
Assertion-Based Functional
Consistency Checking Between

TLM and RTL Models

 Mingsong Chen Prabhat Mishra
Shanghai Key Lab of Trustworthy Computing Computer and Information Science and Engineering

 East China Normal University University of Florida, USA

This work was partially supported by NSF CAREER award 0746261, NSF of China

61202103, Open Project of SCERC 2012002, and SHTDP of China 2011AA010101.

Outline

12/31/2013 © VLSI Design Conference 2013 2

● Introduction

● Related Work

● Assertion-Based Consistency Checking

 Automatic TLM Assertion Generation

 Refinement of TLM Assertions/Tests

 Assertion-Based Functional Consistency Checking

● Experiments

● Conclusions

Functional Validation of SoC Designs

12/31/2013 © VLSI Design Conference 2013 3

2000 2007 1000B

100M

200 2001 10B

10M

Trillions

Billions

20000? 2012

100M

Logic Gates

S
im

u
la

ti
o
n
 V

e
c
to

rs

E
n
g
in

e
e
r

Y
e
a
rs

20 1995

1M

SoC Validation is becoming a major bottleneck.

Up to 70% time and resources are used.

SoC Design and Validation Flow

12/31/2013 © VLSI Design Conference 2013 4

Assertion/Test

Reuse

Specification

TLM

VHDL/Verilog C/C++

Implementation

HW SW SW/HW Partitioning

Specification Validation

Implementation Validation

Related Work

Transactor-based dynamic verification methods

TLM tests can be used in TLM-RTL co-simulation

Based on event order without timing information

Assertions applied on TLM designs only

PSL-based Verification approaches

Increase the design observability

Take advantages of formal techniques

Few of them investigate the relations of TLM and
RTL assertions

12/31/2013 © VLSI Design Conference 2013 5

Overview of Our Framework

12/31/2013 © VLSI Design Conference 2013 6

Basic idea: If a TLM test can exercise some TLM assertions, then its RTL

counterpart can also activate the corresponding RTL assertions.

1: Assertion Generation 2: Assertion Refinement

3: Consistency Checking

Three Issues

How to define the set of TLM assertions for
observing functional scenarios?

TLM fault models for automatic assertion generation

How to reuse TLM validation effort?

TLM assertion/test refinement

How to use the correlation between TLM and RTL
assertions for consistency checking

Assertion-based consistency checking criteria

 12/31/2013 © VLSI Design Conference 2013 7

Automatic TLM Assertion Generation

Since we focus on the activation of functional
scenarios, we use the following PSL statement
pairs to detect whether the sequence P will
happen finally.

Prop1 asserts that the sequence p must “eventually
hold strongly" during the simulation.

Prop2 is used to record the assertion coverage during
the simulation by using verification directive “cover”.

12/31/2013 © VLSI Design Conference 2013 8

 Prop1: assert eventually! p;

 Prop2: cover (p);

Automatic TLM Assertion Generation

We define a set of fault models. Each fault indicates a
required “design behavior” which may be violated
during the system design.

 Transaction data fault model deals with the possible value
assignment for each part of a transaction data.

 Transaction flow fault model handles the controls (e.g., if-
then-else) along a transaction flow.

12/31/2013 © VLSI Design Conference 2013 9

 // The second bit of “packet.parity” can be 1.

 assert eventually! (packet.parity==2);

 cover (packet.parity==2);

 // The condition packet.to_chan=1 can be true.

 assert eventually! (packet.to_chan==1);

 cover (packet.to_chan==1);

Refinement of TLM Assertions/Tests

TLM design is significantly different from its RTL
implementation in port definition, internal
structure and timing details.

12/31/2013 © VLSI Design Conference 2013 10

 DUT

data

err

suspend

clock

channel0

vld_chan_0

read_enb_0

channel1

vld_chan_1

read_enb_1

channel2

vld_chan_2

read_enb_2

length

7 6 5 4 3 2 1 0

data[0]

 data[1]

 …….

 data[N]

 parity

addr Header

P

A

Y

L

O

A

D

Parity

Packet Structure

Refinement of TLM Assertions/Tests

We developed the Assertion Refinement Specification
(ARS) which contains the rules to guide the assertion
refinement. Generally an ARS contains two parts:

12/31/2013 © VLSI Design Conference 2013 11

– Symbol Mapping specifies
the name and type
mapping between TLM
variables and RTL signals

– Assertion Refinement
Rules specify control
signals and timing
information for RTL
assertions.

SYMBOL_MAPPING

 bit[1:0] addr = tmp_packet.to_chan;

 ……

END_SYMBOL_MAPPING

ASSERTION_SPEC

 `set_clock (posedge clock);

 ……

 `control tmp_packet.to_chan

 @ $rose(packet_valid);

 ……

END_ASSERTION_SPEC

Refinement of TLM Assertions/Tests

12/31/2013 © VLSI Design Conference 2013 12

TLM Assertion :

 Cover (tmp_packet.to_chan == 1);

RTL Assertion : Cover Property

 (@(posedge clock) ($rose(packet_valid)) && (addr == 2’d1));

Clock Expression

Control Signals

Symbol mapping

Refinement of TLM Assertions/Tests

12/31/2013 © VLSI Design Conference 2013 13

TLM Test

 p->to_chan=1;

 p->payload_sz=2;

 p->payload[0]=1;

 p->payload[1]=2;

 p->parity=10;

RTL Test

 read_enb_0 = 0;

 read_enb_1 = 0;

 read_enb_2 = 0; Initialization

 packet_valid = 0;

 reset = 0;

 #5 reset = 1; Reset Sequence

 #20 reset = 0;

 #5 packet_valid = 1; Use of half clock

 data = 8'b00001001; Name Transformation

 #10 data = 8'b00000001;

 #10 data = 8'b00000010;

 #10 packet_valid = 0;

 data= 8'b00001010;

 #10 read_enb_1=1;

 #40 read_enb_1=0; Use of four clocks

 $finish;

Data

Composition

-- Port definition

input.data (10) [7:0] data;

-- TLM and RTL name binding

bit[7:0] head = {packet_data.payload_size[7:2],

packet_data.to_chan[1:0]};

--Timing relation

@head packet_valid = 0'b1;

-- Test translation

head => data;

Assertion-based Functional Consistency Checking

Since an assertion activation means that a specific
functional scenario is covered, the coverage of the
assertions indicates the adequacy of the functional
validation.

Given a TLM specification T and its RTL implementation R,
by applying TLM tests on T and RTL tests on R, the
assertion coverage can be calculated as:

12/31/2013 © VLSI Design Conference 2013 14

Tcoverage =
of exercised TLM assertions

Total number of TLM assertions

Rcoverage =
of exercised RTL assertions

Total number of RTL assertions

Assertion-based Functional Consistency Checking

For a TLM test and its refined RTL version, when
applying them on the TLM and RTL designs

12/31/2013 © VLSI Design Conference 2013 15

– Assertion consistent: For each
test, the activated TLM assertions
is a subset of the corresponding

RTL assertions.

– Strongly assertion consistent:
Besides assertion consistency, for
each test, it requires that the
activation order of assertions is
the same. t and t’ are assertion consistent, but they

are not strongly assertion consistent.

Case Study 1: A Router Example

The main function of the router is to parse incoming
packets and send them to target slaves.

By using our tool, 59 TLM assertions are generated.

 55 from data fault model

 4 from flow fault model

We select 59 TLM tests from 1000 random TLM tests
which can achieve 100% TLM assertion coverage.

To improve RTL coverage, we

 derive 2 more directed tests

 (FIFO overflow + reset).

12/31/2013 © VLSI Design Conference 2013 16

Master

Slave1

Slave2

Slave3

FIFO

FIFO

FIFO

FIFO

route
put-date

get-date

get-date

get-date

Case Study 1: A Router Example

RTL Coverage using Synopsys VCS Discovery Visualization
Environment (DVE) tool

© VLSI Design Conference 2013 17

Module Line Toggle FSM Condition Path

fifo 76.6% 100% NA 100% NA

Port_fsm 95.92% 100% 87.5% 71.88% 100%

router 100% 100% NA NA 100%

• The 61 directed RTL tests only need 4 seconds. Running
10000 random tests needs 1057 seconds.

• Found 1 fatal error in the RTL implementation.

– Try to send the packet to the 4th slave, i.e., to_chan = 3.

• After correcting the error, the TLM and RTL models are
strongly assertion equivalent.

Case Study 2: An Alpha AXP Processor

By using our tool, 163 TLM assertions are generated.

 117 from data fault model

 46 from flow fault model

To achieve 100% TLM assertion coverage, 163 TLM tests
are selected from 3000 random TLM tests.

12/31/2013 © VLSI Design Conference 2013 18

IF ID EX WB

Branch
Data
MEM

RegFile

 MEM

Case Study 2: An Alpha AXP Processor

RTL implementation Coverage of 163 directed tests using
Synopsys DVE tool.

© VLSI Design Conference 2013 19

• The 163 directed RTL tests only need 15 seconds. Running
50000 random tests needs 1390 seconds.

• The TLM and RTL models are strongly assertion equivalent.

Module Line Toggle FSM Condition Path

IF_stage 100% 68.82% NA 100% 100%

ID_stage 100% 80.00% 60.00% 100% 100%

EX_stage 100% 52.94% NA 100% 100%

MEM_stage 100% 74.19% NA 100% 100%

WB_stage 100% 78.52% NA 100% 100%

regfile 100% 71.29% NA 55.56% 100%

Conclusion

Raising the abstraction introduces two challenges
 Functional inconsistency between abstraction levels

 Increasing validation efforts

Our work tries to reuse TLM validation effort to
enable RTL validation
 TLM assertion generation/activation

 TLM-to-RTL assertion/test refinement

 TLM-to-RTL functional consistency checking

Experimental results demonstrate that our approach
can improve the design quality and significantly
reduce the validation effort.

12/31/2013 © VLSI Design Conference 2013 20

Questions?

12/31/2013 © VLSI Design Conference 2013 21

Thank you !

