r1)

2. Guess signal sz(t) (or binary 0) was transmitted
otherwise (r <0)

Communications Engineering
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Binary digital modulation

° Binary Frequency-Shift Keying (BFSK)
» Probability of error analysis.
» Given that s1 IS transmitted
rlz\/Eb+nl and T2 =N

» Since the condition r2>r1 corresponds to the receiver
making a decision in favor of symbol sz, the conditional
probability of error when s: Is transmitted is given by

P(e|s1) = P(r1 < rals1) = P(\/Ep+n1 < no)
> niand nz are i.i.d. Gaussian with n1,no € N (0, Ng/2)
> Thenn = n1 —no is Gaussian with n € N'(0, Ng)

) Plels1) = P(n < —/E) = Q (\/%)

Communications Engineering 15



Binary digital modulation

° Binary Frequency-Shift Keying (BFSK)
» Probability of error analysis.
» By symmetry, we also have

Plelsa) = Plry > ralsa) = Q (/)

» Since the two signals are equally likely to be transmitted,
the average probability of error for coherent binary FSK

IS

E
Pe=Q (MN—Z) —> 3 dB worse than BPSK

To achieve the same P,, BFSK needs 3dB more
transmission power than BPSK

Communications Engineering
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Binary digital modulation

o Binary Frequency-Shift Keying (BFSK)
» Transmitter.

Binary wave

On-off signalling form

1

-

o [pp—

Communications Engineering

)}
’Q;/
2 "1- Binary FSK wave

,
fi() = |=cos(2af)1)
\T, zj—

Inverter

[ ]
fit) = [ eos2fyv)
|‘| 1;
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Binary digital modulation

o Binary Frequency-Shift Keying (BFSK)

> Recelver.

r(t)

¢1(1)

i : T
#

$2(1)

Communications Engineering
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2

Decision
Device

-1

Choose 1if >0
Choose 0 otherwise



9 Binary digital modulation

o Binary Amplitude-Shift Keying (BASK)

» Modulation. 0 (1110110 0 i1
o _ 2E L ANANE AAE A
17 — s1(t) = T, cos(27 fet) L_,b_,iiv VEU U U V U Ul
“0O — 32(t) =0 0 S t < Tb ' | | | |

> Average energy per bit (On-off signaling)

E+0
Ey = -2|— i.e. E=2E,
» Decision region
— Region R, pq Region R,
I oo K f o
0 V2B, 2B,
L
Communications Engineering 19
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9 Binary digital modulation

o Binary Amplitude-Shift Keying (BASK)
» Probability of error analysis.

» Average probability of error Prove it!

P.=Q Ep |dentical to that of coherent binary FSK
No

Communications Engineering 20



Binary digital modulation

o Comparison

BPSK BFSK BASK
d1o = 2\/55 dio = /2F d1o2= V 2k

° |n general,

Communications Engineering
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Binary digital modulation

o Example

» Binary data are transmitted over a microwave link at the
rate of 10° bits/sec and the PSD of the noise at the
receiver input is 1019 watts/Hz.

» Find the average carrier power required to maintain an
average probability of error P, < 10~ for coherent
binary FSK.

» What if noncoherent binary FSK?

Communications Engineering
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Binary digital modulation

o Update

» We have discussed coherent modulation schemes, e.g.,
BPSK, BFSK, BASK, which need coherent detection
assuming that the receiver is able to detect and track the
carrier wave’s phase

» In many practical situations, strict phase
synchronization is not possible. In these situations, non-
coherent reception Is required.

» We now consider non-coherent detection on binary FSK
and differential phase-shift keying (DPSK)

Communications Engineering 24



Binary digital modulation

® Non-coherent scheme: BFSK
» Consider a binary FSK system, the two signals are

s1(t) =, /% cos (2w fit + 61)
b

52() = |22t cos (2r fot + 6,)
Ty,

> 01, 02 : unknown random phases with uniform
distribution

0<t<T

po,(0) = pg,(0) = { é/% gée[o’ 27)

Communications Engineering 25



Binary digital modulation

* Non-coherent scheme: BFSK
» Since
s1(t) = 1!%cos rfit+01) = .H@cos(zvrflt) cos(61)— %sin(zwflt) sin(61)
75 Tb Tb

so(t) = ,z% cos (2m fot + 05) = 1/@ cos(2m fot) cos(bo)— 25y sin(2x fot) sin(6>)
1 Ty 1y

» Choose four basis functions as
p1.(t) = \/2/Tycos(2n f1t)  ¢1s(t) = —\/2/Tsin(27 f1t)
$2c(t) = /2/Tcos(2m fat)  ¢os(t) = \/2/Tysin(2r fat)

» Signal space representation
§1 =[+VE,cosf, +/Epsin6y 0 0]
52 = [ 0O O \/EbCOSQQ \/EbSiﬂ 92 ]

Communications Engineering 26



Binary digital modulation

® Non-coherent scheme: BFSK

» The vector representation of the received signal
o=t g PR P 2 Y

r(t)

qﬁ’l(:(’%<>

¢15(t)

—

¢23(2>5

Communications Engineering
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| ¢‘2c(%§

13 Odt |—2
/g Odt i
& Ode | —=
1§ Ode |2,
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Binary digital modulation

® Non-coherent scheme: BFSK

> Decision rule:
Choose s,

f(7151) 2 f(7]52) ML

Choose s,

» Conditional pdf

flrlsiidi= %%EXD

[_(ﬁc — VEycos61)? + (r15 — VE,sin 91)1
No

1 '}’*2 i airi-2
.. X e @XD [_ 20 i 2s
> Similarly ©Np Ng
2 2
F (7152, 02) = W_leoexp [_%01
X——exp |—
mNg ] No

Communications Engineering 28



Binary digital modulation

® Non-coherent scheme: BFSK
» For ML decision, we need to evaluate

f(7151) = f(7]52)

1 271 . 1 2m B
ﬂfo f(r]s1,61)d01 > ﬂ/o f(7]52,02)db

» Removing the constant terms

- 2 2 2 2
1 n, +n, +n, +n +E
- | exp) - -
\ IT..NI G .._' ANI :

> We have ! T .—Zv'frkcos(@) + Ew'{fri:sin(gél)—. ”
A 1 \'ra i -
g )

> 1 TEXp,' 2/ Er, cos(h) + 2“"E’E‘Sm(gf")_'d9"*
37 | N, |
- 0 — ’ )

Communications Engineering 29



Binary digital modulation

o Non-coherent scheme: BFSK
» By definition

1 - -_'\. Er cos(gh) + 24/ E;I sm(aﬁ) 'E(hr )

dg =
24? ::I' .:\l: I‘I ‘:\ 0

where lo() 1s @ modified Bessel function of the zero-th
order

» Thus, the decision rule becomes: choose s: If

-*».‘E("*c +n, )
N,

[ 2GS +15) l
|~

Communications Engineering 30



Binary digital modulation

® Non-coherent scheme: BFSK

» Note that this Bessel function is monotonically
Increasing. Therefore, we choose s: If

[ 2 2 [ 2 2
qr1lc-|_r"7182 T2c+!r23

1. Useful insight: we just compare the energy in the two
frequencies and pick the larger (envelope detector)
2. Carrier phase is irrelevant in decision making

Communications Engineering
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Binary digital modulation

® Non-coherent scheme: BFSK
> Structure.

ﬁblc(t)
—*é@—- j& Odr [ 28\
ﬁbls(t) Z
» (X > fg Odt 7’13‘(.)2/' Comparator]
r(t) o (select m
2¢(t the
—-@5—- 1§ 0d 22l largest)
625 (1) 2~
T T2s /
»(O)——{ Jo Qdt ()2

r=zeo(—52)  See Section 9.5.2

Communications Engineering 32



Binary digital modulation

o Comparison
0
10 E::::

Probability of Bit Error

Eb/No in [dB]

Communications Engineering
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Binary digital modulation

o Differential PSK (DPSK)
» Non-coherent version of PSK

» Phase synchronization is eliminated using differential
encoding

1. Encode the information in phase difference between
successive signal transmission.

2. Send “0”, advance the phase of the current signal by 180°

3. Send “1”, leave the phase unchanged

» Provided that the unknown phase € contained in the
received wave varies slowly (constant over two bit
Intervals), the phase difference between waveforms
received in two successive bit intervals will be
Independent of ¢

Communications Engineering 34



Binary digital modulation

o Differential PSK (DPSK)
» Generate DPSK signals in two steps

1. Differential encoding of the information binary bits.
2. Phase shift keying

» Differential encoding starts with an arbitrary reference
bit
Information
sequence

Differentially _
encoded o 1 1 0 1 1 1 {di} _di=di_1@mi

sequence |nlt‘\ bit

Transmitted
Phase

0 01 0 0 1 1 {m}

Communications Engineering
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Binary digital modulation

o Differential PSK (DPSK)
» Structure.

Input
Binary
Sequence — {dé}
ogic
—_—- - BPSK Mod
Network
{m;} t J
‘ L 1 bitdelay
1di—1}

Communications Engineering



Binary digital modulation

o Differential PSK (DPSK)
» Differential detection.

1 Choose 1ifI>0
T_(t) . N P W J‘ Decision |
’ de\{ce Otherwise choose 0
Delay Threshold of

T zero volts

» Output of integrator (assume noise free)
y=["r0r(t Ty = [ cos(uet + v+ ) cos(uet + i +0)d
oc cos(y, — Yg—1)
» The unknown phaseg becomes irrelevant. The decision
becomes: If y;, — ;1 = 0 (DIt 1), then y>0; If
Y — -1 =n (bit 0), then y<0
nmjo ()

Communications Engineering 37



o Comparison

Coherent PSK

Coherent ASK

Coherent FSK

Non-Coherent FSK

DPSK

Communications Engineering
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M-ary digital modulation

* |n binary data transmission, send only one of two possible
signals during each bit interval To

° |n M-ary data transmission, send one of M possible signals
during each signaling interval T

* |n almost all applications, M=2"and T=nTy, where n is an
Integer
o Each of the M signals is called a symbol

° These signals are generated by changing the amplitude,
phase, frequency, or combined forms of a carrier in M
discrete steps.

° Thus, we have MASK, MPSK, MFSK, and MQAM

Communications Engineering 41



M-ary digital modulation

o M-ary Phase-shift Keying (MPSK)
» Modulation: The phase of the carrier takes on M
possible values

Gngzzﬂ(m_l)/ﬂ/f, m = 1,...,M
» Signal set
M 0<t<T

|2F
ST” (t) — ?S COS
1

> Es=Energy per symbol, /. >>
» Basis functions

$1(t) = \/% cos(2 fet)

o (t) = \/% sin(2x fct)

Communications Engineering 42
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M-ary digital modulation

o M-ary Phase-shift Keying (MPSK)
» Signal space representation.
27 fet + ]

sm(t) = -11% COS o
_ |2Es 2n(m — 1)
=\ 7 cos (27 fet) cos [ Vi ]
. /% sin (2 fot) sin lzﬁ(ﬂ;/[ 1)]

QW(’r;LL/I— 1)1051(75)— - sin [Qﬁ(’r;}— 1)]

27(m — 1)

Po(t)

= v/ E5COS

:> Sm = [ Es cos (2W(R’;—1)) Essin (2W(R}_l)) ]

m=1,...,M

Communications Engineering
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M-ary digital modulation

o M-ary Phase-shift Keying (MPSK)
» Signal constellations.

Qecision
line l{DL) 5 oL
i s
| A P
| Y.
| n /
= P
— : > - = >
S92 | 51 53 // 51
| 5
| V4
I 4
| s Y
: 3 54
M=2 M=4
(a) (b) (c) (d)
BPSK QPSK 8PSK 16PSK

Communications Engineering



M-ary digital modulation

o M-ary Phase-shift Keying (MPSK)
» Euclidean distance
d = ||sm —S”” = \/ZE_Y (l—cos 2m(m _n)]

M
> The minimum Euclidean

27 . T
d. =,2E |1-cos— =2./E sin—
1‘1‘11‘1 J [ M] 5 M

> dmin plays an important role in determining error
performance as discussed previously (union bound)

» In the case of PSK modulation, the error probability is
dominated by the erroneous selection of either one of
the two signal points adjacent to the transmitted signal
point

> Consequently, an approximation to the symbol error

probability is , d, /2 ( [2E,
Pripsk NZQ{W]_QQ‘( "No Sin I\J)

Communications Engineering
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M-ary digital modulation

o M-ary Phase-shift Keying (MPSK)
» Exercise: Consider the M=2, 4, 8 PSK signal

constellations. All have the same transmitted signal
energy Es.

> Determine the minimum distance dmin between
adjacent signal points

» For M=8, determine by how many dB the transmitted
signal energy Es must be increased to achieve the same
dmin as M=4.

Communications Engineering
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M-ary digital modulation

o M-ary Phase-shift Keying (MPSK)

For large M, doubling
the number of phases
requires an additional 6
dB/bit to achieve the
same performance

Lo fple g p 39

L1 T4 1

probability, Pg (M)

Symbol error
I T I

-5 0 5 10 15 20 25

[7%)
o

o  Ey/Ng (dB)
Communications Engineering



M-ary digital modulation

o M-ary Quadrature Amplitude Modulation (MQAM)

» In MPSK, In-phase and quadrature components are
Interrelated in such a way that the envelope Is constant
(circular constellation)

» If we relax this constraint, we get M-ary QAM
P2()

16PSK 16QAM

Communications Engineering
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M-ary digital modulation

o M-ary Quadrature Amplitude Modulation (MQAM)
» Modulation:

si(t) = 2—?0@ cos(2n fut) + 1/@@; Sin(27 fut)

» Ejq is the energy of the signal with the lowest amplitude
> a;, b; are a pair of independent integers
» Basis functions

¢1(t) = \/?COS(%fct) $2(t) = \/g sin(2rfet) 0<t<T

» Signal space representation

5 = [\/Eoa; +/Eobi]

Communications Engineering 49



M-ary digital modulation

o M-ary Quadrature Amplitude Modulation (MQAM)
» Signal constellation.

¢2(t)
4 M = 64
T——o——o——o——.——o—c——?
M = 32 I
e o o -¢ -2 o o
|
l M =16 |
e o r-r---o—-T 0 T
| _
o 01-0_4 ®
M S ol ?3 '5 17,
¢ o oy - 6 ¢ o O1(t)
| I
+ e o—-—o—|-0—-—-0 » 4
+ e ¢ -¢cleo—-—23 e qlv
| |
® - 90— -0 —0 -0 — 0 00— —0

Communications Engineering 50



)) M-ary digital modulation

o M-ary Quadrature Amplitude Modulation (MQAM)
» Probability of error analysis.
» Upper bound of the symbol error probability

3kE, )
BP£4Q(\/(M—1)NU] (for M =2")

Think about the increase in Eb required to maintain the
same error performance if the number of bits per symbol
IS increased from k to k+1, where k is large.

Communications Engineering
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M-ary digital modulation

o M-ary Frequency-shift Keying (MFSK) (Multitone

Signaling)
» Signal set:
sm(t) = \/TESCOS{QW(fc +(m-vapy M LooM
s o JRE Al

where Af = fm — fm—1 with fi, = fe+mAf

» Correlation between two symbols
1

T
= — Sm (t)sn(t)dt
Pmn B Jo m() n()

__sin[2n(m — n)AfT]
 2x(m = n)AFT

= sinc[2(m —n)AfT]

Communications Engineering 52



M-ary digital modulation

o M-ary Frequency-shift Keying (MFSK) (Multitone
Signaling)

p’TTLTL

0
-0.217

» For orthogonality, the minimum frequency separation Is
Af = %

Communications Engineering 53



M-ary digital modulation

o M-ary Frequency-shift Keying (MFSK) (Multitone
Signaling)
» Geometrical representation.

sy = (VE, ,0,0,--+,0)
s, =(0,y/E,,0,-+-,0}

1 =(0.0,-+,0,/E, )

> Basis functions.

. :\/%(:052;1(]:_ +mAf )t

Communications Engineering
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M-ary digital modulation

o M-ary Frequency-shift Keying (MFSK) (Multitone

Signaling)
» Probability of error.

P, (E)

Communications Engineering

1

107 |

102

1073

107

| | |

e == n=1
I — D=2
3 ) -
- n=4
—n=5
i —\— n=6
[ — ——n=7
i n=8
—— =9
- n=10
= —n=11
& — n=12
1.6dB
= ;,:"Il
A |
-10 0 5 10 15

20
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)) M-ary digital modulation

* Notes

» Pe Is found by integrating conditional probability of
error over the decision region, which is difficult to
compute but can be simplified using union bound

» Pe depends only on the distance profile of the signal
constellation

Communications Engineering
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M-ary digital modulation

o Gray Code
» Symbol errors are different from bit errors
» When a symbol error occurs, all k bits could be in error

» In general, we can find BER using nij the number of
M AR i different bits
Ll — 1,7 pe I Ry [l
AT s €9 i) 10g» M (8 m 85"8“) between si and s

i=1 =157

» Gray coding Is a bit-to-symbol mapping, where two
adjacent symbols differ in only one bit out of the k bits

» An error between adjacent symbol pairs results in one and
only one bit error
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M-ary digital modulation

o Example

» The 16-QAM signal constellatior
shown right Is an international
standard for telephone-line
modems (called V.29)

» Determine the optimum decision

|5

boundaries for the detector

» Derive the union bound of the
probability of symbol error
assuming that the SNR is
sufficiently high so that errors
only occur between adjacent
points

» Specify a Gray code for this 16-
QAM V.29 signal constellation

Communications Engineering
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M-ary digital modulation

o Gray Code

» For MPSK with Gray coding, we know that an error
between adjacent symbols will most likely occur. Thus,

bit error probability can be approximated by
Pe

N logo M

P

» For MFSK, when an error occurs, anyone of the other
symbols may result equally likely. Thus, k/2 bits every k
bits will on average be in error when there is a symbol
error. The bit error rate is approximately half of the
symbol error rate

1

b=k

Think about why MQAM is more preferrable?

Communications Engineering
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M-ary digital modulation

o Channel bandwidth and transmit power are two primary
communication resources and have to be used as efficient as
possible

» Power utilization efficiency (energy efficiency): measured
by the required Eb/No to achieve a certain bit error
probability

» Spectrum utilization efficiency (bandwidth efficiency):
measured by the achievable data rate per unit bandwidth
Ru/B

o |t is always desired to maximize bandwidth efficiency at a
minimal required En/No
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M-ary digital modulation

o Consider for example you are a system engineer in
Huawel/ZTE, designing a part of the communication systems.
You are required to design a modulation scheme for three
systems using MFSK, MPSK or MQAM only. State the
modulation level M to be low, medium or high

An ultra-wideband A wireless remote A fixed wireless
system control system system
» Large amount of » Use unlicensed » Use licensed band

bandwidth band » Transmitter and
» Band overlays with an receiver fixed with

other systems > (F;urpose: conircil power supply
> Purpose: high data evices remotely > Voice and data
rate connections in rural
areas

UWB versus other radio
communications systems

2G mobile phones . - 3

b

2 3G mobile phones
5 10 wirgless LAN

g 10

- 10

@

T | E— —r
10k 100k 1M 10M  100M 1G  10G
Frequency bandwidth (Hz)
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M-ary digital modulation

* Energy efficiency comparison
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)) M-ary digital modulation

o Energy efficiency comparison

» MFSK: At fixed En/No, increasing M can provide an
Improvement on Po; At fixed Pob, increasing M can provide
a reduction in the En/No

» MPSK: BPSK and QPSK have the same energy efficiency.
At fixed En/No, increasing M degrades Pb; At fxied Pb,
Increasing M increases the En/No requirement

MFESK Is more energy efficient than MPSK
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M-ary digital modulation

o Bandwidth efficiency comparison

» To compare bandwidth efficiency, we need to know the
power spectral density (power spectra) of a given
modulation scheme

> MPSK/MQAM

cos(2m f.t)

| Spectrum |[__,
“| shaping filter

Input | g; T Y MPSK/MQAM
= 5 Signal point 5 ,
data mapper gr (t) < Sin (27 f.t) @ signal

| Spectrum _,(:)
shaping filter

> If g7 (1) is rectangular, the bandwidth of main-lobe is B =

» If it has a raised cosine spectrum, the bandwidth Is .

(3]

2
T
+ ¢

TS
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M-ary digital modulation

o Bandwidth efficiency comparison

» In general, bandwidth required to pass MPSK/MQAM
signal Is approximately given by B= "+

> The bit rate is 09 M
b T,
» So the bandwidth efficiency may be expressed as

p = % = log> M (bits/sec/Hz)

» But for MFSK, bandwidth required to transmit MSFK
signal is =2

_ o 27 Adjacent frequencies need
» Bandwidth efficiency to be separated by 1/2T to
2logy M intai i
)= % _ 0}%2 bitsis/Hz) | Maintain orthogonality
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) M-ary digital modulation

o Bandwidth efficiency comparison

» In general, bandwidth required to pass MPSK/MQAM
signal Is approximately given by B= "+

> The bit rate 1s

Ry =

|092M
Ts

S,

» So the bandwidth efficiency may be expressed as

R

MPSK/MQAM is more bandwidth
efficient than. MFSK

» Bandwidth efficiency

~ 2T

signal Is
_ R _
P=5=

2logo M

M

(bits/s/Hz)

Communications Engineering

Adjacent frequencies need
to be separated by 1/2T to
maintain orthogonality
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M-ary digital modulation

o Fundamental tradeoff: Bandwidth Efficiency vs. Energy
Efficiency

» To see the ultimate power-bandwidth tradeoff, we need to
use Shannon’s channel capacity theorem:

Channel capacity is the theoretical upperbound for the

maximum rate at which information could be transmitted

without error (Shannon 1948)

» Specifically, for a bandlimited channel corrupted by
AWGN, the maximum achievable rate is given by

REC:Blog2(1+SNR):Blog2(l+ 5 )
N,B
E, PT P PB B
: == SNR=
>NotethatN N, RN, RN,B R
» Thus, E,
—:—(ZR”B )
R
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M-ary digital modulation

o Fundamental tradeoff: Bandwidth Efficiency vs. Energy

Efficiency

Unachievable %
Region with R > C 2
E

Channel

P
capaeity limit w

M =8 PAM (S5B)

M =16 QAM
M = 4 PAM
(S5B)

Capacity boundary
withR=C

PSK

M = 4 PSK
M =2 PAM
(SSBE)

Bandwidth-limited

region & . 1
2 W B

1.6 , M=2 : |
o B 10 20 25
Asymplote i B A= 8 SNR per bit, yp = E/Ny (dB]
/: L 0.5 M=16 Power-limited
: region: R 1
Shannon 18 —
limit
- 0.2 ¢ M- 64
Orthogonal signals
Coherent detection
— 0.1
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M-ary digital modulation

o Fundamental tradeoff: Bandwidth Efficiency vs. Energy
Efficiency

» In the limits as R/B goes to 0, we get

E
b —1n2=10.693 = —1.59dB
Ny

> This value is called the Shannon limit. Received Eb/No
must be >-1.59 dB to ensure reliable communication

» BPSK and QPSK require the same En/No of 9.6 dB to
achieve Pe=10~. However, QPSK has a better bandwidth
efficiency.

» MQAM is superior to MPSK

» MPSK/MQAM increases bandwidth efficiency at the cost
of energy efficiency

» MFSK trades energy efficiency at reduced bandwiidth
efficiency
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M-ary digital modulation

o Fundamental tradeoff: Bandwidth Efficiency vs. Energy
Efficiency

» Which modulation to use?

Bandwidth Limited
Systems:
Bandwidth scarce

Power available
e T

Power Limifed
Systems:
Power scarce

Bandwidth available
~— _ —
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M-ary digital modulation

o Consider for example you are a system engineer in
Huawel/ZTE, designing a part of the communication systems.
You are required to design a modulation scheme for three
systems using MFSK, MPSK or MQAM only. State the
modulation level M to be low, medium or high

An ultra-wideband A wireless remote A fixed wireless
system control system system
» Large amount of » Use unlicensed » Use licensed band

bandwidth band » Transmitter and
» Band overlays with an receiver fixed with

other systems > (F;urpose: conircil power supply
> Purpose: high data evices remotely > Voice and data
rate connections in rural
areas

UWB versus other radio
communications systems

2G mobile phones . - 3

b

2 3G mobile phones
5 10 wirgless LAN

g 10

- 10

@

T | E— —r
10k 100k 1M 10M  100M 1G  10G
Frequency bandwidth (Hz)
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M-ary digital modulation

* Practical applications

» BPSK: WLAN IEEE 802.11b (1 Mbps)

> QPSKY 1 WLAN IEEE 802.11b (2 Mbps, 5.5 Mbps, 11 Mbps)

3G WCDMA
DVB-T (with OFDM)

» QAM: Telephone modem (16-QAM)

Downstream of Cable modem (64-QAM, 256-QAM)
WLAN IEEE 802.11 a/g (16-QAM for 24 Mbps, 36
Mbps; 64-QAM for 38 Mbps and 54 Mbps)

LTE cellular Systems

oG

w N - [CORN ST

o1 &

> FSK:

1. Cordless telephone
2. Paging system
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