
12/22/2014

1

Computer Networks
Zhang, Xinyu

Fall 2014

East China Normal University

School of Software

Course Reference Model

Application

Transport

Link

Network

Physical Sends bits as signals

Sends frames over one or more links

Sends packets over multiple links

Provides end-to-end delivery

Provides functions needed by users 7

4

3

2

1

User Datagram Protocols

Slides are borrowed from David Wetherall,
Arvind Krishnamurthy, John Zahorjan,

Washington University

Topic

• Sending messages with UDP

– A shim layer on packets

I just want to send a packet!

Network

User Datagram Protocol (UDP)

• Used by apps that don’t want reliability or bytestreams

– Voice-over-IP (unreliable)

– DNS (Domain Name System)

– RPC (Remote Procedure Call), (message-oriented)

– DHCP (bootstrapping)

(If application wants reliability and messages then it has
work to do!)

Datagram Sockets
Client (host 1) Server (host 2) Time

request

reply

12/22/2014

2

Datagram Sockets
Client (host 1) Server (host 2) Time

1: socket
2: bind

1: socket

6: sendto

3: recvfrom*
4: sendto

5: recvfrom*

7: close 7: close

*= call blocks

request

reply

UDP Buffering

App

Port Mux/Demux

App App Application

Transport

(TCP)

Network (IP) packet

Message queues

Ports

UDP Header

• Uses ports to identify sending and receiving
application processes

• Datagram length up to 64K

• Checksum (16 bits) for reliability
Transmission Control Protocols

(TCP)

Topic

• How TCP works!
– The transport protocol used for most content on the Internet

TCP TCP TCP

We love TCP/IP!

Network

We love TCP/IP! We love TCP/IP! We  TCP/IP!

TCP Features

• A reliable bytestream service

• Based on connections

• Sliding window for reliability

– With adaptive timeout

• Flow control for slow receivers

• Congestion control to allocate network bandwidth

12/22/2014

3

Reliable Bytestream

• Message boundaries not preserved from send() to
recv()
– But reliable and ordered (receive bytes in same order as sent)

Four segments, each with 512 bytes of

data and carried in an IP packet
2048 bytes of data delivered to

app in a single recv() call

Sender Receiver

Reliable Bytestream (2)

• Bidirectional data transfer

– Control information (e.g., ACK) piggybacks on data segments in
reverse direction

A B

data BA

ACK AB

ACK BA

data AB

TCP Header (1)

• Ports identify apps (socket API)

– 16-bit identifiers

TCP Header (2)

• SEQ/ACK used for sliding window

– Selective Repeat, with byte positions

TCP Header (3)

• SYN/FIN/RST flags for connections

– Flag indicates segment is a SYN etc.

TCP Header (4)

• Window size for flow control

– Relative to ACK, and in bytes

12/22/2014

4

Other TCP Details

• Many, many quirks you can learn about its
operation

• Biggest remaining mystery is the workings of
congestion control

Connection Establishment

Topic

• How to set up connections

– We’ll see how TCP does it

SYN! ACK!

Network

SYNACK!

Connection Establishment

• Both sender and receiver must be ready
before we start the transfer of data

– Need to agree on a set of parameters

– e.g., the Maximum Segment Size (MSS)

• This is signaling

– It sets up state at the endpoints

– Like “dialing” for a telephone call

Three-Way Handshake
• Used in TCP; opens connection for

data in both directions

• Each side probes the other with a
fresh Initial Sequence Number (ISN)
– Sends on a SYNchronize segment

– Echo on an ACKnowledge segment

• Chosen to be robust even against
delayed duplicates

Active party

(client)
Passive party

(server)

Three-Way Handshake (2)

• Three steps:

– Client sends SYN(x)

– Server replies with SYN(y)ACK(x+1)

– Client replies with ACK(y+1)

– SYNs are retransmitted if lost

• Sequence and ack numbers
carried on further segments

1

2

3

Active party

(client)
Passive party

(server)

Time

12/22/2014

5

Three-Way Handshake (3)

• Suppose delayed, duplicate
copies of the SYN and ACK
arrive at the server!

– Improbable, but anyhow …

Active party

(client)
Passive party

(server)

Three-Way Handshake (4)

• Suppose delayed, duplicate
copies of the SYN and ACK
arrive at the server!

– Improbable, but anyhow …

• Connection will be cleanly
rejected on both sides

Active party

(client)
Passive party

(server)

X

X
REJECT

REJECT

TCP Connection State Machine

• Captures the states (rectangles) and transitions
(arrows)
– A/B means event A triggers the transition, with action B

Both parties run

instances of

this state

machine

TCP Connections (2)

• Follow the path of the client:

TCP Connections (3)

• And the path of the server:

TCP Connections (4)

• Again, with states …

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

1

2

3

Active party (client) Passive party (server)

Time

CLOSED CLOSED

12/22/2014

6

TCP Connections (5)

• Finite state machines are a useful tool to specify and
check the handling of all cases that may occur

• TCP allows for simultaneous open

– i.e., both sides open at once instead of the client-server
pattern

Connection Release

Topic

• How to release connections

– We’ll see how TCP does it

Network

FIN! FIN!

Connection Release

• Orderly release by both parties when done

– Delivers all pending data and “hangs up”

– Cleans up state in sender and receiver

• Key problem is to provide reliability while
releasing

– TCP uses a “symmetric” close in which both
sides shutdown independently

Two-Army Problem TCP Connection Release

• Two steps:

– Active sends FIN(x), passive ACKs

– Passive sends FIN(y), active ACKs

– FINs are retransmitted if lost

• Each FIN/ACK closes one
direction of data transfer

Active party Passive party

12/22/2014

7

TCP Connection Release (2)

• Two steps:

– Active sends FIN(x), ACKs

– Passive sends FIN(y), ACKs

– FINs are retransmitted if lost

• Each FIN/ACK closes one
direction of data transfer

Active party Passive party

1

2

TCP Connection Release: Case 1

TCP Connection Release: Case 2 TCP Connection Release: Case 3

TCP Connection Release: Case 4 TCP Connection State Machine

Both parties

run instances

of this state

machine

12/22/2014

8

TCP Release

• Follow the active party

TCP Release (2)

• Follow the passive party

TCP Release (3)

• Again, with states …

Active party Passive party

1

2

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2

TIME_WAIT

CLOSED CLOSED

ESTABLISHED

(timeout)

ESTABLISHED

TIME_WAIT State

• We wait a long time (two times the maximum
segment lifetime of 60 seconds) after sending
all segments and before completing the close

• Why?

– ACK might have been lost, in which case FIN will be
resent for an orderly close

– Could otherwise interfere with a subsequent
connection

