
Quantitative Timing Analysis of
UML Activity Digrams

using Statistical Model Checking

Fan Gu1, Xinqian Zhang1, Mingsong Chen1,

Daniel Grosse2 and Rolf Drechsler2
1 Institute of CS & SE, East China Normal University, China

2Institute of Computer Science, University of Bremen, Germany

Outline

1

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative Timing Analysis Approach

 Extension of UML Activity Diagrams

 NPTA Model Generation

 Property Generation & Quantitative Analysis

 Experimental Results

 Conclusion

Outline

2

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative Timing Analysis Approach

 Extension of UML Activity Diagrams

 NPTA Model Generation

 Property Generation & Quantitative Analysis

 Experimental Results

 Conclusion

Modeling with UML Activity Diagrams

 Based on Petri-net semantics, activity diagrams are widely

used in modeling concurrent behaviors of system designs.

 Easier to understand than text

 Friendly for both HW and SW designers

 Support complex functional checking and timing verification

Real-Time and

Embedded Systems
Service Workflow Business rules

and operations

Timing Analysis of Activity Diagrams

 Due to increasing interactions with uncertain environment, the

timing of system behaviors becomes hard to be predicted.

 Within an uncertain environment, activity diagrams designers

would like to ask the question “What is the probability that a

specific scenario can be complete within a time limit?”.

 Unfortunately, few of existing approaches can model and

reason the timing of activity diagram behaviors under variations

(e.g., user-input, action execution time).

Network Delay Device Variations Human-in-the-Loop

 Approach to analyze activity diagrams
 Model checking based methods

 Consistency checking (Eshuis, TOSEM 2006; Hilken et al., FDL 2014)

 Timing verification (Li et al., UML 2001; Das et al., ASPEC 2006)

 Model-driven testing approaches
 Gray-box testing (Wang et al., APSEC 2004)

 Directed testing (Chen et al., GLSVLSI 2008; Chen et al., DAES 2010)

 Limitations of previous work

 Inaccurate modeling of parallel task execution (e.g., ILP)

 Constraint solving based approaches can only answer yes or

no, but cannot answer why the performance is not satisfied

 Support limited number of distributions for execution variation

modeling (e.g., uniform distribution)

 Lack of automated tools to enable the quantitative reasoning

about the performance metrics

Limitations & Challenges

Challenges

i) How to accurately model system behaviors under

various kinds of variations?

ii) How to enable quantitative reasoning of critical

functional and performance requirements?

Outline

6

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative Timing Analysis Approach

 Extension of UML Activity Diagrams

 NPTA Model Generation

 Property Generation & Quantitative Analysis

 Experimental Results

 Conclusion

Variation-Aware Construction of NPTA

PTA A PTA B

 NPTA - Network of Priced Timed Automata

 An NPTA instance, (A | B)

Time of reaching (A3, B3) ~ N(9,12+22).

t1 ~ N(3,12) t2 ~ N(6,22)

 A possible behavior of the NPTA (A|B)

UPPAAL-SMC
 UPPAAL-SMC versus formal model checking

 Based on simulation, thus requiring far less memory and time
 Allow high scalable validation approximation
 Support quantitative performance analysis

 Applications: Real-time systems, Smart building, Biology, …

UPPAAL-SMC Based Evaluation

 Our quantitative analysis is based on UPPAAL-SMC,

which is effective for checking large stochastic systems

Quantitative

Analysis

 Design

Design Constraints

Model

Property

SMC

Checker

Evaluation Results

 Query formats supported by UPPAAL-SMC
 Qualitative check: Pr [time <= bound] (<> expr) >= p

 Quantitative check: Pr [time <= bound] (<> expr)

 Probability comparison:

Pr [time1 <= bound1] (<> expr1) >= Pr [time2 <= bound2] (<> expr2)

Outline

10

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative Timing Analysis Approach

 Extension of UML Activity Diagrams

 NPTA Model Generation

 Property Generation & Quantitative Analysis

 Experimental Results

 Conclusion

Problem Definition

UML

Activity Diagrams
Variation Information

Network delay

Execution time variation

User input variation

Design

Requirements

Response time

Functional Scenarios

Quantitative Evaluation Framework

Timing Analysis Results

Our Framework

12

Design Requirements
(Time, Coverage Criteria)

S3

 NPTA Model Generation

UPPAAL-SMC

Quantitative Analysis

Back-End Models

Property Generation

Activity Diagram

Front-End Models

Pr[t <= T](<>(Act3.done && Act4.done))

Variation Information
(Inputs, Time, etc.)

Action
ID

Configuration

Pre Post Variation

Act1 NULL Syn_1 N(1.4,0.12)

Act2 Syn_1 Act4 N(2.6,0.22)

… … … …

All the three steps are fully automated.

Graph-Based Notations

Action Name

Action Activity

Initial

Join

Decision/Merge

Action1 Action2

…

…

Final

Fork Flow edge

Action

 Actions (i.e., functional operations) and activities
which indicate a collection of correlated actions

 Control nodes and flows (indicating the execution
order of actions)

 Control Nodes

 Control Flow

Activity Diagram Annotation

1. Actions denote operations

 e.g., action d, i.e., Dispense_cash

2: Transitions denote control flows
between actions

 e.g., Transition t7 with guard
[amount >= available]

3. A run denotes a complete
concurrent execution

 e.g., {Start} -> {a}->{c} -> {d,f}->{e,f}
-> {g} -> {End}

Extended Activity Diagrams

 User inputs are defined
following some distributions

 Each operation is assigned
with a time distribution,
e.g., action d follows
normal distribution N(6,1.0)

 Each action corresponds to
an operation function

 Distribution information is
saved textually as UML
notes

User Input:
Input_amount ~ N(500,50)
input_code ~ {“ab”, “abc”, …}

NPTA Model Generation

 A back-end configuration contains all the information

of variations, synchronization and node operations for

an activity diagram (with N nodes).
 Activity diagrams are abstracted to DAGs with nodes (action

nodes and control nodes) and edges (control flows).
 Synchronization bars are not modeled explicitly. We assume

that a node can be executed only when all its precedent
nodes are complete.

 Back-end configuration of variation information
 For input variables, the configuration defines their value

distributions, and their random values are generated in the
initial action

 Action time distributions are save in distribution[N][m].
 E.g., if action i follows normal distribution of, distribution[i][0]

indicates its expected execution time, and distribution[i][1] stores the
standard deviation.

NPTA Model Generation

Action synchronization via channel communication
 UPPAAL-SMC communicates via broadcasting

 Point-to-Point communication encoding using the formula

Back-end configuration of synchronization
 Flow edges indicate the unidirectional communication

 Instead of creating an urgent channel array msg_graph[N][N],

we use a two-dimensional array msg_graph[N][Max_Out],

where msg_graph[i][j] indicates the jth channel from node i.

Sender idx

e= encode_msg(idx, idy)

Receiver idy

Broadcast Channel Matrix msg[N×N]

idx = e%N

idy = e / N

encode_msg(idx, idy) = idx×N + idy

NPTA Model Generation

 Back-end configuration of node operation
 Action node function: There is an action function for action

with ID nid named act_func_nid(), which will be called by
a uniform function do_func(nid).

 Branch node function: For each control node (i.e., decision
or merge), we create a branch function br_func_nid(),
which will be called by a uniform function select_func(nid).

message_t br_func_m(id_t nid){
 if (exp) return msg_graph[nid][0]; // channel to action c
 if (!exp) return msg_graph[nid][1]; // channel to action b
 else return -1;
 }
message_t br_func_n(id_t nid);
......
message_t select_func(id_t nid){
 if (nid==m) return br_func_m(nid);
 if (nid==n) return br_func_n(nid);

 return -1;
 }

Action A

Action B Action C

i

j k

m

[!exp] [exp]

NPTA Model Generation

19

Front-end Model for Node
(action node & control node)

 Initial state
 The beginning of a task

 Receiving state
 Tries to get notification messages

from all the predecessors

 Running state
 All predecessors finished

 Current task is executing

 Sending state
 Notify all successive tasks about its

completion

 Done state
 The completion of a task

Property Generation & Evaluation

“What is the probability that a functional scenario S

can happen or complete within a time limit T?”

Pr [<= T] (<> S.done)

 [<= T] indicates the time limit is T

 <>S checks whether scenario S can be fulfilled eventually.

 S.done indicates the completion of scenario S

 Based on parameters ε (probability uncertainty) and α

(probability of false negatives) , stochastic runs are

generated to obtain an approximate interval [p- ε,p+ ε] with

a confidence 1- α

Coverage-Oriented Property Generation

Action queries
 acti can be visited at least k times and the last state is sta

 Pr [<= T] (<> acti.sta && visit[i]>=k)

 Interaction queries
 The actions with specified states can happen simultaneously

 Pr [<= T] (<> acti.sta1 && actj.sta2)

Run Queries
 The run can complete within a time limit T

 Pr [<= T] (<> acti1.done && acti2.done &&…&&

actin.done && visit[1]>=k1 && … && visit[n]>=kn)

Supports three kinds of performance queries obtained

from the structural information of activity diagrams.

Outline

22

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative Timing Analysis Approach

 Extension of UML Activity Diagrams

 NPTA Model Generation

 Property Generation & Quantitative Analysis

 Experimental Results

 Conclusion

Tools Chain for Experiment

23

 All the experimental results were obtained on a

desktop with 3.30GHz AMD CPU and 4GB RAM

Exp. 1 – CBTC ATO Subsystem

24
Source：Hitachi CBTC SIL4 news release

 CBTC deals with telecommunications between trains and track

equipment. Its subsystem ATO automates operations of trains

 ATO suffers from the delay of communication and the execution

time variations of software and hardware components.

Exp. 1 – CBTC ATO Subsystem

25
Table 1: Execution Time Distributions of ATO Actions

We focus on analysis of communication delay and
execution time variation for ATO (with ε=0.02, α=0.02)

 The activity diagram has 10 action nodes, 2 fork bars

and 2 join bars. The functional description and

variation information of actions are as follows.

Exp. 1 – CBTC ATO Subsystem

26

Query 1: Pr [<= 25] (<> n7.done)

With 890 runs, obtain a probability

interval [0.91,0.95] with a confidence 98%

Query 2: Pr [<= 25] (<> n10.done)

With 808 runs, obtain a probability
interval [0.92,0.96] with a confidence 98%

We use action query to check the probability of an

action completion within a time limit

 The evaluation costs around 5 minutes

We can observe that, after a threshold, the change of

the completion probability is quite small!

Exp. 1 – CBTC ATO Subsystem

27

Scenario 1: Pr [<= 5] (<> n2.running &&
n6.running) checks the overlapped
execution between actions n2 and n6
within 5ms.

Scenario 2: Pr [<= 8] (<> n7.running &&
n4.receiving) checks the probability
that n7 happens before n4 within 8ms.

Scenario 3: Pr [<= 5] (<> n5.done &&
n1.running) checks the probability that
n5 completes before the completion of
n1 within 5ms

We adopt interaction queries to check correlation

between concurrent execution components. Each

evaluation costs less than 5 minutes

Exp. 2 – OSES Design

28

OSES models stock

transaction scenarios

OSES consists of 27

activities, 29 transitions

and 8 fork/join bars

 Half orders are buy

orders and half orders

are sale orders.

 20% of orders employ

market price and 80%

orders use limit price.
We set ε=0.05 and α=0.05

Exp. 2 – OSES Design

29

 Timing analysis of action completion is important for OSES

 Guarantee the proper user experience

 Detect performance bottleneck of the system

 We use the action query template Pr[<=15] (<>act.done) to

check whether act can complete within 15 time units. Each

query costs around 2-hour SMC simulation time.

The probability of noMatch events is

lower than 10%. And noMatch can

abort the transaction much easier.

The chance of partial execution is a

little bit higher than the successful

full execution (35% versus 30%).

Exp. 2 – OSES Design

30

 Since 80% orders are limit orders, our experiment

focuses on the quantitative analysis of limit trades.

We use run queries to check limit sale/buy orders which

are categorized as fully traded and partially traded

lbuy+partial orders achieves the

highest probability to complete

transactions.

At time 20, lsale+whole has a higher

chance to be complete earlier than

lsale+partial. However, if we set the

time limit to be smaller than 18, we

will obtain an opposite answer.

Conclusion

 Increasing interactions between systems and
surrounded uncertain environment

 System behaviors become more stochastic and complex

 Correctness and performance cannot be guaranteed

 Proposed an UPPAAL-SMC based quantitative
timing analysis framework for activity diagrams

 Extend activity diagrams for stochastic behavior modeling

 Support complex functional checking and performance
queries under variations (e.g., user-input, execution time)

 Comprehensive experimental results demonstrate
the efficacy of our approach

Thank you !

