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Introduction
Signal, random variable, random process and spectra
Analog modulation
Analog to digital conversion
Digital transmission through baseband channels
Signal space representation
Optimal receivers
Digital modulation techniques
Channel coding
Synchronization
Information theory
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Channel coding

Linear block code  
Convolutional code  Chapter 13.1-13.3
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Channel coding

Information theory and channel coding
 Shannon’s noisy channel coding theorem tells us that 

adding controlled redundancy allows transmission at 
arbitrarily low bit error rate (BER) as long as R ≤ C

 Error control coding (ECC) uses this controlled 
redundancy to detect and correct errors

 ECC depends on the system requirements and the 
nature of the channel

 The key in ECC is to find a way to add redundancy to 
the channel so that the receiver can fully utilize that 
redundancy to detect and correct the errors, and to 
reduce the required transmit power (coding gain)
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Channel coding

Information theory and channel coding
 Consider for example the case that we want to transmit 

data over a telephone link using a modem under the 
conditions that link bandwidth = 3 kHz and the modem 
can operate up to the speed of 3600 bits/sec at an error 
probability Pe = 8x10-4.

 Target: transmit the data the rate of 1200 bits/sec at 
maximum output SNR = 13 dB with a probability of 
error 1x10-4
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Channel coding

Information theory and channel coding
 Shannon theorem tells us that channel capacity is

since B=3000, S/N=13 dB=20
 Thus, by Shannon’s theorem, we can transmit the data 

with an arbitrarily small error probability
 Note that without coding Pe = 8x10-4, the target Pe is 

not met.
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Channel coding

Information theory and channel coding
 Consider a simple code design with repetition code.
 Every bit is transmitted 3 times, e.g., when bk=“0” or 

“1”, transmitted codewords are “000” or “111”
 Based on the received codewords, the decoder attempts 

to extract the transmitted bits using majority-logic 
decoding scheme

 Obviously, the transmitted bits will be recovered 
correctly as long as no more than one of the bits in the 
codewords is affected by noise
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Channel coding

Information theory and channel coding
 With this simple error control coding, the probability 

of error is
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Channel coding

From the above example, we can see the importance of 
coding techniques.
Coding techniques are classified as either block codes or 
convolutional codes, depending on the presence or absence 
of memory
A block code has no memory
 Information sequence is broken into blocks of length k
 Each block of k inf. bits is encoded into a block of n coded bits
 No memory from one block to another block 

A convolutional code has memory 
 A shift register of length k0L is used
 Inf. bits enter the shift register k0 bits at a time and n0 coded bits 

are generated
 These n0 bits depend not only on the recent k0 bits, but also on the 

k0(L-1) previous bits
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Linear block codes

Block codes
 An (n,k) block code is a collection of M=2k

codewords of length n
 Each codeword has a block of k inf. bits followed by a 

group of r=n-k check bits that are derived from the k 
inf. bits in the block preceding the check bits

 The code is said to be linear if any linear combination 
of 2 codewords is also a codeword, i.e., if ci and cj are 
codewords, then ci+ cj is also a codeword (addition is 
module-2)        
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Linear Block codes

Code rate (rate efficiency) = k/n
Matrix description:
 Codeword 
 Message bits 

Each block code can be generated using a Generator 
matrix G (dim: kxn)
Given G, then
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Linear Block codes

Generator matrix G

 Ik is an identity matrix of order k
 P is a matrix of order kx(n-k), which is selected so that 

the code will have certain desired properties
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Linear Block codes

Generator matrix G
 The form of G implies that the 1st k components of any 

codeword are precisely the information symbols
 This form of linear encoding is called systematic 

encoding
 Systematic-form codes allow easy implementation and 

quick look-up features for decoding
 For linear codes, any code is equivalent to a code in 

systematic form (given the same performance). Thus, 
we can restrict our study to only systematic codes
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Linear Block codes

Example
 Hamming code is a family of (n,k) linear block codes 

that have the following parameters
1. Codeword length
2. # of message bits
3. # of parity check bits
4. Capable of providing single-error correction 

capability with 
 (7,4) Hamming code with generator matrix 

Find all codewords
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Linear Block codes

Example
 (7,4) Hamming code
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Linear Block codes

Parity check matrix
 For each G, it is possible to find a corresponding parity 

check matrix H

 H can be used to verify if a codeword C is generated 
by G

 Let C be a codeword generated by 

 Think about the parity check matrix of (7,4) Hamming 
code
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Linear Block codes

Error syndrome
 Received codeword r=c+e, where e=Error vector or 

Error pattern and it is 1 in every position where data 
word is in error

 Example

 Error syndrome: 
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Linear Block codes

Error syndrome
 Note that

 If s=0, then r = c and m is the 1st k bits of r
 If s≠0, and s is the jth row of HT, then 1 error in jth

position of r
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Linear Block codes

Error syndrome
 Consider the (7,4) Hamming code for example

 So if  

 But if 

Note that s is the last 
row of HT

Also note error took 
place in the last bit
Syndrome indicates 
error position 
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Linear Block codes

Cyclic code
 A code                                  is cyclic if 

 (7,4) Hamming code is cyclic
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Linear Block codes

Important parameters
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Linear Block codes

Soft-decision and hard-decision decoding
 Soft-decision decoder operates directly on the decision 

statistics

 Hard-decision decoder makes “hard” decision (0 or 1) 
on individual bits 

 Here we only focus on hard decision decoder
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Linear Block codes

Hard-decision decoding
 Minimum Hamming distance decoding

1. Given the received codeword r, choose c which is 
closest to r in terms of Hamming distance

2. To do so, one can do an exhaustive search (but 
complexity problem if k is large)

 Syndrome decoding
1. Syndrome testing: r=c+e with s=rHT

2. This implies that the corrupted codeword r and 
the error pattern have the same syndrome

3. A simplified decoding procedure based on the 
above observation can be used
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Linear Block codes

Hard-decision decoding
 Let the codewords be denoted as                    with c1

being the all-zero codeword            
 A standard array is constructed as
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Linear Block codes

Hard-decision decoding
 Hard-decoding procedure

1. Find the syndrome by r using s=rHT

2. Find the coset corresponding to s by using the 
standard array

3. Find the cost leader and decode as c=r+ej

 Try on (7,4) Hamming code
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Linear Block codes

Hard-decision decoding
 A linear block code with a minimum distance dmin can

1. Detect up to (dmin-1) errors in each codeword
2. Correct up to                    errors in each codeword
3. t is known as the error correction capability of the 

codeword
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Linear Block codes

Hard-decision decoding
 Consider a linear block code (n,k) with an error 

correcting capability t. The decoder can correct all 
combination of errors up to and including t errors

 Assume that the error probability of each individual 
coded bit is p and that bit errors occur independently 
since the channel is memoryless

 If we send n-bit block, the probability of receiving a 
specific pattern of m errors and (n-m) correct bits is

 Total number of distinct patterns of n bits with m 
errors and (n-m) correct bits is
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Linear Block codes

Hard-decision decoding
 Total probability of receiving a pattern with m errors is

 Thus, the codeword error probability is upperbounded
by
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Linear Block codes

Hard-decision decoding
 Key parameters.

 To detect e bit errors, we have
 To correct t  bit errors, we have  
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Linear Block codes

Major classes of block codes
 Repetition code
 Hamming code
 Golay code
 BCH code
 Reed-Solomon codes
 Walsh codes
 LDPC codes: invented by Robert Gallager in his PhD 

thesis in 1960, now proved to be capacity approaching 
and adopted in 5G standards
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Convolutional codes

A convolutional code has memory
 It is described by 3 integers: n, k, and L
 Maps k inf. bits into n bits using previous (L-1)k bits
 The n bits emitted by the encoder are not only a 

function of the current input k bits, but also a function 
of the previous (L-1)k bits

 Code rate = k/n (information bits/coded bits)
 L is the constraint length and is a measure of the code 

memory
 n does not define a block or codeword length
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Convolutional codes

Convolutional encoding
 A rate k/n convolutional encoder with constraint length 

L consists of kL-stage shift register and n mod-2 
adders

 At each unit of time
1. k bits are shifted into the 1st k stages of the 

register
2. All bits in the register are shifted k stages to the 

right
3. The output of the n adders are sequentially 

sampled to give the coded bits
4. There are n coded bits for each input group of k 

bits or message bits. Hence R=k/n information 
bits/coded bits is the code rate (k<n)
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Convolutional codes

Convolutional encoding
 Encoder structure.

 Typically, k=1 for binary codes. Hence, consider rate 
1/n codes for example.
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Convolutional codes

Convolutional encoding
 Encoding function: characterizes the relationship 

between the information sequence m and the output 
coded sequence U.

 Four popular methods for representation
1. Connection pictorial and connection polynomials 

(usually for encoder)
2. State diagram
3. Tree diagram
4. Trellis diagram

Usually for decoder
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Convolutional codes

Convolutional encoding
 Connection representation.
 Specify n connection vectors,                        for each of 

the n mod-2 adders
 Each vector has kL dimension and describes the 

connection of the shift register to the mod-2 adders
 A 1 in the ith position of the connection vector implies 

shift register is connected
 A 0 implies no connection exists              
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Convolutional codes

Convolutional encoding
 Connection representation (L=3, Rate 1/2).
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Convolutional codes

Convolutional encoding
 State diagram representation.
 The contents of the rightmost L-1 stages (or the 

previous L-1 bits) are considered the current state, 2L-1

states
 Knowledge of the current state and the next input is 

necessary and sufficient to determine the next output 
and next state

 For each state, there are only 2 transitions (to the next 
state) corresponding to the 2 possible input bits

 The transitions are represented by paths on which we 
write the output word associated with the state 
transition: A solid line path corresponds to an input bit 
0, while dashed line for 1
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Convolutional codes

Convolutional encoding
 State diagram representation (L=3, Rate 1/2).
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Convolutional codes

Convolutional encoding
 State diagram representation.
 Assume that m=11011 is the input followed by L-1=2 

zeros to flush the register. Also assume that the initial 
register contents are all zero. Find the output sequence 
U
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Convolutional codes

Convolutional encoding
 Trellis diagram representation.
 Trellis diagram is similar to the state diagram, except 

that it adds the dimension of time.
 The code is represented by a trellis where each trellis 

branch describes an output word
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Convolutional codes

Convolutional encoding
 Trellis diagram representation.
 Every input sequence                corresponds to

 For instance, let s0=00, then

1.
2.
3.
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Convolutional codes

Update
 We have discussed conv. code with constraint length L 

and rate 1/n, and the different representations

 We will talk about decoding of convolutional code 
with maximum likelihood decoding, Viterbi algorithm, 
and transfer function
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Convolutional codes

Maximum likelihood decoding
 Transmit a coded sequence U(m) (corresponds to 

message sequence m) using a digital modulation 
scheme (e.g., BPSK or QPSK)

 Received sequence z
 Maximum likelihood decoder will

1. Find the sequence U(j) such that

2. Minimize the probability of error if m is equally 
likely
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Convolutional codes

Maximum likelihood decoding
 Assume a memoryless channel, i.e., noise components 

are independent. Then, for a rate 1/n code

 Then, the problem is to find a path through the trellis 
such that
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Convolutional codes

Maximum likelihood decoding
 Log-likelihood.
 For AWGN channel with soft decision

Thus, soft decision ML decoder is to choose the path whose 
corresponding sequence is at the minimum Euclidean distance 
from the received sequence
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Convolutional codes

Maximum likelihood decoding
 Log-likelihood.
 For binary symmetric channel (hard decision)
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Convolutional codes

Maximum likelihood decoding
 Decoding procedure:

1. Compute, for each branch i, the branch metric using output 
bits                              associated with that branch and the 
received symbols

2. Compute, for each valid path through the trellis (a valid 
codeword sequence U(m)), the sum of the branch metrics 
along that path

3. The path with the maximum path metric is the decoded path 
 To compare all possible valid paths, we need to do 

exhaustive search or brute-force, not practical as the # 
of paths grows exponentially as the path length 
increases

 The optimal algorithm for solving this problem is the 
Viterbi decoding algorithm or Viterbi decoder
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Convolutional codes

Viterbi decoding
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Convolutional codes

Viterbi decoding
 Consider R=1/2, L=3 for example.
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Convolutional codes

Viterbi decoding
 Basic idea: If any 2 paths in the trellis merge to a 

single state, one of them can always be eliminated in 
the search

 Let cumulative path metric of a given path at ti=sum of 
the branch metrics along that path up to time ti

 Consider t5

1. The upper path metric is 4, the lower path metric 
is 1

2. The upper path metric cannot be path of the 
optima path since the lower path has a lower 
metric

3. This is because future output branches depend on 
the current state and not the previous state
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Convolutional codes

Viterbi decoding
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Convolutional codes

Viterbi decoding
 At time ti, there are 2L-1 states in the trellis
 Each state can be entered by means of 2 states
 Viterbi decoding consists of computing the metric of 

the 2 paths entering each state and eliminating one of 
them

 This is done for each of the 2L-1nodes at time ti
 The decoder then moves to time ti+1 and repeat the 

process
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Convolutional codes

Viterbi decoding
 Example.
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Convolutional codes

Viterbi decoding
 Example.
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Convolutional codes

Viterbi decoding
 dfree=Minimum free distance=Minimum distance of any 

pair of arbitrarily long paths that diverge and remerge
 A code can correct any t channel errors where (this is 

an approximation) 



Communications Engineering 55

Convolutional codes

Transfer function
 The distance properties and the error rate performance 

of a convolutional code can be obtained from its 
transfer function

 Since a convolutional code is linear, the set of 
Hamming distances of the code sequences generated 
up to some stages in the trellis, from the all-zero code 
sequence, is the same as the set of distances of the 
code sequences with respect to any other code 
sequence

 Thus, we assume that the all-zero path is the input to 
the encoder
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Convolutional codes

Transfer function
 State diagram labeled according to distance from all-

zero path
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Convolutional codes

Transfer function
 The transfer function T(D,N,L), also called the wieght

enumerating function of the code is

 By solving the state equations we get 

 The transfer functions indicates that
1. There is one path at distance 5 and length 3, which differs 1 

bit from the correct all-zeros path
2. There are 2 paths at distance 6, one of which is of length 4, 

the other length 5, and both differ in 2 input bits from all-
zeros path

3.
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Convolutional codes

Good convolutional codes
 Good convolutional codes can only be found in general by 

computer search
 They are listed in tables and classified by their constraint length, 

code rate, and their generator polynomials or vectors (typically 
using octal notation).

 The error-correction capability of a convolutional code incrases as 
n increases or as the code rate decreases.

 Thus, the channel bandwidth and decoder complexity increases.
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Convolutional codes

Good convolutional codes
 Rate 1/2.
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Convolutional codes

Good convolutional codes
 Rate 1/3.
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Convolutional codes

Channel coding for Wideband CDMA
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Convolutional codes

Channel coding for Wireless LAN (IEEE 802.11a)
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Convolutional codes

Other advanced channel coding
 Low density parity check codes: Robert Gallager 1960
 Turbo codes: Berrou et al. 1993
 Trellis-coded modulation: Ungerboeck 1982
 Space-time coding: Vahid Tarokh et al. 1998
 Polar codes: Erdal Arkan 2009

Check the latest coding techniques in 5G standards 
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