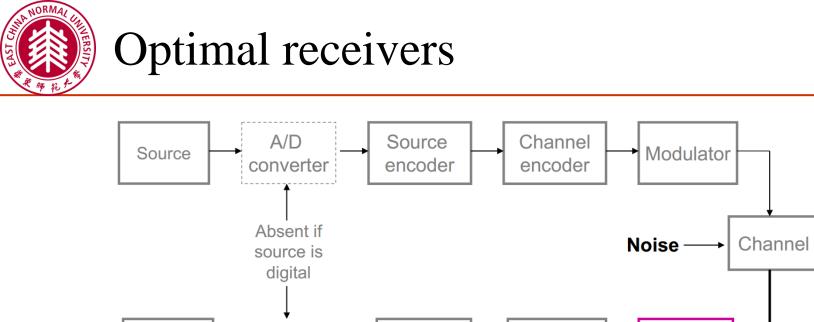


- Introduction
- Signal, random variable, random process and spectra
- Analog modulation
- Analog to digital conversion
- Digital transmission through baseband channels
- Signal space representation
- Optimal receivers
- Digital modulation techniques
- Channel coding
- Synchronization
- Information theory



Source

decoder

Channel

decoder

• Detection theory

User

• Optimal receiver structure

D/A

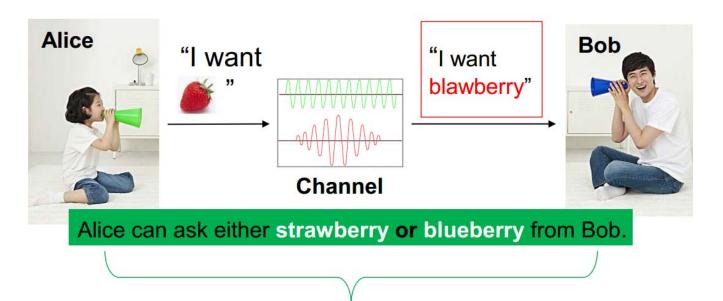
converter

- Matched filter
- Decision regions
- Error probability analysis

Chapter 8.2-8.4, 8.5.3

Detector

Optimal receivers



- In digital communications, hypotheses are the possible messages and observations are the output of a channel
- Based on the observed values of the channel output, we are interested in the best decision making rule in the sense of minimizing the probability of error

• Given M possible hypotheses H_i (signal m_i) with probability

$$P_i=P(m_i)$$
 , $i=1,2,\ldots,M$

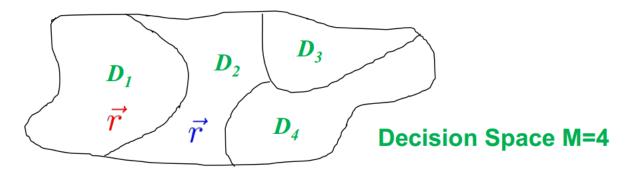
where P_i represents the priori knowledge concerning the probability of the signal mi (priori probability)

- The observation is some collection of N real values denoted by r = (r₁, r₂, ..., r_N) with conditional pdf f(r|m_i) -- conditional pdf of observation r given the signal m_i
- Our goal is to find the best decision-making rule in the sense of minimizing the probability of error

$$\begin{array}{c|c} Message & \xrightarrow{m_i} & Channel & \overrightarrow{r} & Decision & \xrightarrow{\widehat{m}_i} \end{array}$$

Detection theory

- In general, \vec{r} can be regarded as a point in some observation space
- Each hypothesis H_i is associated with a decision region D_i: If \vec{r} falls into D_i, the decision is H_i
- Error occurs when a decision is in favor of another when the signal \vec{r} falls outside the decision region D_i



• Consider a decision rule based on the computation of the posterior probabilities defined as

 $P(m_i | \vec{r}) = P(\mbox{ signal } m_i \mbox{ was transmitted given } \vec{r} \mbox{ observed })$ for i=1,...,M

- A posterior since the decision is made after (or given) the observation
- Different from the a priori where some information about the decision known before the observation
- By Bayes' Rule: $P(m_i|\vec{r}) = \frac{P_i f(\vec{r}|m_i)}{f(\vec{r})}$
- Minimizing the probability of detection error given \vec{r} is equivalent to maximize the probability of correct dection
- Maximum a posterior (MAP) decision rule:

Choose $\hat{m} = m_k$ if and only if $P_k f(\vec{r}|m_k) \ge P_i f(\vec{r}|m_i)$; for all $i \ne k$

Detection theory

- If $p_1 = p_2 = ... = \dot{p}_M$, the signals are equiprobable, finding the signal that maximizes $P(m_k | \vec{r})$ is equivalent to finding the signal that maximizes $f(\vec{r} | m_k)$
- The conditional pdf f(r|mk) is usually called the likelihood function. The decision criterion based on the maixmum of f(r|mk) is called the maximum likelihood (ML) dectection
- ML decision rule:

Choose $\hat{m} = m_k$ if and only if $f(\vec{r}|m_k) \ge f(\vec{r}|m_i)$; for all $i \ne k$

- Signal model
 - Transmitter transmits a sequence of symbols or messages from a set of M symbols m₁, m₂, ..., m_M with priori probabilities

$$p_1 = P(m_1), \ p_2 = P(m_2), \ p_M = P(m_M)$$

- The symbols are represented by finite energy waveforms s₁(t), s₂(t), ..., s_M(t) defined in intervals [0,T]
- > The signal is assumed to be corrupted by additive

- Signal space representation
 - ➤ Signal space of {s1(t),s2(t),...,SM(t)} is assumed to be of dimension N (N≤M)
 - > $\phi_k(t)$ for k=1,...,N will denote the orthonormal basis functions
 - Then each transmitted signal waveform can be represented as

$$s_m(t) = \sum_{k=1}^N s_{mk}\phi_k(t)$$
 where $s_{mk} = \int_0^T s_m(t)\phi_k(t)dt$

> Note that the noise $n_w(t)$ can be written as

$$n_w(t) = n_0(t) + \sum_{k=1}^N n_k \phi_k(t) \text{ where } n_k = \int_0^T n_w(t) \phi_k(t) dt$$

Projection of $n_w(t)$ on the N-dim space

orthogonal to the space, falls outside the signal space spanned by $\{\phi_k(t), k = 1, ..., N\}$

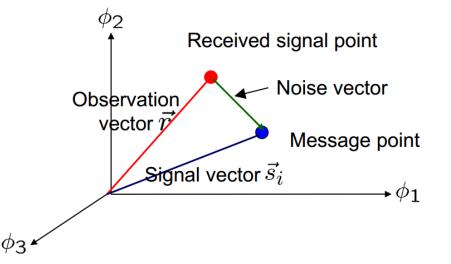
- Signal space representation
 - The received signal can thus be represented as $r(t) = s(t) + n_w(t)$

$$= \sum_{k=1}^{N} s_{mk} \phi_k(t) + \sum_{k=1}^{N} n_k \phi_k(t) + n_0(t)$$
$$= \sum_{k=1}^{N} r_k \phi_k(t) + n_0(t) \quad \text{where} \ r_k = s_{mk} + n_k$$

Projection of r(t) on N-dim signal space

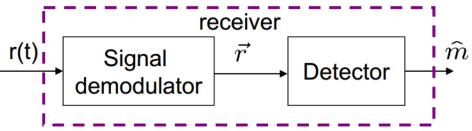
 \succ In vector form, we have

$$\vec{r} = \vec{s}_i + \vec{n}$$



Optimal receiver structure

- Receiver structure
 - Signal demodulator: to convert the received wave form r(t) into an N-dim vector $\vec{r} = (r_1, r_2, \dots, r_N)$
 - > Detector: to decide which of the M possible signal waveforms was transmitted based on the observation vector \vec{r}



Two realizations of the signal demodulator: correlation type and matched-filter type

- Derivation
 - The matched-filter (MF) is the optimal linear filter for maximizing the output SNR.

$$x(t) = s_i(t) + n_i(t)$$

$$h(t)$$

$$H(f)$$

$$y(t) = s_o(t) + n_o(t)$$

$$t = t_0$$

$$y(t_0)$$

- > Input signal component $s_i(t) \leftrightarrow A(f) = \int_{-\infty}^{\infty} s_i(t) e^{-j\omega t} dt$
- > Input noise component $n_i(t)$ with PSD $S_{n_i}(f) = N_0/2$
- Output signal component

$$s_{o}(t) = \int_{-\infty}^{\infty} s_{i}(t-\tau)h(\tau)d\tau$$
$$= \int_{-\infty}^{\infty} A(f)H(f)e^{j\omega t}df$$

 \succ Sample at $t = t_0$

- Derivation
 - > At the sampling instance $t = t_0$, $s_o(t_0) = \int_{-\infty}^{\infty} A(f) H(f) e^{j\omega t_0} df$
 - > Average power of the output noise is

$$N = E\{n_o^2(t)\} = \frac{N_0^2}{2} \int_{-\infty}^{\infty} |H(f)|^2 df$$

Output SNR

$$d = \frac{s_o^2(t_0)}{E\{n_o^2(t)\}} = \frac{\left[\int_{-\infty}^{\infty} A(f)H(f)e^{j\omega t_0}df\right]^2}{\frac{N_0}{2}\int_{-\infty}^{\infty} \left|H(f)\right|^2 df}$$

Find H(f) that can maximize d

- Derivation
 - Schwarz's inequality

$$\int_{-\infty}^{\infty} \left| F(x) \right|^2 dx \int_{-\infty}^{\infty} \left| Q(x) \right|^2 dx \ge \left| \int_{-\infty}^{\infty} F^*(x) Q(x) dx \right|^2$$

equality holds when F(x) = CQ(x)

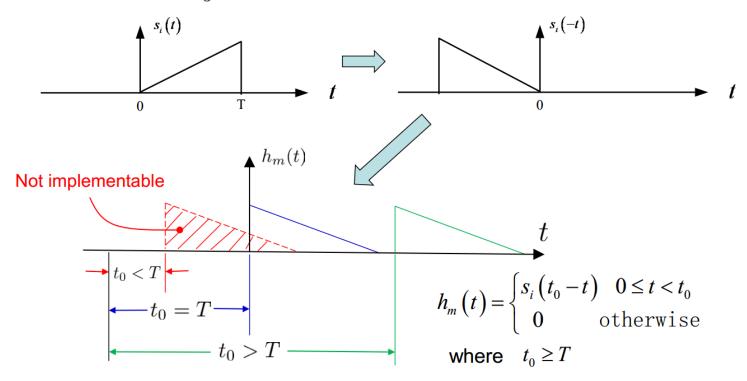
$$\succ \text{Let} \begin{cases} F^*(x) = A(f)e^{j\omega t_0} \\ Q(f) = H(f) \end{cases}, \text{ then} \\ I = Signal energy \\ d \leq \frac{\int_{-\infty}^{\infty} |A(f)|^2 df \int_{-\infty}^{\infty} |H(f)|^2 df}{\frac{1}{2}\int_{-\infty}^{\infty} |H(f)|^2 df} = \frac{\int_{-\infty}^{\infty} |A(f)|^2 df}{\frac{1}{2}\int_{-\infty}^{\infty} |H(f)|^2 df} = \frac{2E}{N_0}$$

- Derivation
 - \succ When the max output SNR 2E/N₀ is achieved, we have

- Transfer function: complex conjugate of the input signal spectrum
- Impulse response: time-reversal and delayed version of the input signal s(t)

• Properties

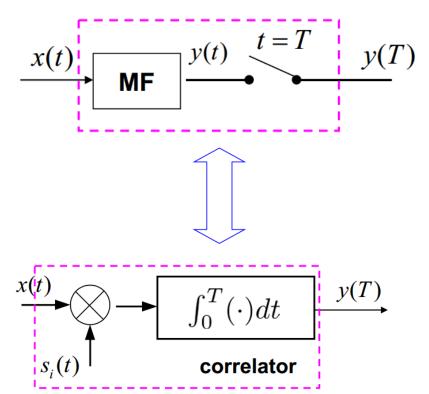
 \succ Choice of t_0 versus the causality



- Properties
 - Equivalent form in correlator
 - > Let $s_i(t)$ be within [0,T]

$$y(t) = x(t) * h_m(t) = x(t) * s_i (T-t)$$
$$= \int_0^T x(\tau) s_i (T-t+\tau) d\tau$$

Observe at sampling time t=7
$$y(T) = \int_0^T x(\tau) s_i(\tau) d\tau = \int_0^T x(t) s_i(t) dt$$
Correlation
integration
(相关积分)



- Properties
 - Correlation function

$$R_{12}(\tau) = \int_{-\infty}^{\infty} s_1(t) s_2(t+\tau) dt = \int_{-\infty}^{\infty} s_1(t-\tau) s_2(t) dt = R_{21}(-\tau)$$

$$\Rightarrow \text{ Auto-correlation function}$$

$$R(\tau) = \int_{-\infty}^{\infty} s(t) s(t+\tau) dt$$

- 1. $R(\tau) = R(-\tau)$
- 2. $R(0) \ge R(\tau)$
- 3. $R(0) = \int_{-\infty}^{\infty} s^2(t) dt = E$
- 4. $R(\tau) \leftrightarrow |A(f)|^2$ $R(0) = \int_{-\infty}^{\infty} s^2(t) dt = \int_{-\infty}^{\infty} |A(f)|^2 df$

- Properties
 - $Four function of input is the auto-correlation function of input signal <math>s_o(t) = \int_{-\infty}^{\infty} s_i(t-u)h_m(u)du = \int_{-\infty}^{\infty} s_i(t-u)s_i(t_0-u)du$ $= \int_{-\infty}^{\infty} s_i(\mu)s_i[\mu+t-t_0]d\mu = R_{s_0}(t-t_0)$
 - > The peak value of $s_0(t)$ happens

$$s_o(t_0) = \int_{-\infty}^{\infty} s_i^2(\mu) d\mu = E$$

$$\succ s_0(t) \text{ is symmetric at } t = t_0$$

$$A_o(f) = A(f) H_m(f) = |A(f)|^2 e^{-j\omega t_0}$$

- Properties
 - MF output noise
 - The statistical auto-correlation of no(t) depends on the auto-correlation of si(t)

$$R_{n_o}(\tau) = E\left\{n_o(t)n_o(t+\tau)\right\} = \frac{N_0}{2}\int_{-\infty}^{\infty}h_m(u)h_m(u+\tau)du$$
$$= \frac{N_0}{2}\int_{-\infty}^{\infty}s_i(t)s_i(t-\tau)dt$$

Average power

$$E\left\{n_{o}^{2}(t)\right\} = R_{n_{o}}\left(0\right) = \frac{N_{0}}{2}\int_{-\infty}^{\infty}s_{i}^{2}(\mu)d\mu \quad \text{Time domain}$$

$$= \frac{N_{0}}{2}\int_{-\infty}^{\infty}\left|A(f)\right|^{2}df = \frac{N_{0}}{2}\int_{-\infty}^{\infty}\left|H_{m}(f)\right|^{2}df \quad \text{Frequency domain}$$

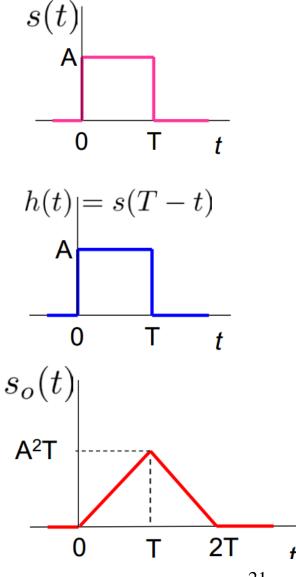
$$= \frac{N_{0}}{2}E$$

- Example
 - Consider a rectangular pulse s(t)

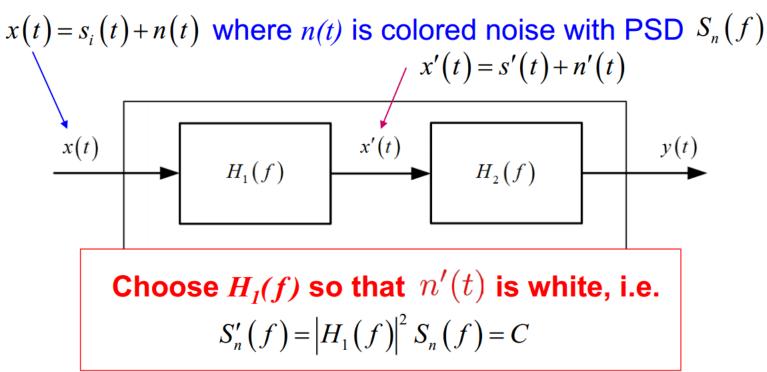
$$E_s = A^2 T$$

- The impulse response of a filter matched to s(t) is also a rectangular pulse
- The output of the matched filter $s_0(t)$ is h(t) * s(t)
- ➤ The output SNR is

$$(SNR)_{o} = \frac{2}{N_{0}} \int_{0}^{T} s^{2}(t) dt = \frac{2A^{2}T}{N_{0}}$$



- Colored noise
 - In case of colored noise, we need to preprocess the combined signal and noise such that the non-white noise becomes white noise- Whitening Process



- Colored noise
 - \succ We choose

$$H_1(f): |H_1(f)|^2 = \frac{C}{S_n(f)}$$

 $H_2(f)$ should match with $S'(t) = A'(f) = H_1(f)A(f)$ $H_2(f) = A'^*(f)e^{-j2\pi ft_0} = H_1^*(f)A^*(f)e^{-j2\pi ft_0}$

Therefore, the overall transfer function of the cascaded system:

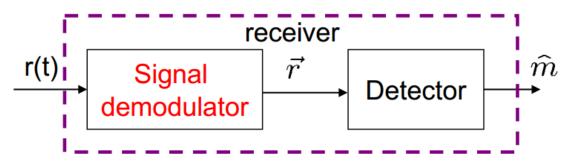
$$H(f) = H_{1}(f) \cdot H_{2}(f) = H_{1}(f) H_{1}^{*}(f) A^{*}(f) e^{-j2\pi ft_{0}}$$

= $|H_{1}(f)|^{2} A^{*}(f) e^{-j2\pi ft_{0}}$
$$H(f) = \frac{A^{*}(f)}{S_{n}(f)} e^{-j2\pi ft_{0}}$$

MF for colored
noise

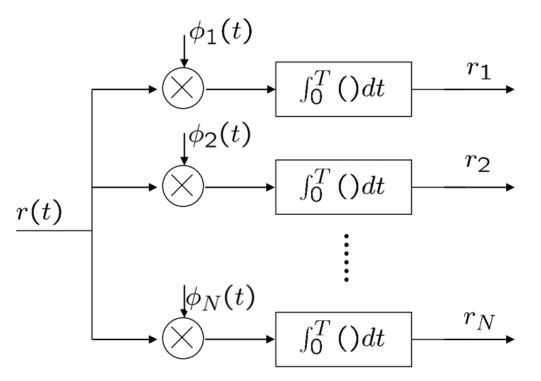
Updates on the receiver

- We have talked about matched filter
- Consider the optimal receiver structure again



Two realizations of the signal demodulator: correlation type and matched-filter type

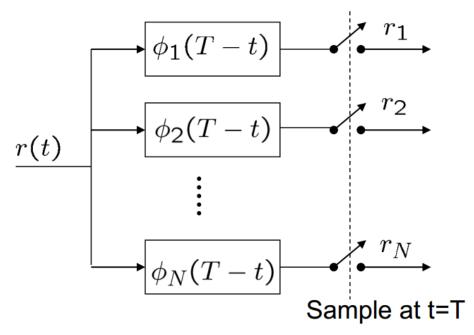
- Correlation type demodulator
 - ➤ The received signal r(t) is passed through a parallel bank of N cross correlators which basically compute the projection of r(t) onto the N basis functions{\$\phi_k(t), k = 1, \ldots N\$}



Updates on the receiver

- Matched filter type demodulator
 - Alternatively, we may apply the received signal r(t) to a bank of N matched filters and sample the output of filters at t=T. The impulse responses of the filters are

$$h_k(t) = \phi_k(T-t), \quad 0 \le t \le T$$



Updates on the receiver

- For a signal transmitted over an AWGN channel, either a correlation type demodulator or a matched filter type demodulator produces the vector r
 if = (r₁, r₂, ..., r_N) which contains all the necessary information in r(t)
- The next step is to design a signal detector that makes a decision of the transmitted signal in each signal interval based on the observation of \vec{r} , such that the probability of error is minimized (or correct probability is maximized)
- Decision rules:

likelihood function $f(\vec{r}|m_k)$

MAP decision rule:

choose $\hat{m} = m_k$ if and only if

$$P_k f(\vec{r}|m_k) > P_i f(\vec{r}|m_i); \text{ for all } i \neq k$$

ML decision rule

choose $\hat{m} = m_k$ if and only if

 $f(\vec{r}|m_k) > f(\vec{r}|m_i)$; for all $i \neq k$

- Distribution of the noise vector
 - Since $n_w(t)$ is a Gaussian random process, the noise component of output $n_k = \int_0^T n_w(t)\phi_k(t)dt$ is Gaussian r.v.
 - ➢ Mean:

$$E[n_k] = \int_0^T E[n_w(t)]\phi_k(t)dt = 0 \ , \ k = 1, \dots, N$$

Correlation between n_j and n_k

$$E[n_j n_k] = E\left[\int_0^T n_w(t)\phi_j(t)dt \cdot \int_0^T n_w(\tau)\phi_k(\tau)d\tau\right]$$
$$= E\left[\int_0^T \int_0^T n_w(t)n_w(\tau)\phi_j(t)\phi_k(\tau)dtd\tau\right]$$
$$PSD of n_w(t) is$$
$$S_n(f) = N_0/2$$
$$= \int_0^T \int_0^T E[n_w(t)n_w(\tau)]\phi_j(t)\phi_k(\tau)dtd\tau$$
$$= \int_0^T \int_0^T \frac{N_0}{2}\delta(t-\tau)\phi_j(t)\phi_k(\tau)dtd\tau$$
$$= \frac{N_0}{2}\int_0^T \phi_j(\tau)\phi_k(\tau)d\tau = \left\{\frac{N_0}{2}, \begin{array}{l} j = k\\ 0, \end{array}\right\}$$

- Distribution of the noise vector
 - Therefore, n_j and n_k (j≠k) are uncorrelated Gaussian r.v.s, and hence independent with zero mean and variance N₀/2

> The joint pdf of
$$\vec{n} = (n_1, \dots, n_N)$$

 $p(n_1, \dots, n_N) = \prod_{k=1}^N p(n_k) = \prod_{k=1}^N \frac{1}{\sqrt{\pi N_0}} \exp\left(-n_k^2/N_0\right)$
 $= (\pi N_0)^{-N/2} \exp\left(-\sum_{k=1}^N n_k^2/N_0\right)$

- Conditional probability
 - > If m_k is transmitted, $\vec{r} = \vec{s}_k + \vec{n}$ with $r_j = s_{kj} + n_j$

and
$$E[r_j|m_k] = s_{kj} + E[n_j] = s_{kj}$$

Transmitted signal values in each dimension represent the mean values for each received signal

and
$$Var[r_j|m_k] = Var[n_j] = N_0/2$$

- Therefore, the conditional pdf of

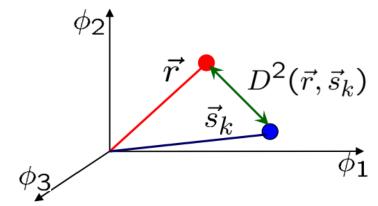
$$f(\vec{r}|m_k) = \prod_{j=1}^{N} \frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{(r_j - s_{kj})^2}{N_0}\right)$$
$$= (\pi N_0)^{-N/2} \exp\left(-\frac{\sum_{j=1}^{N} (r_j - s_{kj})^2}{N_0}\right)$$

- Log-likelihood function
 - > To simplify the computation, we take the natural logarithm of $f(\vec{r}|m_k)$, which is a monotonic function. Thus, $\ln f(\vec{r}|m_k) = -\frac{N}{2} \ln (\pi N_0) - \frac{1}{N_0} \sum_{j=1}^N (r_j - s_{kj})^2$

► Let

$$D^2(\vec{r}, \vec{s}_k) = \sum_{j=1}^N (r_j - s_{k,j})^2 = \|\vec{r} - \vec{s}_k\|^2$$

denote the Euclidean distance between \vec{r} and \vec{s}_k in the N-dim signal space. It is also called the distance metric.



Likelihood function

• Optimal detector

> MAP rule:
$$\hat{m} = \arg \max_{\{m_1,...,m_M\}} f(\vec{r}|m_k)P(m_k)$$

= $\arg \max_{\{m_1,...,m_M\}} \ln [f(\vec{r}|m_k)P(m_k)]$
= $\arg \max_{\{m_1,...,m_M\}} \left\{ -\frac{1}{N_0} \|\vec{r} - \vec{s}_k\|^2 + \ln P_k \right\}$
= $\arg \min_{\{m_1,...,m_M\}} \left\{ \|\vec{r} - \vec{s}_k\|^2 - N_0 \ln P_k \right\}$

 \succ ML rule:

$$\hat{m} = \arg \min_{\{m_1, \dots, m_M\}} \|\vec{r} - \vec{s}_k\|^2$$

ML detector chooses $\hat{m} = m_k$ iff received vector \vec{r} is closer to \vec{s}_k in terms of Euclidean distance than to any other \vec{s}_i for i \neq k

Minimum distance detection (will discuss more in decision region)

- Optimal receiver structure
 - With the above expression, we can develop a receiver structure using the following derivation

$$-\sum_{j=1}^{N} (r_j - s_{kj})^2 + N_0 \ln P_k = -\sum_{j=1}^{N} r_j^2 - \sum_{j=1}^{N} s_{kj}^2 + 2\sum_{j=1}^{N} r_j s_{kj} + N_0 \ln P_k$$

$$= -\|\vec{r}\|^2 - \|\vec{s}_k\|^2 + 2\vec{r}\cdot\vec{s}_k + N_0 \ln P_k$$

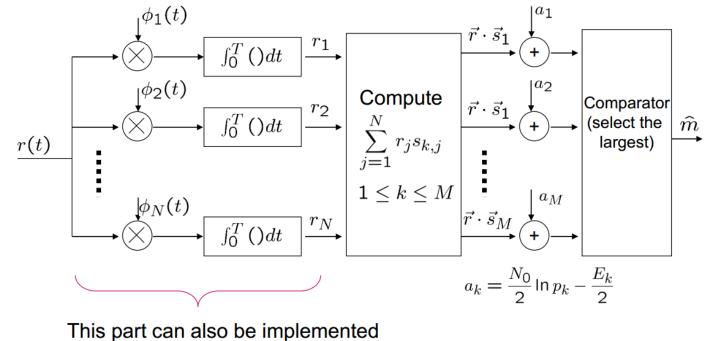
with

$$\begin{cases} \|\vec{s}_k\|^2 = \int_0^T s_k^2(t) dt = E_k \text{ = signal energy} \\ \vec{r} \cdot \vec{s}_k = \int_0^T s_k(t) r(t) dt \text{ = correlation between the received signal vector and the transmitted signal vector} \\ \|\vec{r}\|^2 \text{ = common to all M decisions and hence can be ignored} \end{cases}$$

- Optimal receiver structure
 - ➢ Hence, we have

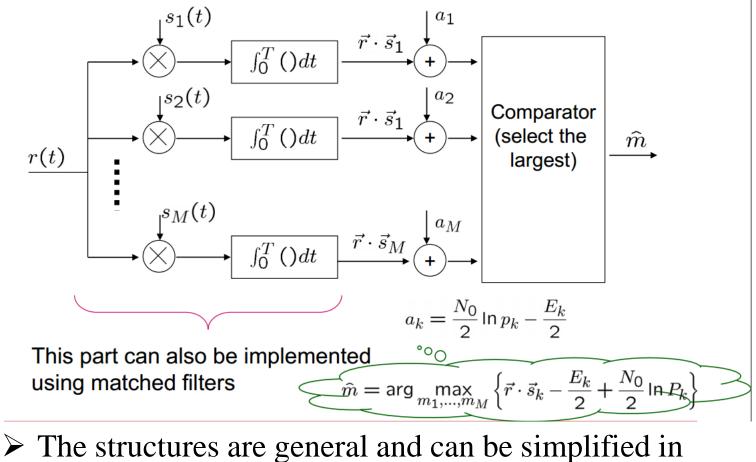
$$\hat{m} = \arg \max_{m_1, \dots, m_M} \left\{ \vec{r} \cdot \vec{s}_k - \frac{E_k}{2} + \frac{N_0}{2} \ln P_k \right\}$$

> The diagram of MAP receiver can be (Method 1)



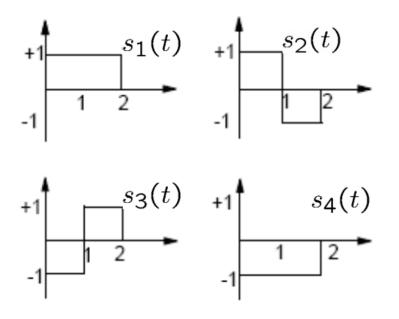
using matched filters

- Optimal receiver structure
 - > The diagram of MAP receiver can also be (Method 2)

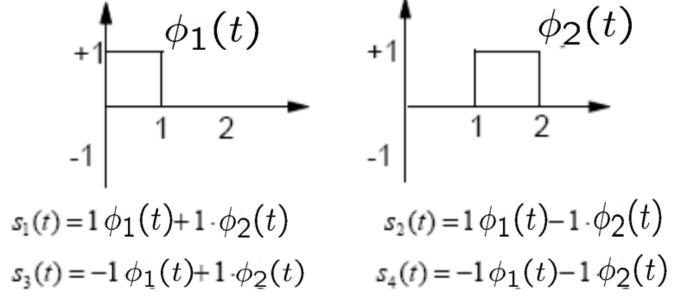


certain cases.

- Optimal receiver structure
 - Both receivers perform identically
 - Choice depends on circumstances
 - For instance, if N<M and $\{\phi_j(t)\}\$ are easier to generate than $\{s_k(t)\}\$, then the choice is obvious
 - Consider for example the following signal set

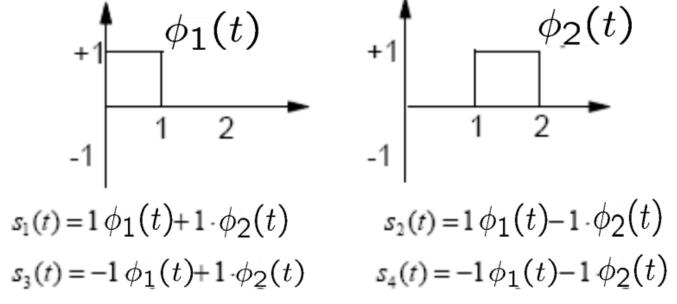


- Optimal receiver structure
 - > Suppose that we use the following basis functions



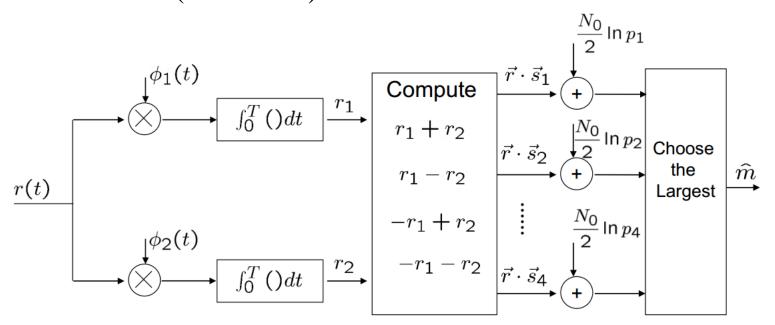
Since the energy is the same for all four signals, we can drop the energy term, and hence $a_k = \frac{N_0}{2} \ln p_k$

- Optimal receiver structure
 - > Suppose that we use the following basis functions

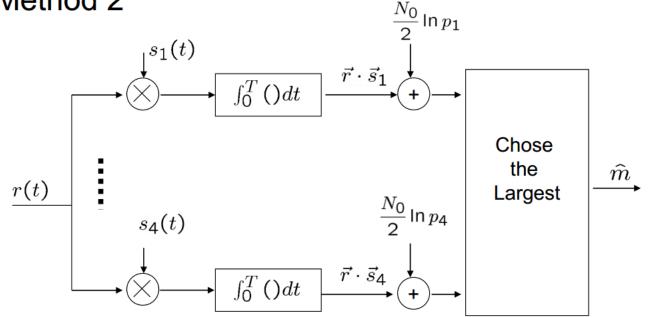


Since the energy is the same for all four signals, we can drop the energy term, and hence $a_k = \frac{N_0}{2} \ln p_k$

- Optimal receiver structure
 - \succ We have (Method 1)



- Optimal receiver structure
 - Method 2



- Optimal receiver structure
 - Exercise: In an additive white Gaussian noise channel with a noise power-spectral density of N0/2, two equiprobable messages are transmitted by

$$\begin{split} s_1(t) = \begin{cases} \frac{At}{T} & 0 \leq t \leq \mathsf{T} \\ 0 & \text{otherwise} \end{cases} \\ s_2(t) = \begin{cases} A - \frac{At}{T} & 0 \leq t \leq \mathsf{T} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

> Determine the optimal receiver structure.

- Graphical interpretation
 - ➢ Signal space can be divided into M disjoint decision regions R₁, R₂, ..., Rм.

If $\vec{r} \in R_k$ \implies decide m_k was transmitted

- > Select the decision regions so that Pe is minimized
- ➤ Recall that the optimal receiver sets $\hat{m} = m_k$ iff $\|\vec{r} - \vec{s}_k\|^2 - N_0 \ln P_k$ is minimized
- ➤ For simplicity, if one assumes p_k = 1/M for all k, then the optimal receiver sets m̂ = m_k iff ||r̄ - s̄_k||² is minimized

- Graphical interpretation
 - Seometrically, we take projection of r(t) in the signal space (i.e., \vec{r}). Then, decision is made in favor of signal that is the closest to \vec{r} in the sense of minimum Euclidean distance.
 - Specifically, the observations with $\|\vec{r} \vec{s}_k\|^2 < \|\vec{r} \vec{s}_i\|^2$ for all $i \neq k$ should be assigned to decision region R_k
 - Consider for example the binary data transmission over AWGN channel with PSD $S_n(f)=N0/2$ using $s_1(t) = -s_2(t) = \sqrt{E}\phi(t)$
 - Assume P(m1) ≠P(m2). Determine the optimal receiver and the optimal decision regions.

- Graphical interpretation
 - ➢ For the above example, the optimal decision making Choose m₁

$$\|\vec{r} - \vec{s_1}\|^2 - N_0 \ln P(m_1) \stackrel{<}{>} \|\vec{r} - \vec{s_2}\|^2 - N_0 \ln P(m_2)$$

Choose m₂

> Let $d_1 = \|\vec{r} - \vec{s}_1\|$ and $d_2 = \|\vec{r} - \vec{s}_2\|$

Equivalently,

Choose m₁

$$d_1^2 - d_2^2 \stackrel{<}{>} N_0 \ln \frac{P(m_1)}{P(m_2)}$$
 Constant c

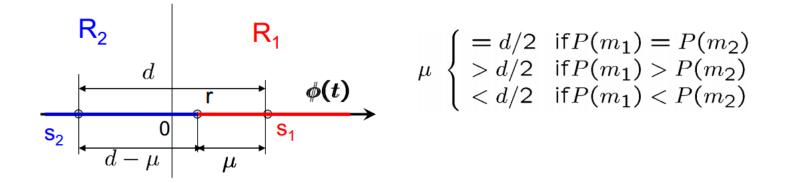
Choose m₂

> Therefore

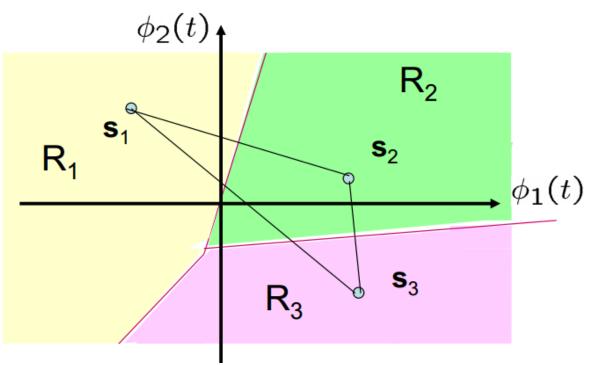
R₁:
$$d_1^2 - d_2^2 < c$$
 and **R**₂: $d_1^2 - d_2^2 > c$

- Graphical interpretation
 - > Now consider the example with \vec{r} on the decision boundary

$$\begin{cases} d = d_1 + d_2 \\ d_1^2 = \mu^2 \\ d_2^2 = (d - \mu)^2 \end{cases} \longrightarrow \qquad d_1^2 - d_2^2 = 2d\mu - d^2 \equiv c \\ \mu = \frac{c + d^2}{2d} = \frac{d}{2} + \frac{N_0}{2d} \ln \frac{P(m_1)}{P(m_2)} \end{cases}$$



- Graphical interpretation
 - In general, boundaries of decision regions are perpendicular bisectors of the lines joining the original transmitted signals
 - > Example: three equiprobable 2-dim signals



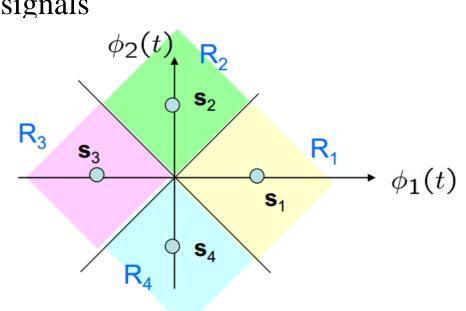
- Graphical interpretation
 - Now consider for example the decision regions for QPSK
 - Assume all signals are equally likely and all 4 signals could be written as the linear combination of two basis functions
 - Constellations of 4 signals

s₁=(1,0)

s₂=(0,1)

s₃=(-1,0)

s₄=(0,-1)



- Graphical interpretation
 - Exercise: Three equally probable messages m₁, m₂, and m₃ are to be transmitted over an AWGN channel with noise power-spectral density N0/2. The messages are

$$s_{1}(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & otherwise \end{cases} \quad s_{2}(t) = -s_{3}(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} \le t \le T \\ 0 & otherwise \end{cases}$$

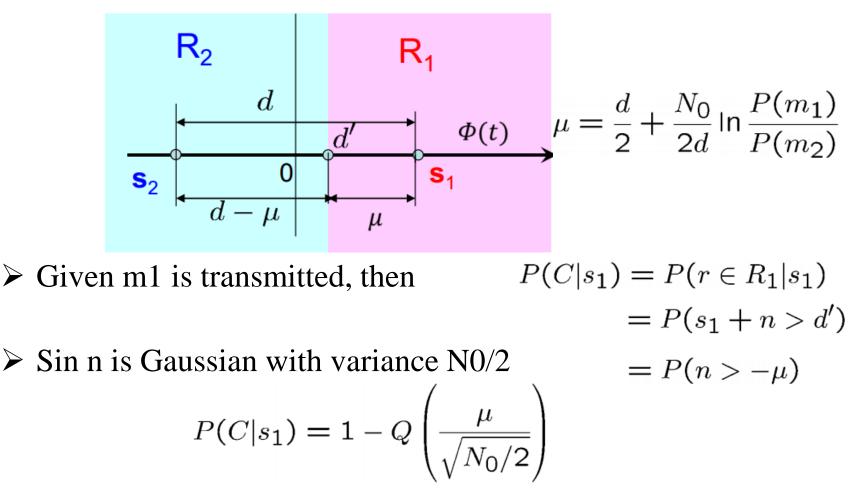
- > What is the dimensionality of the signal space?
- Find an appropriate basis for the signal space (Hint: you donot need to perform Gram-Schmidt procedure.)
- > Draw the signal constellation for this problem.
- > Sketch the optimal decisions R_1 , R_2 , and R_3 .

- Probability of error
 - > Suppose m_k is transmitted and \vec{r} is received
 - ▷ Correct decision is made when $\vec{r} \in R_k$ with probability $P(C|m_k) = P(\vec{r} \in R_k | m_k \text{ is sent})$
 - Averaging over all possible transmitted symbols, we obtain the average probability of making correct decision $P(C) = \sum_{k=1}^{M} P(\vec{r} \in R_k | m_k \text{ is sent}) P(m_k)$

Average probability of error

$$P_e = 1 - P(C) = 1 - \sum_{k=1}^M P(\vec{r} \in R_k | m_k \text{ is sent}) P(m_k)$$

- Probability of error
 - > Consider for example the binary data transmission



- Probability of error
 - ➤ Similarly, we have

$$P(C|s_2) = P(s_2 + n < d') = P(n < d - u) = 1 - Q\left(\frac{d - \mu}{\sqrt{N_0/2}}\right)$$

➤ Thus,

$$P(C) = P(m_1) \left\{ 1 - Q \left[\frac{\mu}{\sqrt{N_0/2}} \right] \right\} + P(m_2) \left\{ 1 - Q \left[\frac{d-\mu}{\sqrt{N_0/2}} \right] \right\}$$
$$= 1 - P(m_1)Q \left[\frac{\mu}{\sqrt{N_0/2}} \right] - P(m_2)Q \left[\frac{d-\mu}{\sqrt{N_0/2}} \right]$$
$$P_e = P(m_1)Q \left[\frac{\mu}{\sqrt{N_0/2}} \right] + P(m_2)Q \left[\frac{d-\mu}{\sqrt{N_0/2}} \right]$$
where $d = 2\sqrt{E}$
$$\mu = \frac{N_0}{4\sqrt{E}} \log \left[\frac{P(m_1)}{P(m_2)} \right] + \sqrt{E}$$

- Probability of error
 - ▷ Note that when $P(m_1) = P(m_2)$

$$\mu = \sqrt{E} = \frac{a}{2}$$

$$P_e = Q\left[\frac{d/2}{\sqrt{N_0/2}}\right] = Q\left[\sqrt{\frac{d^2}{2N_0}}\right] = Q\left[\sqrt{\frac{2E}{N_0}}\right]$$

 \succ This shows us that:

- 1. When optimal receiver is used, Pe does not depend on the specific waveform used.
- 2. Pe depends only on their geometrical representation in signal space
- 3. In particular, Pe depends on signal waveforms only through their energies (distance)

- Graphical interpretation
 - Exercise: Three equally probable messages m₁, m₂, and m₃ are to be transmitted over an AWGN channel with noise power-spectral density N0/2. The messages are

$$s_{1}(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & otherwise \end{cases} \quad s_{2}(t) = -s_{3}(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} \le t \le T \\ 0 & otherwise \end{cases}$$

Which of the three messages is more vulnerable to errors and why? In other words, which of the probability of error p(Error | m_i transmitted) is larger?

General expression

> Average probability of symbol error

$$P_e = 1 - P(C) = 1 - \sum_{k=1}^{M} P(\vec{r} \in R_k | m_k \text{ is sent}) P(m_k)$$

$$\swarrow \text{Likelihood function}$$

Since
$$P(\vec{r} \in R_k | m_k \text{ is sent}) = \int_{R_k} f(\vec{r} | m_k) d\vec{r}$$

 \succ Thus, we can rewrite Pe in terms of likelihood functions, assuming that symbols are equally likely to be sent $P_e = 1 - \frac{1}{M} \sum_{k=1}^{M} \int_{R_k} f(\vec{r}|m_k) d\vec{r}$

 \succ Multi-dimension integrals are quite difficult to evaluate. To overcome the difficulty, we resort to the use of bounds. Then, we can obtain a simple and yet useful bound of P_e, called **union bound**.

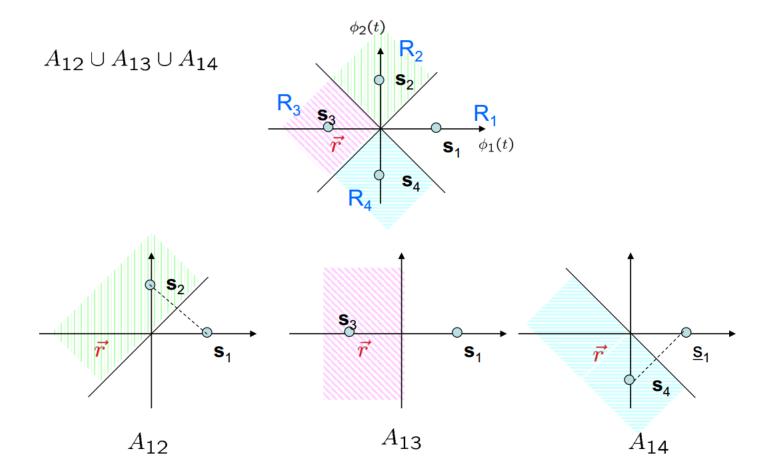
- General expression
 - > Let A_{kj} denote the event that \vec{r} is closer to \vec{s}_j than to \vec{s}_k in the signal space when $m_k(\vec{s}_k)$ is sent
 - \succ Conditional probability of symbol error when m_k is sent

$$P(error|m_k) = P(\vec{r} \notin R_k|m_k) = P\left(\bigcup_{j \neq k} A_{kj}\right)$$

 \succ Note that

$$P\left(\bigcup_{j\neq k}A_{kj}\right)\leq \sum_{\substack{j=1\\j\neq k}}^{M}P\left(A_{kj}\right)$$

- General expression
 - Consider for example



General expression

> Define the pair-wise error probability as

$$P(\vec{s}_k \to \vec{s}_j) = P(A_{kj})$$

- ➤ It is equivalent to the probability of deciding in favor of \vec{s}_j when \vec{s}_k was sent in a simplified binary system that involves the use of two equally likely messages \vec{s}_k and \vec{s}_j
- > Then $P\left(\vec{s}_k \to \vec{s}_j\right) = P\left(n > d_{kj}/2\right) = Q\left(\sqrt{\frac{d_{kj}^2}{2N_0}}\right)$

where $d_{kj} = \|\vec{s}_k - \vec{s}_j\|$ is the Euclidean distance between \vec{s}_k and \vec{s}_j

> Therefore the conditional error probability

$$P(error|m_k) \le \sum_{\substack{j=1\\j \neq k}}^M P(\vec{s}_k \to \vec{s}_j) = \sum_{\substack{j=1\\j \neq k}}^M Q\left(\sqrt{\frac{d_{kj}^2}{2N_0}}\right)$$

- General expression
 - Finally, with M equally likely messages, the average probability of symbol error is upperbounded by

$$P_{e} = \frac{1}{M} \sum_{k=1}^{M} P(error|m_{k})$$

$$\leq \frac{1}{M} \sum_{k=1}^{M} \sum_{\substack{j=1\\ j \neq k}}^{M} Q\left(\sqrt{\frac{d_{kj}^{2}}{2N_{0}}}\right)$$

The most general formulation of union bound

≻ Let d_{\min} denote the minimum distance, i.e., $d_{\min} = \min_{\substack{k,j \ k \neq j}} d_{k,j}$

Since Q-function is a monotone decreasing function

$$\sum_{\substack{j=1\\j\neq k}}^{M} Q\left(\sqrt{\frac{d_{kj}^2}{2N_0}}\right) \le (M-1)Q\left(\sqrt{\frac{d_{\min}^2}{2N_0}}\right)$$

- General expression
 - \succ Consequently, we may simplify the union bound as

$$P_e \leq (M-1)Q\left(\sqrt{rac{d_{\min}^2}{2N_0}}
ight)$$

Simplified form of union bound

Think about: What is the design criterion of a good signal set?