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Functional Validation of SoC Designs 
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SoC Validation is becoming a major bottleneck. 

Up to 70% time and resources are used.  



SoC Design and Validation Flow 
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Related Work 

Transactor-based  dynamic verification methods 

TLM tests can be used in TLM-RTL co-simulation 

Based on event order without timing information 

Assertions applied on TLM designs only 

PSL-based Verification approaches 

Increase the design observability  

Take advantages of formal techniques 

Few of them investigate the relations of TLM and 
RTL assertions 
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Overview of Our Framework 
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Basic idea: If a TLM test can exercise some TLM assertions, then its RTL 

counterpart can also activate the corresponding RTL assertions. 

1: Assertion Generation 2: Assertion Refinement 

3: Consistency Checking 



Three Issues 

How to define the set of TLM assertions for 
observing functional scenarios? 

TLM fault models for automatic assertion generation 

How to reuse TLM validation effort? 

TLM assertion/test refinement 

How to use the correlation between TLM and RTL 
assertions for consistency checking 

Assertion-based consistency checking criteria 
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Automatic TLM Assertion Generation 

Since we focus on the activation of functional 
scenarios,  we use the following PSL statement 
pairs to detect whether the sequence P will 
happen finally. 

 

 

Prop1 asserts that the sequence p must “eventually 
hold strongly" during the simulation. 

Prop2 is used to record the assertion coverage during 
the simulation by using verification directive “cover”. 
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 Prop1:   assert   eventually!    p; 

 Prop2:   cover    (p); 



Automatic TLM Assertion Generation 

We define a set of fault models. Each fault indicates a 
required “design behavior” which may be violated 
during the system design. 

 Transaction data fault model deals with the possible value 
assignment for each part of a transaction data. 

 

 

 Transaction flow fault model handles the controls (e.g., if-
then-else) along a transaction flow. 
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 // The second bit of “packet.parity” can be 1. 

  assert eventually! (packet.parity==2); 

  cover (packet.parity==2); 

 // The condition packet.to_chan=1 can be true. 

  assert eventually! (packet.to_chan==1); 

  cover (packet.to_chan==1); 



Refinement of TLM Assertions/Tests 

TLM design is significantly different from its RTL 
implementation in port definition, internal 
structure and timing details. 
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Refinement of TLM Assertions/Tests 

We developed the Assertion Refinement Specification 
(ARS) which contains the rules to guide the assertion 
refinement. Generally an ARS contains two parts:   
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– Symbol Mapping  specifies 
the name and type 
mapping between TLM 
variables and RTL signals 

– Assertion Refinement 
Rules specify control 
signals and timing 
information for RTL 
assertions. 

 

SYMBOL_MAPPING 

    bit[1:0] addr = tmp_packet.to_chan; 

    …… 

END_SYMBOL_MAPPING 

 

ASSERTION_SPEC 

    `set_clock (posedge clock); 

     …… 

    `control   tmp_packet.to_chan 

  @  $rose(packet_valid); 

     …… 

END_ASSERTION_SPEC 



Refinement of TLM Assertions/Tests 
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TLM Assertion :  

              Cover (tmp_packet.to_chan == 1); 

RTL  Assertion :  Cover Property 

 ( @(posedge clock)  ($rose(packet_valid)) && (addr == 2’d1) ); 

Clock Expression 

Control  Signals 

Symbol mapping 



Refinement of TLM Assertions/Tests 
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TLM Test 

 

 p->to_chan=1; 

 p->payload_sz=2; 

 p->payload[0]=1; 

 p->payload[1]=2; 

 

 p->parity=10;  

RTL Test 

   read_enb_0 = 0; 

   read_enb_1 = 0;       

   read_enb_2 = 0;                 Initialization 

   packet_valid = 0; 
 

                     reset = 0; 

   #5   reset = 1;                     Reset Sequence 

   #20 reset = 0; 
 

   #5   packet_valid = 1;         Use of half clock 

          data = 8'b00001001;    Name Transformation 

   #10 data = 8'b00000001;      

   #10 data = 8'b00000010; 

   #10 packet_valid = 0;            

         data= 8'b00001010; 
 

   #10  read_enb_1=1; 

   #40  read_enb_1=0;           Use of four clocks 

   $finish; 

Data  

Composition 

-- Port definition 

input.data    (10)     [7:0]   data; 

-- TLM and RTL name binding 

bit[7:0]   head = {packet_data.payload_size[7:2], 

packet_data.to_chan[1:0]}; 

--Timing relation 

@head   packet_valid = 0'b1;  

-- Test translation 

head => data; 



Assertion-based Functional Consistency Checking  

Since an assertion activation means that a specific 
functional scenario is covered, the coverage of the 
assertions indicates the adequacy of the functional 
validation. 

Given a TLM specification T and its RTL implementation R, 
by applying TLM tests on T and RTL tests on R, the 
assertion coverage can be calculated as:  
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Tcoverage  = 
# of exercised TLM assertions 

Total number of TLM assertions 

Rcoverage  = 
# of exercised RTL assertions 

Total number of RTL assertions 



Assertion-based Functional Consistency Checking 

For a TLM test and its refined RTL version, when 
applying them on the TLM and RTL designs 
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– Assertion consistent: For each 
test, the activated TLM assertions 
is a subset of the corresponding 

RTL assertions.  

– Strongly assertion consistent: 
Besides assertion consistency,  for 
each test, it requires that  the 
activation order of  assertions is 
the same.  t and t’ are assertion consistent, but they 

are not strongly assertion consistent. 



Case Study 1: A Router Example 

The main function of the router is to parse incoming 
packets and send them to target slaves. 

By using our tool, 59 TLM assertions  are generated. 

 55 from data fault model 

 4 from flow fault model 

We select 59 TLM tests from 1000 random TLM tests 
which can achieve 100% TLM assertion coverage. 

To improve RTL coverage, we  

     derive 2 more directed tests 

     (FIFO overflow + reset). 
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Case Study 1: A Router Example 

RTL Coverage using Synopsys VCS Discovery Visualization 
Environment (DVE) tool 
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Module Line Toggle FSM Condition Path 

fifo 76.6% 100% NA 100% NA 

Port_fsm 95.92% 100% 87.5% 71.88% 100% 

router 100% 100% NA NA 100% 

• The 61 directed RTL tests only need 4 seconds. Running 
10000 random tests needs 1057 seconds. 

• Found 1 fatal error in the RTL implementation. 

– Try to send the packet to the 4th slave, i.e., to_chan = 3. 

• After correcting the error, the TLM and RTL models are 
strongly assertion equivalent. 

 



Case Study 2: An Alpha AXP  Processor 

By using our tool, 163 TLM assertions  are generated. 

 117 from data fault model 

 46 from flow fault model 

To achieve 100% TLM assertion coverage, 163 TLM tests 
are selected from 3000 random TLM tests. 
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Case Study 2: An Alpha AXP  Processor 

RTL implementation Coverage  of 163 directed tests using 
Synopsys DVE tool. 
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• The 163 directed RTL tests only need 15 seconds. Running 
50000 random tests needs 1390 seconds. 

• The TLM and RTL models are strongly assertion equivalent. 

 

Module Line Toggle FSM Condition Path 

IF_stage 100% 68.82% NA 100% 100% 

ID_stage 100% 80.00% 60.00% 100% 100% 

EX_stage 100% 52.94% NA 100% 100% 

MEM_stage 100% 74.19% NA 100% 100% 

WB_stage 100% 78.52% NA 100% 100% 

regfile 100% 71.29% NA 55.56% 100% 



Conclusion 

Raising the abstraction introduces two challenges 
 Functional inconsistency between abstraction levels 

 Increasing validation efforts 

Our work tries to reuse TLM validation effort to 
enable RTL validation 
 TLM assertion generation/activation 

 TLM-to-RTL assertion/test refinement 

 TLM-to-RTL functional consistency checking 

Experimental results demonstrate that our approach 
can improve the design quality and significantly 
reduce the validation effort.   
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Questions? 
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Thank you ! 


