

- Introduction
- Signal, random variable, random process and spectra
- Analog modulation
- Analog to digital conversion
- Digital transmission through baseband channels

- Optimal receivers
- Digital modulation techniques
- Channel coding
- Synchronization
- Information theory

- Concepts
 - The key to analyzing and understanding the performance of digital transmission is the realization that signals used in communications can be expressed and visualized graphically (constellation)
 - Thus, we need to understand signal space concepts applied to digital communications

Chapter 8.1

- Traditional bandpass signal representation
 - Baseband signals are the message signal generated at the source
 - Passband (Bandpass) signals refer to the signals after modulating with a carrier. The bandwidth of these signals are usually small compared with the carrier frequency fc
 - Passband signals can be represented in three forms
 - 1. Magnitude and phase representation
 - 2. Quadrature representation
 - 3. Complex envelope representation

• Magnitude and phase representation

$$s(t) = a(t) \cos \left[2\pi f_c t + \theta(t)\right]$$

where a(t) is the magnitude of s(t) $\theta(t)$ is the phase of s(t)

• Quadrature (I/Q) representation

 $s(t) = x(t)\cos(2\pi f_c t) - y(t)\sin(2\pi f_c t)$

where x(t) and y(t) are real-valued baseband signals called the **in-phase** and **quadrature** components of s(t)

Signal space is a more convenient way than I/Q representation to study modulation scheme in digital communications

• Vectors and space

> Consider an n-dimensional space with unity basis vectors

$$\{\mathbf{e}_1, \, \mathbf{e}_2, \, \dots, \, \mathbf{e}_n\}$$

 \succ Any vector **a** in the space can be written as

$$\mathbf{a} = \sum_{i=1}^{n} a_i \mathbf{e}_i \quad \square \quad \mathbf{a} = (a_1, a_2, \dots, a_n)$$

 $n \triangleq \text{Dimension} = \text{Minimum number of vectors that is}$ necessary and sufficient for representation of any vector in space

• Vectors and space > Inner product $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$

 \geq **a** and **b** are orthogonal if **a** \cdot **b** = 0

> Norm
$$\|\mathbf{a}\| = \sqrt{\langle \mathbf{a}, \mathbf{a} \rangle} = \sqrt{\sum_{i=1}^{n} a_i^2}$$

A set of vectors are orthonormal if they are mutually orthogonal and all have unit norm

- Vectors and space
 - The set of basis vectors {e₁, e₂, ..., e_n} of a space are chosen such that
 - Should be complete or span the vector space, i.e., any vector a can be expressed as a linear combination of these vectors
 - 2. Should be orthonormal vectors

$$\mathbf{e}_i \cdot \mathbf{e}_j = 0, \ \forall i \neq j \qquad \qquad \|e_i\| = 1, \ \forall i$$

A set of basis vectors satisfying these properties is also said to be a complete orthonormal basis

- Signal space
 - Basic idea: If a signal can be represented by n-tuple, then it can be treated in much the same way as a n-dim vector.
 - \succ Let $\phi_1(t), \phi_2(t), ..., \phi_n(t)$ be n signals
 - \succ Consider a signal x(t) and suppose that

$$x(t) = \sum_{i=1}^{n} x_i \phi_i(t)$$

 \succ If every signal can be written as above, then

 $\{\phi_1(t), \dots, \phi_n(t)\}$ ~ basis functions (基函数)

• Orthonormal basis

> Signal set $\{\phi_k(t)\}$ is an orthogonal set if

$$\int_{-\infty}^{\infty} \phi_j(t) \phi_k(t) dt = \begin{cases} 0 & j \neq k \\ c_j & j = k \end{cases}$$

> If c_j ≡ 1∀j → {φ_k(t)} is an orthonormal set.
> In this case,

$$x_k = \int_{-\infty}^{\infty} x(t)\phi_k(t)dt$$
$$x(t) = \sum_{i=1}^n x_i\phi_i(t)$$
$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

• Orthonormal basis

Solven the set of the orthonormal basis $\{\phi_1(t), \dots, \phi_n(t)\}$

> Let x(t) and y(t) be represented as $x(t) = \sum_{i=1}^{n} x_i \phi_i(t)$, $y(t) = \sum_{i=1}^{n} y_i \phi_i(t)$

with
$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$
, $\mathbf{y} = (y_1, y_2, \dots, y_n)$

> Then the inner product of **x** and **y** is

$$\mathbf{x} \cdot \mathbf{y} = \int_{-\infty}^{\infty} x(t) y(t) dt$$

- Orthonormal basis
 - ➢ Proof

$$\int_{-\infty}^{\infty} x(t)y(t)dt = \int_{-\infty}^{\infty} \left[\sum_{i=1}^{n} x_i \phi_i(t)\right] \left[\sum_{j=1}^{n} y_j \phi_j(t)\right] dt$$

$$= \sum_{k=1}^{n} x_{k} y_{k} \triangleq \mathbf{x} \cdot \mathbf{y}$$

Since
$$\int_{-\infty}^{\infty} \phi_{i}(t) \phi_{j}(t) dt = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$
$$E_{\mathbf{x}} = \text{Energy of } x(t) = \int_{-\infty}^{\infty} x^{2}(t) dt$$
$$\boxed{E_{\mathbf{x}} = \mathbf{x} \cdot \mathbf{x} = ||\mathbf{x}||^{2}}$$

- Basis functions for a signal set
 - ➤ Consider a set of M signals (M-ary symbol) $\{s_i(t), i = 1, 2, ..., M\} \text{ with finite energy, i.e.,}$ $\int_{-\infty}^{\infty} s_i^2(t) dt < \infty$
 - Then, we can express each of these waveforms as weighted linear combination of orthonormal signals:

$$s_i(t) = \sum_{j=1}^N s_{ij}\phi_j(t)$$
 for $i = 1, ..., M$

where $N \le M$ is the dimension of the signal space and $\{\phi_j(t)\}_1^N$ are called the orthonormal basis functions

- Basis functions for a signal set
 - Consider the following signal set

- Basis functions for a signal set
 - By inspection, the signals can be expressed in terms of the following two basis functions:

 $s_1(t) = 1 \cdot \phi_1(t) + 1 \cdot \phi_2(t)$ $s_3(t) = -1 \cdot \phi_1(t) + 1 \cdot \phi_2(t)$

 $s_2(t) = 1 \cdot \phi_1(t) - 1 \cdot \phi_2(t)$ $s_4(t) = -1 \cdot \phi_1(t) - 1 \cdot \phi_2(t)$ \succ Note that the basis is orthonormal

$$\int_{-\infty}^{\infty} \phi_1(t)\phi_2(t)dt = 0$$

$$\int_{-\infty}^{\infty} |\phi_1(t)|^2 dt = \int_{-\infty}^{\infty} |\phi_2(t)|^2 dt = 1$$

- Basis functions for a signal set
 - Constellation diagram is a representation of a digital modulation scheme in the signal space
 - > The axes are labeled with $\phi_1(t)$ and $\phi_2(t)$
 - Possible signals are plotted as points, called constellation points

- Basis functions for a signal set
 - Suppose our signal set can be represented in the following form

$$s(t) = \pm \sqrt{\frac{2}{T}} \cos(2\pi f_c t) \pm \sqrt{\frac{2}{T}} \sin(2\pi f_c t)$$

with $t \in [0,T)$ and $f_cT >> 1$

 $\begin{aligned} &\blacktriangleright \text{ We can choose the basis functions as follows} \\ &\phi_1(t) = \sqrt{\frac{2}{T}} \cos(2\pi f_c t) \quad \phi_2(t) = \sqrt{\frac{2}{T}} \sin(2\pi f_c t) \\ & \quad t \in [0, T) \\ &\int_0^T \phi_1(t)\phi_2(t)dt = \int_0^T \sqrt{\frac{2}{T}} \cos(2\pi f_c t)\sqrt{\frac{2}{T}} \sin(2\pi f_c t)dt \\ &= \frac{2}{T} \int_0^T \frac{1}{2} [\sin(0) + \sin(4\pi f_c t)]dt \\ &= -\frac{1}{4\pi f_c T} [\cos(4\pi f_c t)]_0^T \approx 0, \text{for } f_c T \ll 1 \\ & \text{and} \qquad \int_0^T |\phi_1(t)|^2 dt = \int_0^T |\phi_2(t)|^2 dt = \frac{2}{T} \int_0^T \frac{1}{2} [1 + \cos(4\pi f_c t)]dt \approx 1 \\ & \text{Communications Engineering} \end{aligned}$

- Basis functions for a signal set
 - The above example is exactly QPSK modulation. Its constellation diagram is also

Widely used in commercial communication systems, including 4G-LTE, Wifi, and incoming 5G.

- Basis functions for a signal set
 - Two entirely different signal sets can have the same geometric representation.
 - The underlying geometry will determine the performance and the receiver structure
 - In general, is there any method to find a complete orthonormal basis for an arbitrary signal set?

Gram-Schmidt Orthogonalization (GSO) Procedure

- GSO procedure
 - > Suppose we are given a signal set $\{s_1(t), \ldots, s_M(t)\}$
 - \succ Find the orthogonal basis functions for this signal set

$$\{\phi_1(t),\ldots,\phi_K(t)\}$$
 with $K \leq M$

Step 1: Compute the energy in signal 1

$$E_1 = \int_{-\infty}^{\infty} s_1^2(t) dt$$

> The first basis function is just a normalized version of $s_1(t)$

$$\phi_1(t) = \frac{1}{\sqrt{E_1}} s_1(t)$$

$$s_{1}(t) = s_{11}\phi_{1}(t) = \sqrt{E_{1}}\phi_{1}(t)$$
$$s_{11} = \int_{-\infty}^{\infty} s_{1}(t)\phi_{1}(t)dt = \sqrt{E_{1}}$$

- GSO procedure
 - Step 2: Compute the correlation between signal 2 and basic function 1

$$s_{21} = \int_{-\infty}^{\infty} s_2(t)\phi_1(t)dt$$

Subtract off the correlation portion

 $g_2(t) = s_2(t) - s_{21}\phi_1(t)$ $g_2(t)$ is orthogonal to $\phi_1(t)$

Compute the energy in the remaining portion

$$E_{g_2} = \int_{-\infty}^{\infty} \left[g_2(t)\right]^2 dt$$

Normalize the remaining portion

$$\phi_2(t) = \frac{1}{\sqrt{Eg_2}}g_2(t)$$

$$s_{22} = \int_{-\infty}^{\infty} s_2(t)\phi_2(t)dt = \sqrt{E_{g_2}}$$

- GSO procedure
 - ▶ Step 3: For signal s_k(t), compute
 s_{ki} = ∫_{-∞}[∞] s_k(t)φ_i(t)dt
 ▶ Define
 g_k(t) = s_k(t) ∑_{i=1}^{k-1} s_{ki}φ_i(t)
 ▶ Compute the energy of g_k(t)

$$E_{g_k} = \int_{-\infty}^{\infty} [g_k(t)]^2 dt$$

 \succ k-th basis function

$$\phi_k(t) = \frac{1}{\sqrt{Eg_k}}g_k(t)$$

$$\implies s_{kk} = \int_{-\infty}^{\infty} s_k(t)\phi_k(t)dt = \sqrt{E_{g_k}}$$

- GSO procedure
 - Summary
 - 1. 1st basis function is normalized version of the first signal
 - 2. Successive basis functions are found by removing portions of signals that are correlated to previous basis functions and normalizing the result
 - 3. The procedure is repeated until all basis functions are found (if $g_k(t)=0$, no new basis functions is added)

The order in which signals are considered is arbitrary

- GSO procedure
 - Consider an example.
 - Use the Gram-Schmidt procedure to find a set of orthonormal basis functions corresponding to the signals shown below

- Express x1, x2, x3, in terms of the orthonormal basis functions found previously
- > Draw the constellation diagram for this signal set

• GSO procedure

➤ Example

Step 1:
$$E_1 = \int_{-\infty}^{\infty} x_1^2(t) dt = 2$$
 $\frac{1}{\sqrt{2}}$ $\phi_1(t)$
 $\phi_1(t) = \frac{1}{\sqrt{2}} x_1(t)$ $\frac{1}{\sqrt{2}}$ 1 2
 $x_{11} = \sqrt{2}$

۸

Step 2:

$$x_{21} = \int_{-\infty}^{\infty} x_2(t)\phi_1(t)dt = 0$$

$$g_2(t) = x_2(t) \text{ and } E_{g_2} = 1$$

$$\phi_2(t) = x_2(t)$$

$$x_{22} = 1$$

$$1$$

$$\phi_2(t)$$

$$1$$

$$2$$

$$3$$

- GSO procedure
 - ➤ Example

Step 3: $x_{31} = \int_{-\infty}^{\infty} x_3(t)\phi_1(t)dt = \sqrt{2}$ $x_{32} = \int_{-\infty}^{\infty} x_3(t)\phi_2(t)dt = 1$ $g_3(t) = x_3(t) - x_{31}f_1(t) - x_{32}f_2(t) = 0$ => No more new basis functions Procedure completes

$$\begin{cases} \phi_1(t) = \frac{1}{\sqrt{2}} x_1(t) \\ \phi_2(t) = x_2(t) \end{cases}$$

• GSO procedure

➤ Example

Express \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 in basis functions $x_1(t) = \sqrt{2}\phi_1(t)$, $x_2(t) = \phi_2(t)$ $x_3(t) = \sqrt{2}\phi_1(t) + \phi_2(t)$

Constellation diagram

- GSO procedure
 - ➤ Exercise

Given a set of signals (8PSK modulation)

$$s_i(t) = A\cos\left(2\pi f_c t + \frac{\pi}{4}i\right)$$

 $i = 0, 1, \dots, 7$ and $0 \le t < T$

- Find the orthonormal basis functions using Gram Schmidt procedure
- What is the dimension of the resulting signal space ?
- Draw the constellation diagram of this signal set

- GSO procedure
 - A signal set may have many different sets of basis functions
 - A change of basis functions is essentially a rotation of the signal points around the origin
 - The order in which signals are used in GSO procedure affects the resulting basis functions
 - The choice of basis functions does not affect the performance of the modulation scheme