
Mingsong Chen, Xiaoke Qin and Prabhat Mishra

Computer and Information Science and Engineering

University of Florida, USA

March 10, 2010

Efficient Decision Ordering
Techniques for SAT-based

Test Generation

2

Outline

 Introduction

 Simulation-based Validation

 Test Generation using Model Checking

 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering

 Bit value ordering

 Variable ordering

 Test generation using our methodology

 Experiments

 Conclusion

3

Functional Verification of SOC Designs

Logic Gates

S
im

u
la

ti
o

n
 V

ec
to

rs

E
n

g
in

ee
r

Y
ea

rs

20

200

2000

1995

2001

2007

100M

10B

1000B

1M 10M 100M Source: Synopsys

 Functional validation is a major challenge

 Majority of the SOC fails due to logic errors

 Simulation using directed tests is promising

4

Outline

 Introduction

 Simulation-based Validation

 Test Generation using Model Checking

 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering

 Bit value ordering

 Variable ordering

 Test generation using our methodology

 Experiments

 Conclusion

5

Test Generation using Model Checking

 Model Checking
 Design is modeled temporal specification, e.g., SMV

 Desired behaviors in temporal logic properties

 Property holds, or fails with a counterexample

 Test generation Example
 Generate a counterexample: sequence of variable assignments

User name Access code Intput

 Bob ABC ABD

Model Checker

Input is always true ATM Model

An Example

Generate a test to make access code input fail

Approach: Exploit learning to reduce complexity

 - Reduction of TG time & memory requirements

 - Enables test generation in complex scenarios

Problem: Test generation is very costly or not possible

 in many scenarios in the presence of

 complex SoCs and/or complex properties.

6

SAT-based Bound Model Checking

 For every finite model and a LTL property 
there exists k such that:

 Test generation needs to consider safety
properties

 The safety property P is valid up to cycle k iff
(k) is not satisfiable.

 If (k) is satisfiable, then we can get an
assignment which can be translated to a test.

. . .
s0 s1 s2 sk-1 sk

p p p p p

7

DPLL Algorithm

Boolean Constraint Propagation (BCP) consumes up

to 80% of the time and resources during SAT solving

while (1){

 run_periodic_function();

 if(decide_next_branch()){

 while (deduce() == CONFLICT) {

 blevel = analyze_conflicts();

 if(blevel<0)

 return UNSAT;

 }

 } else return SAT;

} BCP = Implication Number + Conflict Backtrack

Conflict Backtrack

Implication

8

Same Property but Different Bounds

p1
1

p1
3 p1

2 p1
1

p1
2

p1
3

Forward

Forward

Δp1
2

Δp1
3

Δp1
k

p1
k

The minimal bound is k:

Save: ΔP1
2 + Δp1

3+ …+Δp1
k-1 + …+ Δp1

k

O. Strichman. Pruning Techniques for the SAT-Based Bounded

Model Checking Problems. CHARME , 2001

9

Same Design, Different Properties

P1 P2

P3

rb1

rb2

rb4

rb3

……

rbn

Forward

rg1

rg2

rg4

rg3

……

rgk

Forward

Benefit:
Original: Red + Blue + Green
Now: Red + (Blue –Δblue) + (Green –
Δgreen)

Save: Δblue + Δgreen

Δblue

Δgreen

P. Mishra and M. Chen. Efficient Techniques for Directed Test

Generation using Incremental Satisfiabilty. VLSI Design 2009

10

Promising Observations

Similar properties have the similar counter-
examples (variable assignments).

Such important information can be reused.

Current decision ordering techniques focus on
the SAT problem instead of the real design.

For example, VSDIS, for each literal lit has a score

 Initialization

 score(lit) = literal count of lit in CNF clauses

Periodical update (not include initialization)

 score(lit) = score(lit) /2 + lit_in_conflict(lit)

11

Outline

 Introduction

 Simulation-based Validation

 Test Generation using Model Checking

 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering

 Bit value ordering

 Variable ordering

 Test generation using our methodology

 Experiments

 Conclusion

12

Two Similar SAT Problems

a

b b

c c c c

F F F S F F F F

Ordering: a, a’, b, b’, c, c’

a

b b

c c c c

F F F F F F S F

Ordering: a, a’, b, b’, c, c’

Without Learning, 7 conflicts in SAT2.

SAT 1 SAT 2

13

Learning: Bit Value Ordering

a

b b

c c c c

F F F S F F F F

Ordering: a, a’, b, b’, c, c’

a

b b

c c c c

F F F F F F S F

Ordering: a, a’, b’, b, c’, c

With bit value learning, 4 conflicts in SAT2.

SAT 1 SAT 2

Bit value: a=1,b=0,c=0

14

Learning: Variable Ordering

a

b b

c c c c

F F F S F F F F

Ordering: a, a’, b, b’, c, c’

b

c c

a a a a

F F F F F F S F

Ordering: b’, b, c’, c, a, a’

With bit value+ variable order learning, 1 conflict in SAT2.

SAT 1 SAT 2
Bit value: a=1,b=0,c=0

Variable order: b>c>a

15

Test Generation Using Our Method

Inputs: a) Formal model, D

 b) A cluster of properties P with satisfiable bounds

1. Initialize varStat

2. Select the base property p1, and generate CNF1

3. (assignment1, test1) = SAT(CNF1)

4. Test-suite = {test1}

5. for i is from 2 to the size of P

a) Update varStat using assignmenti-1

b) Generate CNFi = BMC(D, pi, boundi)

c) (assignmenti, testi) = SAT(CNFi)

d) Test-suite = Test-suite U {testi}

endfor

6. Return Test-suite

16

An Illustrative Example with 3 properties

Approach: Using the statistics of the counterexamples when

checking the properties in a cluster

- Count the number of values  bit value ordering

- Variance of counts of two literals  variable ordering

VarStat a b c d

[0] V

[1] V

0

VarStat a b c d

[0] V

[1] V

0

0 0

0

0

0

0

…

…

…

VarStat a b c d

[0] V

[1] V 0 0

0 0 1

…

…

…

1

1 1

VarStat a b c d

[0] V

[1] V

0

0

…

…

… 0

2 2

2

1

1

P1: a=0, b=0, c=1, d=1

P2: a=0, b=0, c=1, d=0

Predict ordering for P3

P3: a=0, b=0, c=1, d=?

score(a) ↑, score(a’)↑

score(b) ↑, score(b’)↑

score(c) ↑, score(c’)↑

17

Outline

 Introduction

 Simulation-based Validation

 Test Generation using Model Checking

 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering

 Bit value ordering

 Variable ordering

 Test generation using our methodology

 Experiments

 Conclusion

18

Case Study: MIPS Processor

Property

(test)

zChaff

(sec)

Conflict

Clause

Forwarding

Improvement

Factor

Decision

Ordering

Improvement

Factor

ALU 23.20 23.20 1 23.20 1

P1 20.73 2.74 7.57 0.18 15.22

P2 21.33 3.01 7.09 0.15 20.07

P3 18.03 2.70 6.68 0.29 9.31

DIV 18.78 18.78 1 18.78 1

P4 23.55 2.72 8.66 0.13 20.92

P5 18.31 3.60 5.09 0.14 25.71

P6 18.11 3.72 4.87 0.18 20.67

FADD 22.90 22.90 1 22.90 1

P7 16.95 4.46 3.80 0.23 19.39

P8 18.89 2.71 6.97 0.16 16.94

P9 19.80 4.70 4.21 0.39 12.05

MUL 64.21 64.21 1 64.21 1

P10 59.15 3.36 17.60 0.24 14.00

P11 59.65 3.85 15.49 0.45 8.56

P12 73.98 6.28 11.78 0.18 34.89

19

Case Study: MIPS Processor

Indications: Test generation complexity is significantly improved

 - Reduction of conflict clauses

 - Reduction of implication number

20

• This case study is a on-line stock exchange system.
The activity diagram consists of 27 activities, 29
transitions and 18 key paths.

Case Study: OSES

Average - 227.53 123.21 1.85 20.67 5.97

C1 3 1.18 2.18 0.54 0.70 3.11

C2 4 14.53 9.53 1.52 0.78 12.22

C3 8 375.91 170.06 2.21 36.19 4.70

C4 4 12.98 8.33 1.56 1.24 6.72

C5 4 7.13 16.88 0.42 1.02 16.55

C6 8 720.13 474.68 1.52 28.60 16.60

C7 4 10.80 24.55 0.44 1.95 12.59

C8 8 656.95 321.14 2.05 77.65 4.14

C9 8 248.17 82.42 3.01 37.93 2.17

Cluster Size zChaff Conflict

Forward

Improve ment

Factor

Decision

Ordering

Improvement

Factor

21

Conclusions

 Functional validation is a major bottleneck

 SAT-based approaches are promising for
automated test generation.

 Proposed an efficient technique for generation
of directed tests using learning techniques

 Developed a novel decision ordering technique
using both bit-value ordering and variable ordering

 Successfully applied on both hardware and
software designs

 Significant reduction in overall validation effort

22

Thank you !

