DESIGN, AUTOMATION & TEST IN EUROPE

14 - 18 March, 2016 - ICC - Dresden - German y

The European Event for Electronic
System Design & Test

Quantitative Timing Analysis of
UML Activity Digrams
using Statistical Model Checking

Fan Gul, Xingian Zhang?, Mingsong Chen?,
Daniel Grosse? and Rolf Drechsler?

Linstitute of CS & SE, East China Normal University, China
?Institute of Computer Science, University of Bremen, Germany

s§ 2RMi AL @ Universitat Bremen

EAST CHINA NORMAL UNIVERSITY

® Introduction

® Preliminary Knowledge

& Variation-aware Construction of NPTA
¢ UPPAAL-SMC Based Evaluation

® Our Quantitative Timing Analysis Approach

¢ Extension of UML Activity Diagrams
¢ NPTA Model Generation
¢ Property Generation & Quantitative Analysis

® Experimental Results
® Conclusion

® Introduction
®
&

\ 4
®

® ¢ o

Modeling with UML Activity Diagrams

® Based on Petri-net semantics, activity diagrams are widely
used in modeling concurrent behaviors of system designs.

Q Easier to understand than text
Q Friendly for both HW and SW designers
a Support complex functional checking and timing verification

(<<structured>>
Check
Checkeic <<Delay>>
|__[Je—
increment
e

Real-Time and Service Workflow Business rules
Embedded Systems and operations

Timing Analysis of Activity Diagrams

® Due to increasing interactions with uncertain environment, the
timing of system behaviors becomes hard to be predicted.

Human-in-the-Loop Network Delay Device Variations

® Within an uncertain environment, activity diagrams designers

would like to ask the question “What is the probability that a
specific scenario can be complete within a time limit?”.

® Unfortunately, few of existing approaches can model and

reason the timing of activity diagram behaviors under variations
(e.g., user-input, action execution time).

Limitations & Challenges

® Approach to analyze activity diagrams

A Model checking based methods
Q Consistency checking (Eshuis, TOSEM 2006; Hilken et al., FDL 2014)
Q Timing verification (Li et al., UML 2001; Das et al., ASPEC 2006)

Q Model-driven testing approaches

Q Gray-box testing (wang et al., APSEC 2004)
A Directed testing (Chen et al., GLSVLSI 2008; Chen et al., DAES 2010)

Challenges

1) How to accurately model system behaviors under

various kinds of variations?
) How to enable quantitative reasoning of critical

functional and performance requirements?

Q Lack of automated tools to enable the quantitative reasoning
about the performance metrics

® Preliminary Knowledge
¢ Variation-aware Construction of NPTA
¢ UPPAAL-SMC Based Evaluation

)

\ 4
\ 4

\ 4

Variation-Aware Construction of NPTA

® NPTA - Network of Priced Timed Automata
® An NPTA instance, (A | B)

([o C2<=12 && \
Ca'==0 cl1<=t1 && Ca'==2 Ca==0 | Cb'==0 R nflsg[l dbj? CR==4 Cb'==0
© O——O0O——+—0 | ©-- O O

t1=distr(ida) c1=0 c1>=t1 c2=0 & 2>=t2
AOD A1l A2 msgq[idb]! A3 | BO B1 B2 B3
PTA A : PTA B
_ t1 ~ N(3,12) | t2 ~ N(6,22) y

Time of reaching (A3, B3) ~ N(9,1%+22).

® A possible behavior of the NPTA (A|B)
c1=0,c0=0,C,=0,C, =0)])

%
:03(:2 :OgCa :OCb :0) 2}

2.5 msglidb]!
> >

Jc1=25,0=0,C, =5,C, =0]) —
Jc1=7.6,c0=5.1,C,=5,C, =204]) = ...

():le

(). [c

((A2,B1),|c1 = 0,0 =0,C, = 0,C, =0])

:) 5.1
()

UPPAAL-SMC

® UPPAAL-SMC versus formal model checking
O Based on simulation, thus requiring far less memory and time
a Allow high scalable validation approximation
Q Support quantitative performance analysis

® Applications: Real-time systems, Smart building, Biology,

2/ c|[a]a]a] [B]@[<+]=] BB o] e[

Editor | Simulator | ConcreteSimulator rVerlfler rYggdrasH |

Editor Simulator ConcreteSimulator Verifier TmanDEnl || 0000000 s R] BT =
l/ r r r r 99 | Enabled Transitions ; " [Trainto) Train(1) Train(2) E
| Name: [Train Parameters: [const id_t id feTez) =i ; >y - - —
|j Project F appr[1]: Train(1) = Gate[1] | 1 Y
D Declarations - appri3]: Train(3) = Gate([3] | : p «
o '8} Train : Safe _ o L .
o= E Gate (1 + id): M*M o T 5
. & 1] | Train{0) Train(1) Train(2) Train(3) Train(4) Train(5) Gate
[y system declarations ppriid! 3 =i / a
anpriic =] i 11 11 r 10 T |+
" Next R t | H
K= AL | | Zadase ‘ | | [z Safe safe
Simulation Trace :
TSATE, Sale, Sa1E, ST, Sale, Saie, TTEEl [H
—| |Gate = .
,t\ppr (safe, Safe, Safe, Safe, Safe, Safe, -)
Wem=20 appr[2]: Train(2) = Gate[2]
(Safe, Safe, Appr Safe, Safe Safe, Occ)
Frequmw h\stogram :
<490|
420|
“co| i =
20| Stopping | |=
2e0|
340|
EEY .
3col Sa@
80| apprl4]
2€0|
240|
ety | =2 4 Appr Stoppin
B==|s oo Eomm)
10 : stopltaill)]
160)
149 H '
. Safe @_UB Occ
100 ; spprlol
eol —
el 4 -
| D : stopltaill)] =
o 03 06 0% 1z L3 18 21 :“! 27 30 33 36 39 42 45 %8 5.1 il I !

UPPAAL-SMC Based Evaluation

® Our guantitative analysis is based on UPPAAL-SMC,
which is effective for checking large stochastic systems

Design

vodael Analysis

Checker
[ProP'erty] _ Y, L

—
Design Constraints @ation Rew

\

® Query formats supported by UPPAAL-SMC
Q Qualitative check: Pr [time <= bound] (<> expr) >=p
A Quantitative check: Pr [time <= bound] (<> expr)

Q Probability comparison:
Pr [timel <= boundl] (<> exprl) >= Pr [time2 <=bound2] (<> expr2)

\ 4
\ g

® Our Quantitative Timing Analysis Approach

¢ Extension of UML Activity Diagrams
¢ NPTA Model Generation
¢ Property Generation & Quantitative Analysis

10

Problem Definition

UML Variation Information Design
Activity Diagram Requirements
J \ o | m}—;t s o _
i _’Qcﬁ It‘_? Networ_k de_lay . ®Response time
(e (= ® Execution time variation) .
e . e ®Functional Scenarios
®User Iinput variation

!

/

[Quantitative Evaluation Framework]

Timing Analysis results

Our Framework

VU -
; Design Requirements | Property Generation =

| (Time, Coverage Criteria)

AV .4

Pr[t <= T](<>(Act3.done && Act4.done))

|
l o
| °
Back-End Models o
___________ - I o
U - :
J ; I I,
Action Configuration | 1o
ID 1 .
Pre Post Variation I I -

Actl NULL syn_1 N(1.4,0.12) I I

| |

Act2 syn_1 Actd N(2.6,0.22) |- |

|

|

|

|

|

|

o . ! UPPAAL-SMC
Variation Information |

Inputs, Time, etc. | AT 4 - :
| _ (nputs, Time, etc.) | S 2 Quantitative Analysis
Front-End Models

® All the three steps are fully automated.

12

Graph-Based Notations

Action Name

Action

[&>

Action

>®

Activity

Actions (i.e., functional operations) and activities
which indicate a collection of correlatec

actions

® Control nodes and flows (indicating the execution
order of actions)

a Control Nodes

nitial

a Control Flow

Actionl

——>| Action?2

Flow edge

O,

Final

Fork

Decision/Merge

Join

?.

a ["u’erlﬂr access :nde]

d1

[code==input_code]

[code
Ask for am oung"ﬂ.

—JHandle incorrect

[codel=input_code]
[access code

mput_codea |
j

t4
syn_‘l

/ ilable<input t
d3 [available<input_amount] 6
t7 t8 /

[availables=input _amaount] Prepare to £
d y print re ceipt
|Dis.pense cash

to

Generate
receipt content| —

t10

syn_2

and print receipt

t11
@)=

g Eﬂnlah transa::ﬁnn]

" d2

t5

[codel=input_code]

End

Activity Diagram Annotation

b

1. Actions denote operations
e.g., actiond, i.e., Dispense_cash

2: Transitions denote control flows
between actions

e.g., Transition t7 with guard
[amount >= available]

3. Arun denotes a complete
concurrent execution

e.g., {Start} -> {a}->{c} -> {d,f}->{e,f}
->{g} -> {End}

[available*=input_am ount] t7 8

60,10 ¢
e

Extended Activity Diagrams

User Input:

Input_amount ~ N(500,50)

input_code ~ {“ab”, “abc”, ...}
Start

N(3 O 1.5) tﬂ
Verify access code

[codel=input_code]

2

[code==input_code] | {3 ¢

syn_1
d3

19

Generate
receipt content

t10

[avallable<|nput_amount]

Prepare to f
print receipt

syn_2

9 |Finish transaction

N(2.0,0.8) and printreceipt

111

N(5.0,1.8
Handle incorrect
| access code b

[code==input_code]

>d2

[codel=Input_code]

®

End

User inputs are defined
following some distributions

Each operation is assigned
with a time distribution,
e.g., action d follows
normal distribution N(6,1.0)

Each action corresponds to
an operation function

Distribution information is
saved textually as UML
notes

NPTA Model Generation

® A back-end configuration contains all the information
of variations, synchronization and node operations for

an activity diagram (with N nodes).
Q Activity diagrams are abstracted to DAGs with nodes (action
nodes and control nodes) and edges (control flows).
Q Synchronization bars are not modeled explicitly. We assume
that a node can be executed only when all its precedent
nodes are complete.

® Back-end configuration of variation information
Q For input variables, the configuration defines their value
distributions, and their random values are generated in the
Initial action
Q Action time distributions are save in distribution[N][m].

d E.qg., if action i follows normal distribution of, distribution[i][0]
Indicates its expected execution time, and distribution[i][1] stores the
standard deviation.

NPTA Model Generation

® Action synchronization via channel communication
a UPPAAL-SMC communicates via broadcasting

A Point-to-Point communication encoding using the formula
encode_msg(id,, id,) =1d, XN +id,

(Broadcast Channel Matrix msg[N XN])
e=encode_msg(id, id,) id, = e%N
id,=e/N

Sender id, Receiver id,

® Back-end configuration of synchronization
Q Flow edges indicate the unidirectional communication

Q Instead of creating an urgent channel array msg_graph[N][N],
we use a two-dimensional array msg_graph[N][Max_Out],
where msg_graphli][j] indicates the |, channel from node I.

NPTA Model Generation

® Back-end configuration of node operation
Q Action node function: There is an action function for action
with ID nid named act_func_nid(), which will be called by
a uniform function do_func(nid).
a Branch node function: For each control node (i.e., decision
or merge), we create a branch function br_func_nid(),
which will be called by a uniform function select func(nid).

‘1' message_t br_func_m(id_t nid){
i . if (exp) return msg_graph[nid][0]; // channel to action c
ActionA || if (lexp) return msg_graph[nid][1]; // channel to action b
else return -1;
}
[lexp] [exp] message_t br_func_n(id_t nid);
m —— | e age t select_func(id_t nid){
. . message_ . _
Action B] [Action C] if (nid==m) return br_func_m(nid);
l K l J if (nid==n) return br_func_n(nid);
return -1;
}

predecessor \

NPTA Model Generation

Front-end Model for Node

(action node & control node)

predecessor_count = receive_count[nid],
successor_count = send_count[nid] e . message_t
e % NODE_NUM == nid

msgle]?

predecessor_count = receive_count[nid] - 1,
successor_count = send_count[nid]

clk <= duration
O

clk >= duration

predecessor_count == 0

duration = running_time(nid),
ck=0

e : message_t
e % NODE_NUM == nid
msqle]?

send index =0,
predecessor_count - -

do_func(nid)
successor_count >0

send_msg = select_func(nid, send_index)

successor_count ==

visit[nid] ++

successor_count -,
send_index ++

~

® Initial state
Q The beginning of a task

® Recelving state

Q Tries to get notification messages
from all the predecessors

® Running state

Q All predecessors finished
Q Current task is executing

® Sending state

O Notify all successive tasks about its
completion

® Done state

O The completion of a task

19

Property Generation & Evaluation

“‘What is the probabllity that a functional scenario S
can happen or complete within a time limit T?”

!

Pr [<=T] (<> S.done)

® <= T] indicates the time limitis T
® <>S checks whether scenario S can be fulfilled eventually.

® S.done indicates the completion of scenario S

® Based on parameters ¢ (probability uncertainty) and a
(probabillity of false negatives) , stochastic runs are
generated to obtain an approximate interval [p- €,p+ €] with
a confidence 1- a

Coverage-Oriented Property Generation

Supports three kinds of performance gueries obtained
from the structural information of activity diagrams.

® Action queries
Q act;can be visited at least k times and the last state is sta

Pr [<=T] (<> act;.sta && visit[1]>=k)

® |[nteraction gqueries
Q The actions with specified states can happen simultaneously
Pr[<=T] (<> act;.sta; && act;.sta,)

® Run Queries
Q The run can complete within a time limit T

Pr [<=T] (<> act;;.done && act;,.done & &...&&
act;.done && visit[1]>=k; && ... && visit/n]>=k)

\ 4
\ 4
®

\ 4
\ g
\ g

® Experimental Results
O

22

Tools Chain for Experiment

System e\
A P
SpeCIﬁcatlon = M mum"f:’“"

Extended UML

Actlwty Diagrams

Our XMI Parser ‘ NPTA Models
& NPTA Generator & Queries

Evaluation Engine
(UPPAAL-SMC)

gE—— Quantltatlve
r| | Evaluation

a All the experimental results were obtained on a
desktop with 3.30GHz AMD CPU and 4GB RAM

Exp.1—-CBTC ATO Subsystem

® CBTC deals with telecommunications between trains and track

equipment. Its subsystem ATO automates operations of trains
® ATO suffers from the delay of communication and the execution
time variations of software and hardware components.

Point Machine
’

Outline of CBTC system configuration

Source: Hitachi CBTC SIL4 news release 24

Exp.1 - CBTC ATO Subsystem

® \We focus on analysis of communication delay and
execution time variation for ATO (with €=0.02, a=0.02)

® The activity diagram has 10 action nodes, 2 fork bars
and 2 join bars. The functional description and
variation information of actions are as follows.

[D Action Function Time Distribution
nl receive wireless communication signals N(3.0, 0.2)
n2 calculate static speed curve N(24, 04)
n3 select strict static speed curve N(4.0, 0.9)
n4 calculate dynamic speed curve N(1.5, 0.1)
n3 calculate train position N(2.8, 0.8)
no generate train position report N(1.8, 0.5)
n7 send signals N(2.6, 1.0)
n8 compare with actual train position N(3.6, 0.6)
n9 generate train control information N(2.2, 0.2)
nl0 control the train N(2.0, 0.1)

Table 1: Execution Time Distributions of ATO Actions .

Exp.1-CBTC ATO Subsystem

® \We use action query to check the probability of an
action completion within a time limit

® The evaluation costs around 5 minutes

® \We can observe that, after a threshold, the change of
the completion probabillity is quite small!

1 Cumulative Probability Distribution

0.9

0.8H
0.7}F
06
0.5}
04}
0.3}
0.2}
0.1F

Probability

0

H Send (n7 """"""""""""""""""""""""" ;,,Mmum:l
Control (n10) - d _

0 2 4 6 8 10 12 14 16 18 20 22 24
Execution Time

Query 1: Pr [<=25] (<> n7.done)

With 890 runs, obtain a probability
interval [0.91,0.95] with a confidence 98%

Query 2: Pr [<= 25] (<> nl10.done)

With 808 runs, obtain a probability
Interval [0.92,0.96] with a confidence 98%

26

Exp.1-CBTC ATO Subsystem

® \We adopt interaction queries to check correlation
between concurrent execution components. Each
evaluation costs less than 5 minutes

1 Cumulative Probability Distribution

0.9H Interaction1 ——

y

0gll Interaction2 -« o
|| Interaction3 -=- &

uuuuuuuuuuuuuuuu

Probabilit

] 5
Execution Time

Scenario 1: Pr [<=5] (<> n2.running &&
n6.running) checks the overlapped
execution between actions n2 and n6

1 within 5ms.

.l Scenario 2: Pr [<=8] (<> n7.running &&
| n4.receiving) checks the probability
| that n7 happens before n4 within 8ms.

1 Scenario 3: Pr [<=5] (<> n5.done &&

nl.running) checks the probability that
n5 completes before the completion of
n1l within 5ms

27

Exp. 2 — OSES Design

® OSES models stock
transaction scenarios

® OSES consists of 27
activities, 29 transitions
and 8 fork/join bars

® Half orders are buy
orders and half orders
are sale orders.

® 20% of orders employ
market price and 80%
orders use limit price.

® \We set €=0.05 and a=0.05

28

Exp. 2 — OSES Design

® Timing analysis of action completion is important for OSES
0 Guarantee the proper user experience
O Detect performance bottleneck of the system
® \We use the action query template Pr[<=15] (<>act.done) to
check whether act can complete within 15 time units. Each
guery costs around 2-hour SMC simulation time.

05 Cumulative Probability Distribution
0.45H : <' The probability of noMatch events is
0.4H .

0.35}
| trade partExe

Probability

0.25}

©
N
L

0.15F
0.1F
0.05}

trade noMatch ——
trade failure =
trade success ~-

[/ P
m\,«-‘*
1 1 1 i ® 1

"8 9 10 11 12 13 14 1
Execution Time

lower than 10%. And noMatch can
abort the transaction much easier.

full execution (35% versus 30%).

1 The chance of partial execution is a
1 little bit higher than the successful

5
29

Exp. 2 — OSES Design

® Since 80% orders are limit orders, our experiment
focuses on the quantitative analysis of limit trades.

® \We use run queries to check limit sale/buy orders which
are categorized as fully traded and partially traded

, Cumulative Probability Distribution

0_1'3- |sale+whole —— Z orders achieves the
0.16f lbuy+whole -« {7 highest probability to complete

>, 014} Ilsbale+pa2!a: -] | transactions.

= +

= o4p|| IPuy+partia

= 01} : .

£z 0.08 — At time 20, Isale+whole has a higher

E 0'06' L chance to be complete earlier than
004l & Isale+partial. However, if we set the
002k time limit to be smaller than 18, we

) N A will obtain an opposite answer.
§ 9 10 11 12 13 14 15 16 17 18 19 20

Execution Time

30

Conclusion

® Increasing interactions between systems and
surrounded uncertain environment

a System behaviors become more stochastic and complex
d Correctness and performance cannot be guaranteed

® Proposed an UPPAAL-SMC based quantitative
timing analysis framework for activity diagrams

d Extend activity diagrams for stochastic behavior modeling

Q Support complex functional checking and performance
queries under variations (e.g., user-input, execution time)

® Comprehensive experimental results demonstrate
the efficacy of our approach

Thank you !

