
Branch-and-Bound Style Resource
Constrained Scheduling using

Efficient Structure-Aware Pruning

Mingsong Chen, Saijie Huang, Geguang Pu
Software Engineering Institute, East China Normal University, China

Prabhat Mishra
CISE Department, University of Florida, USA

2

Outline
 Introduction
 RCS using Branch-and-Bound Approaches
 Graph–based Notations
 BULB Approach

 Our Structure-Aware Pruning Approach
 Motivation
 Level-Bound Pruning Heuristics
 HLS Scheduling using Our Approach

 Experiments
 Conclusion

3

Outline
 Introduction
 RCS using Branch-and-Bound Approaches
 Graph–Based Notations
 BULB Approach

 Our Structure-Aware Pruning Approach
 Motivation
 Level-Bound Pruning Heuristics
 HLS Scheduling using Our Approach

 Experiments
 Conclusion

4

SoC Design Cost Model

Rising cost of IC design and effect of CAD tools
(Courtesy: Andrew Kahng, UCSD and SRC)

To
ta

l D
es

ig
n

C
os

t

Big Savings by using ESL Methodology

演示者
演示文稿备注
Moore’s Law. Figuring our power thermal, and do some optimization in RTL level is difficult. In parallel with the Moore’s law, each generation of EDA tools can efficiently reduce the overall cost.

5

High Level Synthesis
 Convert ESL specification to RTL implementation,

and satisfy the design constraints.
 Input: Behavior specifications (C, SystemC, etc.), and design

constraints (delay, power, area, etc.)
 Output: RTL implementation (datapath, controller)

Frontend
Compilation

CDFG,
DFG

Behavior
Spec.

RTL
Generation

VHDL,
Verilog

int Sample(){
var A,B,C,D,E,F,G : int;
Read(A, B, C, D, E);
F = E * (A + B);
G = (A + B) * (C + D);
……
}

Synthesis
Optimization

Schedules,
Binding

+ +

*

F G

*

E A D C B

+ +

*
F G

*

E A D C B

Cycle 1

Cycle 2

Cycle 3

+1,+2 *1,*2

B,D E, t1 A,C t1, t2

演示者
演示文稿备注
Moore’s Law. Figuring our power thermal, and do some optimization in RTL level is difficult. In parallel with the Moore’s law, each generation of EDA tools can efficiently reduce the overall cost.

6

Resource Constrained Scheduling
 Various resource constraints (e.g., functional units, power, …).
 Scheduling is a mapping of operations to control steps

 Given a DFG and a set of resource constraints, RCS tries to find a
(optimal) schedule with minimum overall control steps.

+ * *
+

+

Constraints:
Delay(+)=1, Delay(*)=2,
 functional units: 1+, 1*

Control Step

1

2

3

4

5

6

+

+

*

*
+

RCS is NP-Complete. RCS should take care of
 1) Operation precedence. 2) Resource sharing constraints

Schedule length = 6

v1 v2 v3

v4

v5

v1 v2

v3

v4
v5

演示者
演示文稿备注
Moore’s Law. Figuring our power thermal, and do some optimization in RTL level is difficult. In parallel with the Moore’s law, each generation of EDA tools can efficiently reduce the overall cost.

7

Basic Solutions
 Non-optimal heuristics
 Force Directed Scheduling
 List scheduling
 Pros: Fast to get near-optimal results
 Cons: schedules may not be tight

 Optimal approaches
 Integer linear programming
 Pros: easy modeling
 Cons: scalability, cannot handle non-integer time

 Branch-and-bound
 Pros: can prune the fruitless search space efficiently
 Cons: only investigate the bound length information.

演示者
演示文稿备注
Moore’s Law. Figuring our power thermal, and do some optimization in RTL level is difficult. In parallel with the Moore’s law, each generation of EDA tools can efficiently reduce the overall cost.

8

Outline
 Introduction
 RCS using Branch-and-Bound Approaches
 Graph–Based Notations
 BULB Approach

 Our Structure-Aware Pruning Approach
 Motivation
 Level-Bound Pruning Heuristics
 HLS Scheduling using Our Approach

 Experiments
 Conclusion

9

Graph-Based Notations
 [ASAP, ALAP] intervals indicate the earliest and

latest start time of operations
 Input operations and output operations
 Level(op) indicates the longest length from some

input operations to the current operation op

* + *

+

+

[1,4] [1,4]

[3,5]

[1,5]

[3,6]

Level 1

Level 2

Level 3

v1 v2 v3

v4

v5

10

Scheduling Using [ASAP, ALAP]
 A schedule is a binary relation of operations and

corresponding dispatching control step
 E.g., {(v1, 1), (v2, 1), (v3, 3), (v4, 5), (v5, 5)}

 Based on [ASAP, ALAP], naively enumerating all
the possibilities can be extremely time consuming
 The operations are enumerated in a specific order
 Each operation are enumerated from ASAP to ALAP

Control Step

1

2

3

4

5

6

+

+

*

*
+

Constraints:
Delay(+)=1,
Delay(*)=2,
1+, 1*

(v2,1)

(v5,6)

(v1,1)

(v3,3)

(v4,5)

* + *

+

+

[1,4] [1,4]

[3,5]

[1,5]

[3,6]

v1 v2 v3

v4

v5

11

Branch and Bound Style RCS (BULB)
 BULB tries to prune fruitless enumerations.
 B&B approach keeps two data structure regarding

bound information.
Sbsf , best complete schedule searched so far
S, current incomplete schedule

 Sbsf
1

2

3

4

5

6 +

+ *

*

+

1

2

3

4

5

6

7

+

+

* globalL
ow

ω

S

upper

low
er

*
+

(v1,1)

(v2,1)

(v3,3)

(v4,5)
 (v5,6)

(v1,2)

(v2,1)

12

Pruning in BULB

Sbsf

S
upper

lower

globalLow ω optimal

 Pruning [lower > ω]
 Termination [globalLow == ω or fully explored]
 Substitution [if(upper < ω) ω = upper]
 Backtrack [operations are all enumerated]

Based on the bound information, no further pruning can be conducted
for current B&B approaches when ω is in [lower, upper].

13

Outline
 Introduction
 RCS using Branch-and-Bound Approaches
 Graph–Based Notations
 BULB Approach

 Our Structure-Aware Pruning Approach
 Motivation
 Level-Bound Pruning Heuristic
 HLS Scheduling using Our Approach

 Experiments
 Conclusion

14

Motivation
 Pruning based on the structural information of

the best schedule (i.e., Sopt) searched so far.

Sbsf

S

3 1 5 1 6

1 3 ? ? 2

* + *

+

+

 (v1,1)

* + *

+

+

v1 v2 v3

v4

v5

 (v2,1) (v3,3)

 (v4,5)

 (v1,6)

 (v1,1) (v2,2) (v3,3)

 (v4,?)

 (v5,?)

1

2

3

4

5

6

+

+

*

*

+

(v1,1)
 (v2,2)

v1 v2 v3 v4 v5

15

Cut and Complete Level
 A cut is an edge set which can separate a DFG

into two parts, one part contains all input
operations, the other one contains all output
operations.

 The kth complete level of a cut is a set node,
which are adjacent input nodes of all the edges
across kth level and (k+1)th level .

1st Complete level : {v1,v2,v3}

2nd Complete level : {v1,v4}

* + *

+

+

 v1 v2 v3

 v4

 v5

cut1

cut2

16

Level-Bound Pruning
 Let OPk be the operation set of kth complete level.
 The level-bound pruning can be enabled when

the following conditions hold:
1. opi, opi OPk → S(opi) > 0;
2. opi, opi OPk → Sbsf(opi) ≤ S(opi);
3. opi, opi OPk → Sbsf(opi) < S(opi).

Sbsf S Len(Sbsf) ≤ Len(S)

* + *

+

+

 (v1, 1) (v2,1) (v3,3)

 (v4,?)

 (v5,?)

cut
* + *

+

+

 (v1,1) (v2,2) (v3,3)

 (v4,?)

 (v5,?)

cut

cut2

17

Basic Proof of Level-Bound Pruning
1. Enumeration of operations starts from ASAP to ALAP
2. When a level bound pruning condition holds, for Sbsf , all

the combination of operation dispatching under the
complete level has been fully explored.

3. Sbsf is the best schedule founded in all combinations in 2.

4. Level bound pruning condition indicates that

 Len(Sbsf) <= Len(best of all possible S)
 Therefore, the enumeration can be safely pruned.

Sbsf
1

2

3

4

5

6

+

+

*

*

+

1

2

3

4

5

6

+ *

L
en(S

bsf)

S L
en(best of possible S)

*

18

Structure-Aware Pruning approach
Struture-arwarePruning (D, i, N, Sbsf, S, ω) {
 if i≤n then{
 for step = ASAP(opi) to ALAP(opi){
 1. if LevelBound(S, Sbsf, opi) return (Sbsf, ω);

 if precedence(opi) ˄ resAvailable(step, type(opi)){
 2. recalculate lower and upper;
 if upper < ω{ 3. ω = upper;
 4. Sbsf = ListScheduling(opi);
 5. if ω == globalLow(D) Terminate;
 6. UpdateALAP(); }
 if lower < ω{ 7. S(opi) = step;
 8. ResOccupy(step, type(opi), delay(opi));
 9. Struture-arwarePruning (D, i+1, N, Sbsf, S, ω);
 10. ResRestore(step, type(opi), delay(opi)); }
 }
 }

19

Outline
 Introduction
 RCS using Branch-and-Bound Approaches
 Graph–Based Notations
 BULB Approach

 Our Structure-Aware Pruning Approach
 Motivation
 Level-Bound Pruning Heuristics
 HLS Scheduling using Our Approach

 Experiments
 Conclusion

20

Benchmarks & Settings
 Used benchmarks from MediaBench.
 BULB & our approach are implemented using C++.
 All the experiments were conducted on a Linux

machine with Intel 2.0GHz CPU and 3G RAM.
 Setting of functional units:

Functional
Unit

Operation
class

Delay
(unit)

Power
(unit)

Energy
(unit)

Area
 (unit)

ADD/SUB +/- 1 10 10 10
MUL/DIV */ 2 20 40 40

MEM LD/STR 1 15 15 20
Shift <</>> 1 10 10 5

Others … 1 10 10 10

21

Results under Functional Constraints

RCS efforts are significantly improved:
 - BULB approach outperforms ILP approach
 - Our approach can still get up to 15X speedup against BULB

22

Scheduling Using Area of 140 Units

When power is 60, up to 22x speedup.

23

When power is 40, up to 101x speedup.

Scheduling Using Area of 100 Units

24

Conclusions
 RCS is a major bottleneck in HLS

 Branch-and-bound approaches are promising for
 optimal resource-constrained scheduling.

 Proposed a structure-aware pruning heuristic
 Based on structural scheduling information of

explored optimal schedule candidates
 Synergy with state-of-the-art B&B methods

 Successfully applied on various benchmark
with different resource constraints
 Significant reduction in overall RCS efforts

25

Thank you !

	Branch-and-Bound Style Resource Constrained Scheduling using Efficient Structure-Aware Pruning
	Outline
	Outline
	SoC Design Cost Model
	High Level Synthesis
	Resource Constrained Scheduling
	Basic Solutions
	Outline
	Graph-Based Notations
	Scheduling Using [ASAP, ALAP]
	Branch and Bound Style RCS (BULB)
	Pruning in BULB
	Outline
	Motivation
	Cut and Complete Level
	Level-Bound Pruning
	Basic Proof of Level-Bound Pruning
	Structure-Aware Pruning approach
	Outline
	Benchmarks & Settings
	Results under Functional Constraints
	Scheduling Using Area of 140 Units
	Scheduling Using Area of 100 Units
	Conclusions
	幻灯片编号 25

