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Modeling with UML Activity Diagrams 

  

 Based on Petri-net semantics, activity diagrams are widely 

used in modeling concurrent behaviors of system designs. 

 Easier to understand than text 

 Friendly for both HW and SW designers 

 Support complex functional checking and timing verification 

Real-Time and 

Embedded Systems 
Service Workflow Business  rules 

and operations 



Timing Analysis of Activity Diagrams 

 Due to increasing interactions with uncertain environment, the 

timing of system behaviors becomes hard to be predicted.  

 

 

 

 

 

 

 

 Within an uncertain environment, activity diagrams designers 

would like to ask the question “What is the probability that a 

specific scenario can be complete within a time limit?”. 

 Unfortunately, few of existing approaches can model and 

reason the timing of activity diagram behaviors under variations 

(e.g., user-input, action execution time). 

 

 

Network Delay Device Variations Human-in-the-Loop 



 Approach to analyze activity diagrams 
 Model checking based methods 

 Consistency checking (Eshuis, TOSEM 2006; Hilken et al., FDL 2014) 

 Timing verification (Li et al., UML 2001; Das et al., ASPEC 2006) 

 Model-driven testing approaches 
 Gray-box testing (Wang et al., APSEC 2004) 

 Directed testing (Chen et al., GLSVLSI 2008; Chen et al., DAES 2010) 

 Limitations of previous work 

 Inaccurate modeling of parallel task execution (e.g., ILP) 

 Constraint solving based approaches can only answer yes or 

no, but cannot answer why the performance is not satisfied 

 Support limited number of distributions for execution variation 

modeling (e.g., uniform distribution) 

 Lack of automated tools to enable the quantitative reasoning 

about the performance metrics 

Limitations & Challenges 

Challenges 

i) How to accurately model system behaviors under 

various kinds of variations?  

ii) How to enable quantitative reasoning of critical 

functional and performance requirements? 
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Variation-Aware Construction of NPTA 

PTA  A PTA  B 

 NPTA - Network of Priced Timed Automata 

 An NPTA instance, (A | B)  

Time of reaching (A3, B3) ~ N(9,12+22). 

t1 ~ N(3,12 ) t2 ~ N(6,22 ) 

 A possible behavior of the NPTA (A|B) 



UPPAAL-SMC 
 UPPAAL-SMC versus formal model checking 

 Based on simulation, thus requiring far less memory and time 
 Allow high scalable validation approximation  
 Support quantitative performance analysis 

 Applications:  Real-time systems, Smart building, Biology, … 
 



UPPAAL-SMC Based Evaluation  

 Our quantitative analysis is based on UPPAAL-SMC, 

which is effective for checking large stochastic systems 

Quantitative 

Analysis 

    Design 

Design Constraints 

Model 

Property 

 

SMC  

Checker 

Evaluation Results 

 Query formats supported by UPPAAL-SMC 
 Qualitative check:   Pr [time <= bound] (<> expr) >= p 

 Quantitative check:   Pr [time <= bound] (<> expr) 

 Probability comparison: 

Pr [time1 <= bound1] (<> expr1)  >=   Pr [time2 <= bound2] (<> expr2) 
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Problem Definition 

UML 

Activity Diagrams 
Variation Information 

 

Network delay 

Execution time variation 

User input variation 
 

Design 

Requirements 

Response time 

Functional Scenarios 

Quantitative Evaluation Framework 

Timing Analysis Results  



Our Framework 
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Design Requirements 
(Time, Coverage Criteria)  

S3 

 NPTA Model Generation 

UPPAAL-SMC 

Quantitative Analysis 

Back-End Models 

Property Generation 

Activity Diagram 

Front-End Models 

Pr[t <= T](<>(Act3.done && Act4.done)) 

Variation Information 
(Inputs, Time, etc.)  

Action 
ID 

Configuration 

Pre Post Variation 

Act1 NULL Syn_1 N(1.4,0.12) 

Act2 Syn_1 Act4 N(2.6,0.22) 

… … … … 

All the three steps are fully automated.  



Graph-Based Notations 

Action Name 

Action Activity 

Initial 

Join 

Decision/Merge 

Action1 Action2 

… 

… 

Final 

Fork Flow edge 

Action 

 Actions (i.e., functional operations) and activities 
which indicate a collection of correlated actions 

 

 

 Control nodes and flows (indicating the execution 
order of actions) 

 Control Nodes 

 

 Control Flow 



Activity Diagram Annotation 

1. Actions denote operations  

    e.g.,  action d, i.e., Dispense_cash 

 

2: Transitions denote control flows 
between actions 

     e.g.,  Transition t7 with guard 
[amount >= available] 

     

3. A run denotes a complete 
concurrent execution 

    e.g., {Start} -> {a}->{c} -> {d,f}->{e,f} 
-> {g} -> {End} 

 



Extended Activity Diagrams 

 User inputs are defined 
following some distributions 

 Each operation is assigned 
with a time distribution, 
e.g., action d follows 
normal distribution N(6,1.0) 

 Each action corresponds to 
an operation function 

 Distribution information is 
saved textually as UML 
notes 

User Input: 
Input_amount  ~ N(500,50)  
input_code  ~ {“ab”, “abc”, …} 



NPTA Model Generation 

 A back-end configuration contains all  the information 

of variations, synchronization and node operations for 

an activity diagram (with N nodes).  
 Activity diagrams are abstracted to DAGs with nodes (action 

nodes and control nodes) and edges (control flows).  
 Synchronization bars are not modeled explicitly. We assume 

that a node can be executed only when all its precedent 
nodes are complete. 

 Back-end configuration of variation information 
 For input variables, the configuration defines their value 

distributions, and their random values are generated in the 
initial action 

 Action time distributions are save in distribution[N][m]. 
  E.g., if action i follows normal distribution of, distribution[i][0] 

indicates its expected execution time, and distribution[i][1] stores the 
standard deviation. 



NPTA Model Generation 

Action synchronization via channel communication 
 UPPAAL-SMC communicates via broadcasting 

 Point-to-Point communication encoding using the formula        

                        
 
 
 
 

 

Back-end configuration of synchronization 
 Flow edges indicate the unidirectional communication 

 Instead of creating an urgent channel array msg_graph[N][N], 

we use a two-dimensional array msg_graph[N][Max_Out],  

where msg_graph[i][j] indicates the jth channel from node i. 

Sender idx  

e= encode_msg(idx, idy)  

Receiver idy 

Broadcast Channel Matrix  msg[N×N] 

idx = e%N  

idy = e / N 

 

encode_msg(idx, idy) = idx×N + idy 



NPTA Model Generation 

 Back-end configuration of node operation 
 Action node function: There is an action function for action 

with ID nid named act_func_$nid$(), which will be called by 
a uniform function do_func(nid).  

 Branch node function: For each control node (i.e., decision 
or merge), we create a branch function br_func_$nid$(), 
which will be called by a uniform function select_func(nid). 

message_t  br_func_m(id_t nid){ 
       if (exp) return msg_graph[nid][0];  // channel to action c 
       if (!exp) return msg_graph[nid][1]; // channel to action b 
       else return -1; 
 } 
message_t  br_func_n(id_t nid); 
...... 
message_t  select_func(id_t nid){ 
    if (nid==m)  return br_func_m(nid);   
    if  (nid==n)  return br_func_n(nid);   
    ...... 
    return -1; 
 } 

Action A 

Action B Action C 

i 

j k 

m 

[!exp] [exp] 
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Front-end Model for Node 
(action node & control node) 

 Initial state  
 The beginning of a task 

 Receiving state 
 Tries to get notification messages       

from all the predecessors 

 Running state 
 All predecessors finished 

 Current task is executing 

 Sending state  
 Notify all successive tasks about its 

completion 

 Done state 
 The completion of a task 



Property Generation & Evaluation 

“What is the probability that a functional scenario S 

can happen or complete within a time limit T?” 

Pr [<= T] (<> S.done) 

 [<= T]  indicates the time limit is T 

 <>S checks whether scenario S can be fulfilled eventually. 

 S.done indicates the completion of scenario S  

 Based on parameters ε (probability uncertainty) and α 

(probability of false negatives) , stochastic runs are 

generated to obtain an approximate interval [p- ε,p+ ε] with 

a confidence 1- α 



Coverage-Oriented Property Generation 

Action queries 
 acti can be visited at least k times and the last state is sta 

 Pr [<= T] (<> acti.sta && visit[i]>=k)  

 Interaction queries  
 The actions with specified states can happen simultaneously 

 Pr [<= T] (<> acti.sta1 && actj.sta2) 

Run Queries  
 The run can complete within a time limit T 

       Pr [<= T] (<> acti1.done && acti2.done &&…&& 

actin.done && visit[1]>=k1 && … && visit[n]>=kn) 

 

Supports three kinds of performance queries obtained 

from the structural information of activity diagrams. 



Outline 

22 

 Introduction 

 Preliminary Knowledge 

 Variation-aware Construction of NPTA 

 UPPAAL-SMC Based Evaluation 

 Our Quantitative Timing Analysis Approach 

 Extension of UML Activity Diagrams 

 NPTA Model Generation 

 Property Generation & Quantitative Analysis 

 Experimental Results 

 Conclusion 

 



Tools Chain for Experiment 

23 

 All the experimental results were obtained on a 

desktop with 3.30GHz AMD CPU and 4GB RAM 

 



Exp. 1 – CBTC ATO Subsystem 
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Source：Hitachi CBTC  SIL4 news release 

 
 

 CBTC deals with  telecommunications between trains and track 

equipment. Its subsystem ATO automates operations of trains 

 ATO suffers from the delay of communication and the execution 

time variations of software and hardware components.  
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Table 1: Execution Time Distributions of ATO Actions 

We focus on analysis of communication delay and 
execution time variation for ATO (with ε=0.02, α=0.02)  

 The activity diagram has 10 action nodes, 2 fork bars 

and 2 join bars. The functional description and 

variation information of actions are as follows. 
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Query 1: Pr [<= 25] (<> n7.done) 

With 890 runs, obtain a probability  

interval [0.91,0.95] with a confidence 98% 

Query 2: Pr [<= 25] (<> n10.done) 

With 808 runs, obtain a probability 
interval [0.92,0.96] with a confidence 98% 

 
 

We use action query to check the probability of an 

action completion within a time limit 

 The evaluation costs around 5 minutes 

We can observe that, after a threshold, the change of 

the completion probability is quite small!  
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Scenario 1: Pr [<= 5] (<> n2.running && 
n6.running) checks the overlapped 
execution between actions n2 and n6 
within 5ms. 
 
Scenario 2: Pr [<= 8] (<> n7.running && 
n4.receiving) checks the probability 
that n7 happens before n4 within 8ms. 
 
Scenario 3: Pr [<= 5] (<> n5.done && 
n1.running) checks the probability that 
n5 completes before the completion of 
n1 within 5ms 

We adopt interaction queries to check correlation 

between concurrent execution components. Each 

evaluation costs less than 5 minutes 
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OSES models stock 

transaction scenarios  

OSES consists of 27 

activities, 29 transitions 

and 8 fork/join bars 

 Half orders are buy 

orders and half orders 

are sale orders.  

 20% of orders employ 

market price and 80% 

orders use limit price. 
We set ε=0.05 and α=0.05   
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 Timing analysis of action completion is important for OSES 

 Guarantee the proper user experience  

 Detect performance bottleneck  of the system 

 We use the action query template Pr[<=15] (<>act.done) to 

check whether act can complete within 15 time units. Each 

query costs around 2-hour SMC simulation time. 

The probability of noMatch events is 

lower than 10%. And noMatch can 

abort the transaction much easier. 

The chance of partial execution is a 

little bit higher than the successful 

full execution (35% versus 30%). 
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 Since 80% orders are limit orders, our experiment 

focuses on the quantitative analysis of limit trades.  

We use run queries to check limit sale/buy orders which 

are categorized as fully traded and partially traded 

lbuy+partial orders achieves the 

highest probability to complete 

transactions. 

At time 20, lsale+whole has a higher 

chance to be complete earlier than 

lsale+partial. However, if we set the 

time limit to be smaller than 18, we 

will obtain an opposite answer. 



Conclusion 

 Increasing interactions between systems and 
surrounded uncertain environment 

 System behaviors become more stochastic and complex 

 Correctness and performance cannot be guaranteed 

 Proposed an UPPAAL-SMC based quantitative 
timing analysis framework for activity diagrams 

 Extend activity diagrams for stochastic behavior modeling 

 Support complex functional checking and performance 
queries under variations (e.g., user-input, execution time ) 

 Comprehensive experimental results demonstrate 
the efficacy of our approach 



Thank you ! 


