
Decision Ordering Based
Property Decomposition for
Functional Test Generation

Prabhat Mishra
CISE Department

University of Florida, USA

Mingsong Chen
Software Engineering Institute

East China Normal University, China

2

Outline
 Introduction
 Simulation-based Functional Validation
 Test Generation using Model Checking
 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering
 Learning-oriented property decomposition
 Decision ordering based learning techniques
 Test generation using our methodology

 Experiments
 Conclusion

3

Outline
 Introduction
 Simulation-based Functional Validation
 Test Generation using Model Checking
 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering
 Learning-oriented property decomposition
 Decision ordering based learning techniques
 Test generation using our methodology

 Experiments
 Conclusion

4

Functional Validation of SoC Designs

Logic Gates

Si
m

ul
at

io
n

Ve
ct

or
s

En
gi

ne
er

 Y
ea

rs

20

200

2000

1995

2001

2007

100M

10B

1000B

1M 10M 100M

Source: Synopsys

 Functional validation is a major challenge
 Majority of the SoC fails due to logic errors

 Simulation using directed tests is promising

5

Outline
 Introduction
 Simulation-based Functional Validation
 Test Generation using Model Checking
 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering
 Learning-oriented property decomposition
 Decision ordering based learning techniques
 Test generation using our methodology

 Experiments
 Conclusion

6

Automated Directed Test Generation

Verification / Validation

Formal Verification Simulation-based Validation

Model
Checking

SAT
Solving

Theorem
Proving

Random
Test

Directed
Test

Constrained
Random

Test

Bounded Model
Checking

SAT-based Bounded
Model Checking

Directed test generation based on the
automation of model checking techniques.

7

Test Generation using Model Checking
• Model Checking

• Designs are in formal specifications, e.g., SMV
• Desired behaviors in temporal logic properties
• Property holds, or fails with a counterexample

• Test generation Example

• Generate a counterexample: sequence of variable assignments

User name Access code Intput
 Bob ABC ABD

Model Checker

Input is always true ATM Model

An Example
Generate a test to make access code input fail

Approach: Exploit some learning to reduce complexity
 - Reduction of TG time & memory requirements
 - Enables test generation in complex scenarios

Problem: Test generation is very costly or not possible
 in many scenarios in the presence of
 complex SoCs and/or complex properties.

8

SAT-based Bound Model Checking

 Test generation needs to consider safety
properties

 The safety property P is valid up to cycle k iff
Ω(k) is not satisfiable.

 If Ω(k) is satisfiable, then we can get an

assignment which can be translated to a test.

. . .
s0 s1 s2 sk-1 sk

p p p ¬p p

9

Decision Ordering Problem

 A wise decision ordering can
quickly locate the true
assignment.

 Bit value ordering

 Variable Orderinig
√ X

X X X X

ϕ

¬x x

¬z z ¬y y

z ¬z y ¬y

() ()

(z),(¬z) ()

(y),(¬y,z),(¬y, ¬z)

()

() ()

(y),(¬y)

(y,z),(¬y,z)

ϕ

Given a ϕ in CNF: (x+y+z)(¬x+y)(¬y+z)(¬x+¬ y+¬ z)

Best decision: ¬ x, z

演示者
演示文稿备注
Can decision ordering can be used as a kind of learning? By our observation, similar properties will have similar test. Therefore the assignment of the derived tests can be used to as a kind of learning.

10

Same Design, Different Properties

P1 P2

P3

rb1

rb2
rb4

rb3

……
rbn

Forward

rg1

rg2
rg4

rg3

……
rgk

Forward Benefit:
Original: Red + Blue + Green
Now: Red + (Blue –Δblue) + (Green –
Δgreen)

Save: Δblue + Δgreen

Δblue

Δgreen

M. Chen and P. Mishra. Functional Test Generation using Efficient Property
Clustering and Learning Techniques. TCAD 2010.
M. Chen and P. Mishra. Efficient Decision Ordering Techniques for SAT-based
Test Generation. DATE 2010.

Problem: There is no learning for P1?

11

Property Decomposition Technique

Property

p1 pn p2 ……

t1 t2 tn

Composition

Test

Property

p1 pn p2 ……

Learning

Test

BMC

Koo et al. Functional Test Generation using
Property Decomposition Techniques. ACM
TECS, 2009

Drawback: Hard to automate

演示者
演示文稿备注
So far, we discussed clustering and decision ordering for efficient test generation. However, base (first) property needs to be solved alone (no learning). In general, for a complex design, the test generation for a complex property can be a bottleneck. Therefore we need to scale down the complexity of the property falsification. Koo et al . Proposed a decomposition based method that.

12

Promising Observations
Sub-properties may have a large overlap in

counter-examples (variable assignments) with
original property.
Such important information can be reused as a kind

of decision ordering.

The learning from sub-properties can drastically
reduce the overall test generation time.
The SAT instance for sub-properties can be much

smaller than that of original property
The learning from sub-properties can drastically

accelerate the falsification of original property.

13

Outline
 Introduction
 Simulation-based Functional Validation
 Test Generation using Model Checking
 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering
 Learning-oriented property decomposition
 Decision ordering based learning techniques
 Test generation using our methodology

 Experiments
 Conclusion

14

Spatial Property Decomposition

Cone1

Cone2

Cone3

V1
V2

V3
V4
V5

Vn

…

p1

p2

p3

P

COI(p1) < COI(p2) < COI(p3) <COI(P)

Time(p1) < Time(p2) < Time(p3) <Time(P)

Learning from P1 can reduce the Time(P) ?

Learn from the sub-properties with smaller COI.

15

A MIPS Processor Example

Checked Property

P: The units MUL5 and
FADD3 can be activated
together at 8th clock cycle.

LTL: ! F(MUL5=active &
FADD3=active & clk=8)

Fetch

Decode

PC

DIV FADD1 IALU MUL1

FADD3

FADD2

MUL5

FADD4

Decode

WriteBack

Register File

Memory

Unit

16

Spatial Property Decomposition

 Pipeline edge

Checked sub Property
P1: The units MUL5 can be
activated at 8th clock cycle.

LTL: !F(MUL5=active &
clk=8)

Counterexample for P1

 Cycles P1’s test
1 NOP
2 MUL R2, R2, R0
3 NOP
4 NOP

Fetch

Decode

PC

MUL1

Decode

WriteBack

Register File

Memory

MUL5

17

Spatial Property Decomposition

 Pipeline edge

Checked sub Property
P2: The units FADD3 can be
activated at 8th clock cycle.

LTL: !F(FADD3=active &
clk=8)

Counterexample for P2

 Cycles P2’s test
1 NOP
2 NOP
3 NOP
4 FADD R1, R1, R0

Fetch

Decode

PC

FADD1

FADD3

FADD2

FADD4

Decode

WriteBack

Register File

Memory

Storage

18

Learning from Spatial Property Decomposition

 Pipeline edge

Countereample for P2 guided
by P1

Counterexample for P

Cycles Learning
1 NOP
2 MUL R2, R2, R0
3 NOP
4 FADD R1, R1, R0

Fetch

Decode

PC

DIV FADD1 IALU MUL1

FADD3

FADD2

MUL5

FADD4

Decode

WriteBack

Register File

Memory

Unit

Cycles Learnings
1 NOP
2 MUL R2, R2, R0
3 NOP
4 FADD R1, R1, R0

19

Temporal Decomposition

T1

T2

T3

e1 e2
e3 e4

e5 e6

Cause effect relation: e1e2 e3e4 e5e6

Happen before relation: e1<e3<e4 <e5<e2<e6

Learn from the sub-properties with smaller bound.

演示者
演示文稿备注
In general, a SoC functional scenario consists of several transactions. And each transaction consists of several events. For example, transaction T1 contains two events, e1 and e2. Since the cost for generating a test for an earlier event is cheaper, the learning from e1 can be used for e2. We found that two kinds of temporal relation can be used as a learning.

20

Event Relation Analysis

event Cause-effect Happen-before

e1 e2

e3 e4 e5

e6

e7 e8 e9

1

3

5

1 2

5
2 1

!F(e1) → !F(e3) → !F(e7) → !F(e9)

21

A MIPS Processor Example

Checked Property
P: The units MUL5 and
FADD3 can be activated
together at 8th clock cycle.

LTL: ! F(MUL5=active &
FADD3=active & clk=8)

A sub-property example
LTL: ! F(MUL4=active &
FADD2=active & clk=7)

Fetch

Decode

PC

DIV FADD1 IALU MUL1

FADD3

FADD2

MUL5

FADD4

Decode

WriteBack

Register File

Memory

MUL4

22

Event Relation Construction

MUL1
Fetch

MUL3
IALU

MUL3
FADD1

MUL3
DIV

MUL4
FADD2

MUL5
FADD3

MUL2
Decode

1 1 1 1

Original Property
 P_e7: ! F(MUL5=active & FADD3=active & clk=8)
Temporally Decomposed Properties
 P_e1: ! F(MUL1=active & Fetch=active & clk=4)
 P_e4: ! F(MUL3=active & FADD1=active & clk=6)

e1 e2

e3

e4

e5

e6 e7

23

• Let vstat[sz][2] be a 2-dimension array to
record the statistics of sub-property results.
It is used to indicate the decision ordering
of unchecked properties.

• The term bias(vi) is used to indicate the
variable assignment variance of vi.

Decision Ordering Heuristics

bias (vi)=
Max(vstat[i][0], vstat[i][1]) +1

Min(vstat[i][0], vstat[i][1]) +1

24

Decision Ordering Heuristics (cont.)
• Our decision ordering is based on VSIDS but

our method considers decision ordering
learned from sub-properites.

 Initialization
 score(li) = literal count of li in CNF clauses
 Periodical update (include initialization)

 where max(vi) = MAX(score(vi), score(vi’)) + 1.

score(li) =
max(vi) *bias(vi) (varStat[i][1] > varStat[i][0] & li = vi)
 or (varStat[i][0] > varStat[i][1] & li = vi’)

score(li) Otherwise

25

An Example of Learning

0

a

b b

c c c c

0 0

0

0

0 0

0 0 0 0 0 0

0

Initialization
a

b b

c c c c

0 1

0

1

1 0

0 0 0 0 0 0

0

P1: a=0, b=1, c=0

a

b b

c c c c

0 3

0

1

3 0

0 0 0 2 0 0

0

P2: a=0, b=1, c=1

a

b b

c c c c

0 0

0

0

0 0

0 0 0 0 0 0

0

0

0

0

1

1

0

26

Test Generation Using Our Method
Inputs: a) Formal model of the Design, D
 b) Property P and satisfiable bound boundP

 c) Decomposed properties prop and satisfiable bounds
Output: A test testp for P
1. CNFs = BMC(D, props, bounds);
2. (CNF1,CNF2, …,CNFn)=Sort CNF using increasing file size
3. Initialize vstat;
4. for i is from 1 to n do

a) testi = SAT(CNFi, vsat);
b) Update(vstat, testi, bounds[i]);
endfor

5. Generate CNF = BMC(D, P, boundP);
6. return testp = SAT(CNF, vstat);

27

Outline
 Introduction
 Simulation-based Functional Validation
 Test Generation using Model Checking
 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering
 Learning-oriented property decomposition
 Decision ordering based learning techniques
 Test generation using our methodology

 Experiments
 Conclusion

28

Case Study 1: MIPS Processor
• We generated 20 properties based on interaction

faults onvarious function unit (ALU, DIV, FADD and
MUL). 6 of them cannot handled by temporal
decomposition.

Property
(test)

zChaff
(sec)

Num. of
Clusters

Num. of
Sub-props

Spatial
(sec)

Speedup

P1 127.52 3 2 49.41 2.58
P2 49.24 3 2 15.73 3.13
P3 9.18 2 1 4.99 1.84
P4 13.78 2 1 7.28 1.89
P5 31.63 3 2 12.74 2.48
P6 120.72 3 2 54.21 2.23

Speedup: 1.84-3.13 times

29

Case Study 1: MIPS Processor

Indications: Test generation complexity is significantly improved
 - Spatial decomposition is better in this example
 - Temporal decomposition can still get 2.5X speedup

• For the remaining 14 properties, we adopts both
spatial and temporal decompositions.

30

Case Study 2 : OSES
VerifyOrde
r

Settle_trad
e

Trade_S

Update_SHolderDB_
S

Update_StockDB_
S
Update_OrderDB_S

Update_orderDB_N
M

Trade_N
M Trade_P

E
Update
_stockDB_PE

Update_StockerHolderDB_P
E

Update_OrderDB_P
E

UpdateMa
p

AddOrderFormLi
st

GetNewOrde
r

Trade _F

CheckLimitPric
e

Update_orderDB_
F

End Order

Order
Error

Get Order Result

Limit Buy

Market Buy Marker
Sale

Limit
Sale

t0

t11

t1

t2

t12

t9 t8

t6 t5

t7

t3

t15
t16

t13
t14 t17 t18

t10
t22

t27

t28

t29

t23

t29

t26

t25

t24 t20

t21

t19

t4

31

• This case study is a on-line stock exchange system.
The activity diagram consists of 27 activities, 29
transitions and 18 key paths.

Case Study 2: OSES

P1 25.99 8 3 0.78 33.32
P2 48.99 10 4 2.69 18.21
P3 39.67 11 5 3.45 11.50

P4 247.26 11 5 22.46 11.01
P5 160.73 11 5 15.68 10.25
P6 97.54 11 4 1.56 62.53
P7 31.39 10 4 12.31 2.55
P8 161.74 11 4 12.62 12.82
P9 142.91 10 4 17.57 8.13

P10 33.77 10 4 1.76 19.19

Property zChaff
(sec)

Bound Num. of Sub-
properties

Temporal
(sec)

Speedup

Speedup: 3-63 times

32

Outline
 Introduction
 Simulation-based Functional Validation
 Test Generation using Model Checking
 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering
 Learning-oriented property decomposition
 Decision ordering based learning techniques
 Test generation using our methodology

 Experiments
 Conclusion

33

Conclusions
• Functional validation is a major bottleneck

• SAT-based approaches are promising for
automated test generation.

• Proposed an efficient technique for generation
of directed tests using learning techniques
 Developed two novel property decomposition

techniques based on decision ordering learning.

• Successfully applied on both hardware and
software designs
• Significant reduction in overall validation effort

34

Thank you !

	Decision Ordering Based Property Decomposition for Functional Test Generation
	Outline
	Outline
	Functional Validation of SoC Designs
	Outline
	Automated Directed Test Generation
	Test Generation using Model Checking
	SAT-based Bound Model Checking
	Decision Ordering Problem
	Same Design, Different Properties
	Property Decomposition Technique
	Promising Observations
	Outline
	Spatial Property Decomposition
	A MIPS Processor Example
	Spatial Property Decomposition
	Spatial Property Decomposition
	Learning from Spatial Property Decomposition
	Temporal Decomposition
	Event Relation Analysis
	A MIPS Processor Example
	Event Relation Construction
	Decision Ordering Heuristics
	Decision Ordering Heuristics (cont.)
	An Example of Learning
	Test Generation Using Our Method
	Outline
	Case Study 1: MIPS Processor
	Case Study 1: MIPS Processor
	Case Study 2 : OSES
	Case Study 2: OSES
	Outline
	Conclusions
	幻灯片编号 34

