
Quantitative Timing Analysis of
UML Activity Digrams

using Statistical Model Checking

Fan Gu1, Xinqian Zhang1, Mingsong Chen1,

Daniel Grosse2 and Rolf Drechsler2
1 Institute of CS & SE, East China Normal University, China

2Institute of Computer Science, University of Bremen, Germany

Outline

1

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative Timing Analysis Approach

 Extension of UML Activity Diagrams

 NPTA Model Generation

 Property Generation & Quantitative Analysis

 Experimental Results

 Conclusion

Outline

2

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative Timing Analysis Approach

 Extension of UML Activity Diagrams

 NPTA Model Generation

 Property Generation & Quantitative Analysis

 Experimental Results

 Conclusion

Modeling with UML Activity Diagrams

 Based on Petri-net semantics, activity diagrams are widely

used in modeling concurrent behaviors of system designs.

 Easier to understand than text

 Friendly for both HW and SW designers

 Support complex functional checking and timing verification

Real-Time and

Embedded Systems
Service Workflow Business rules

and operations

Timing Analysis of Activity Diagrams

 Due to increasing interactions with uncertain environment, the

timing of system behaviors becomes hard to be predicted.

 Within an uncertain environment, activity diagrams designers

would like to ask the question “What is the probability that a

specific scenario can be complete within a time limit?”.

 Unfortunately, few of existing approaches can model and

reason the timing of activity diagram behaviors under variations

(e.g., user-input, action execution time).

Network Delay Device Variations Human-in-the-Loop

 Approach to analyze activity diagrams
 Model checking based methods

 Consistency checking (Eshuis, TOSEM 2006; Hilken et al., FDL 2014)

 Timing verification (Li et al., UML 2001; Das et al., ASPEC 2006)

 Model-driven testing approaches
 Gray-box testing (Wang et al., APSEC 2004)

 Directed testing (Chen et al., GLSVLSI 2008; Chen et al., DAES 2010)

 Limitations of previous work

 Inaccurate modeling of parallel task execution (e.g., ILP)

 Constraint solving based approaches can only answer yes or

no, but cannot answer why the performance is not satisfied

 Support limited number of distributions for execution variation

modeling (e.g., uniform distribution)

 Lack of automated tools to enable the quantitative reasoning

about the performance metrics

Limitations & Challenges

Challenges

i) How to accurately model system behaviors under

various kinds of variations?

ii) How to enable quantitative reasoning of critical

functional and performance requirements?

Outline

6

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative Timing Analysis Approach

 Extension of UML Activity Diagrams

 NPTA Model Generation

 Property Generation & Quantitative Analysis

 Experimental Results

 Conclusion

Variation-Aware Construction of NPTA

PTA A PTA B

 NPTA - Network of Priced Timed Automata

 An NPTA instance, (A | B)

Time of reaching (A3, B3) ~ N(9,12+22).

t1 ~ N(3,12) t2 ~ N(6,22)

 A possible behavior of the NPTA (A|B)

UPPAAL-SMC
 UPPAAL-SMC versus formal model checking

 Based on simulation, thus requiring far less memory and time
 Allow high scalable validation approximation
 Support quantitative performance analysis

 Applications: Real-time systems, Smart building, Biology, …

UPPAAL-SMC Based Evaluation

 Our quantitative analysis is based on UPPAAL-SMC,

which is effective for checking large stochastic systems

Quantitative

Analysis

 Design

Design Constraints

Model

Property

SMC

Checker

Evaluation Results

 Query formats supported by UPPAAL-SMC
 Qualitative check: Pr [time <= bound] (<> expr) >= p

 Quantitative check: Pr [time <= bound] (<> expr)

 Probability comparison:

Pr [time1 <= bound1] (<> expr1) >= Pr [time2 <= bound2] (<> expr2)

Outline

10

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative Timing Analysis Approach

 Extension of UML Activity Diagrams

 NPTA Model Generation

 Property Generation & Quantitative Analysis

 Experimental Results

 Conclusion

Problem Definition

UML

Activity Diagrams
Variation Information

Network delay

Execution time variation

User input variation

Design

Requirements

Response time

Functional Scenarios

Quantitative Evaluation Framework

Timing Analysis Results

Our Framework

12

Design Requirements
(Time, Coverage Criteria)

S3

 NPTA Model Generation

UPPAAL-SMC

Quantitative Analysis

Back-End Models

Property Generation

Activity Diagram

Front-End Models

Pr[t <= T](<>(Act3.done && Act4.done))

Variation Information
(Inputs, Time, etc.)

Action
ID

Configuration

Pre Post Variation

Act1 NULL Syn_1 N(1.4,0.12)

Act2 Syn_1 Act4 N(2.6,0.22)

… … … …

All the three steps are fully automated.

Graph-Based Notations

Action Name

Action Activity

Initial

Join

Decision/Merge

Action1 Action2

…

…

Final

Fork Flow edge

Action

 Actions (i.e., functional operations) and activities
which indicate a collection of correlated actions

 Control nodes and flows (indicating the execution
order of actions)

 Control Nodes

 Control Flow

Activity Diagram Annotation

1. Actions denote operations

 e.g., action d, i.e., Dispense_cash

2: Transitions denote control flows
between actions

 e.g., Transition t7 with guard
[amount >= available]

3. A run denotes a complete
concurrent execution

 e.g., {Start} -> {a}->{c} -> {d,f}->{e,f}
-> {g} -> {End}

Extended Activity Diagrams

 User inputs are defined
following some distributions

 Each operation is assigned
with a time distribution,
e.g., action d follows
normal distribution N(6,1.0)

 Each action corresponds to
an operation function

 Distribution information is
saved textually as UML
notes

User Input:
Input_amount ~ N(500,50)
input_code ~ {“ab”, “abc”, …}

NPTA Model Generation

 A back-end configuration contains all the information

of variations, synchronization and node operations for

an activity diagram (with N nodes).
 Activity diagrams are abstracted to DAGs with nodes (action

nodes and control nodes) and edges (control flows).
 Synchronization bars are not modeled explicitly. We assume

that a node can be executed only when all its precedent
nodes are complete.

 Back-end configuration of variation information
 For input variables, the configuration defines their value

distributions, and their random values are generated in the
initial action

 Action time distributions are save in distribution[N][m].
 E.g., if action i follows normal distribution of, distribution[i][0]

indicates its expected execution time, and distribution[i][1] stores the
standard deviation.

NPTA Model Generation

Action synchronization via channel communication
 UPPAAL-SMC communicates via broadcasting

 Point-to-Point communication encoding using the formula

Back-end configuration of synchronization
 Flow edges indicate the unidirectional communication

 Instead of creating an urgent channel array msg_graph[N][N],

we use a two-dimensional array msg_graph[N][Max_Out],

where msg_graph[i][j] indicates the jth channel from node i.

Sender idx

e= encode_msg(idx, idy)

Receiver idy

Broadcast Channel Matrix msg[N×N]

idx = e%N

idy = e / N

encode_msg(idx, idy) = idx×N + idy

NPTA Model Generation

 Back-end configuration of node operation
 Action node function: There is an action function for action

with ID nid named act_func_nid(), which will be called by
a uniform function do_func(nid).

 Branch node function: For each control node (i.e., decision
or merge), we create a branch function br_func_nid(),
which will be called by a uniform function select_func(nid).

message_t br_func_m(id_t nid){
 if (exp) return msg_graph[nid][0]; // channel to action c
 if (!exp) return msg_graph[nid][1]; // channel to action b
 else return -1;
 }
message_t br_func_n(id_t nid);
......
message_t select_func(id_t nid){
 if (nid==m) return br_func_m(nid);
 if (nid==n) return br_func_n(nid);

 return -1;
 }

Action A

Action B Action C

i

j k

m

[!exp] [exp]

NPTA Model Generation

19

Front-end Model for Node
(action node & control node)

 Initial state
 The beginning of a task

 Receiving state
 Tries to get notification messages

from all the predecessors

 Running state
 All predecessors finished

 Current task is executing

 Sending state
 Notify all successive tasks about its

completion

 Done state
 The completion of a task

Property Generation & Evaluation

“What is the probability that a functional scenario S

can happen or complete within a time limit T?”

Pr [<= T] (<> S.done)

 [<= T] indicates the time limit is T

 <>S checks whether scenario S can be fulfilled eventually.

 S.done indicates the completion of scenario S

 Based on parameters ε (probability uncertainty) and α

(probability of false negatives) , stochastic runs are

generated to obtain an approximate interval [p- ε,p+ ε] with

a confidence 1- α

Coverage-Oriented Property Generation

Action queries
 acti can be visited at least k times and the last state is sta

 Pr [<= T] (<> acti.sta && visit[i]>=k)

 Interaction queries
 The actions with specified states can happen simultaneously

 Pr [<= T] (<> acti.sta1 && actj.sta2)

Run Queries
 The run can complete within a time limit T

 Pr [<= T] (<> acti1.done && acti2.done &&…&&

actin.done && visit[1]>=k1 && … && visit[n]>=kn)

Supports three kinds of performance queries obtained

from the structural information of activity diagrams.

Outline

22

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative Timing Analysis Approach

 Extension of UML Activity Diagrams

 NPTA Model Generation

 Property Generation & Quantitative Analysis

 Experimental Results

 Conclusion

Tools Chain for Experiment

23

 All the experimental results were obtained on a

desktop with 3.30GHz AMD CPU and 4GB RAM

Exp. 1 – CBTC ATO Subsystem

24
Source：Hitachi CBTC SIL4 news release

 CBTC deals with telecommunications between trains and track

equipment. Its subsystem ATO automates operations of trains

 ATO suffers from the delay of communication and the execution

time variations of software and hardware components.

Exp. 1 – CBTC ATO Subsystem

25
Table 1: Execution Time Distributions of ATO Actions

We focus on analysis of communication delay and
execution time variation for ATO (with ε=0.02, α=0.02)

 The activity diagram has 10 action nodes, 2 fork bars

and 2 join bars. The functional description and

variation information of actions are as follows.

Exp. 1 – CBTC ATO Subsystem

26

Query 1: Pr [<= 25] (<> n7.done)

With 890 runs, obtain a probability

interval [0.91,0.95] with a confidence 98%

Query 2: Pr [<= 25] (<> n10.done)

With 808 runs, obtain a probability
interval [0.92,0.96] with a confidence 98%

We use action query to check the probability of an

action completion within a time limit

 The evaluation costs around 5 minutes

We can observe that, after a threshold, the change of

the completion probability is quite small!

Exp. 1 – CBTC ATO Subsystem

27

Scenario 1: Pr [<= 5] (<> n2.running &&
n6.running) checks the overlapped
execution between actions n2 and n6
within 5ms.

Scenario 2: Pr [<= 8] (<> n7.running &&
n4.receiving) checks the probability
that n7 happens before n4 within 8ms.

Scenario 3: Pr [<= 5] (<> n5.done &&
n1.running) checks the probability that
n5 completes before the completion of
n1 within 5ms

We adopt interaction queries to check correlation

between concurrent execution components. Each

evaluation costs less than 5 minutes

Exp. 2 – OSES Design

28

OSES models stock

transaction scenarios

OSES consists of 27

activities, 29 transitions

and 8 fork/join bars

 Half orders are buy

orders and half orders

are sale orders.

 20% of orders employ

market price and 80%

orders use limit price.
We set ε=0.05 and α=0.05

Exp. 2 – OSES Design

29

 Timing analysis of action completion is important for OSES

 Guarantee the proper user experience

 Detect performance bottleneck of the system

 We use the action query template Pr[<=15] (<>act.done) to

check whether act can complete within 15 time units. Each

query costs around 2-hour SMC simulation time.

The probability of noMatch events is

lower than 10%. And noMatch can

abort the transaction much easier.

The chance of partial execution is a

little bit higher than the successful

full execution (35% versus 30%).

Exp. 2 – OSES Design

30

 Since 80% orders are limit orders, our experiment

focuses on the quantitative analysis of limit trades.

We use run queries to check limit sale/buy orders which

are categorized as fully traded and partially traded

lbuy+partial orders achieves the

highest probability to complete

transactions.

At time 20, lsale+whole has a higher

chance to be complete earlier than

lsale+partial. However, if we set the

time limit to be smaller than 18, we

will obtain an opposite answer.

Conclusion

 Increasing interactions between systems and
surrounded uncertain environment

 System behaviors become more stochastic and complex

 Correctness and performance cannot be guaranteed

 Proposed an UPPAAL-SMC based quantitative
timing analysis framework for activity diagrams

 Extend activity diagrams for stochastic behavior modeling

 Support complex functional checking and performance
queries under variations (e.g., user-input, execution time)

 Comprehensive experimental results demonstrate
the efficacy of our approach

Thank you !

