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Anderson localization of cold atomic gases with effective spin-orbit interaction
in a quasiperiodic optical lattice
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We theoretically investigate the localization properties of a spin-orbit-coupled spin-1/2 particle moving in a
one-dimensional quasiperiodic potential, which can be experimentally implemented using cold atoms trapped in
a quasiperiodic optical lattice potential and external laser fields. We present the phase diagram in the parameter
space of the disorder strength and those related to the spin-orbit coupling. The phase diagram is verified via
multifractal analysis of the atomic wave functions and the numerical simulation of diffusion dynamics. We
found that spin-orbit coupling can lead to spectra mixing (coexistence of extended and localized states) and the
appearance of mobility edges.
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I. INTRODUCTION

Anderson localization (AL) is considered a fundamental
physical phenomenon, which was first studied in the system
of noninteracting electrons in a crystal with impurities [1].
AL predicts the absence of diffusion of electronic spin, which
stems from the disorder of crystal and is the result of quantum
interference. Since disorder is ubiquitous, AL is rather uni-
versal and can occur in a variety of other physical systems
including light waves [2] and atomic matter waves [3–5].
Due to its intimate relation with metal-insulator transition,
many interesting topics in AL such as the interplay between
nonlinearity and disorder [6–9] are still under intense study.

In condensed-matter physics, spin-orbit (SO) coupling
originates from the interaction between the intrinsic spin of
an electron and the magnetic field induced by its movement. It
connects the electronic spin to its orbital motion and thus the
electron transport becomes spin dependent. SO interaction can
significantly affect AL and this problem had been addressed
by a few works in the electronic gas system [10,11].

The experimental realization of ultracold quantum gases,
together with the technique of optical lattice potential,
have provided a powerful playground for the simulation of
condensed-matter systems. In this composite system, one can
achieve unprecedented control over almost all parameters by
optical or magnetic means. Specifically, pseudodisorder can
be generated by superimposing two standing optical waves
of incommensurate wavelengths together. As a consequence,
AL of an atomic matter wave can take place, which had been
experimentally observed [5,7,8] and extensively studied in
theory [6,12].

This work is motivated by the recent experimental real-
ization of SO coupling in ultracold atomic gas [13–16]. We
investigate the impact of SO coupling on Anderson localization
of a spin-1/2 particle using the system of cold atomic gases
trapped in a quasiperiodic one-dimensional (1D) optical lattice
potential and simultaneously subject to the laser-induced
SO interaction. A similar topic had also been addressed in
Refs. [17,18], with the focus on the localization properties of
relativistic Dirac particles with cold atoms in a light-induced
gauge field. Our model and method are different from theirs
and we do not consider the relativistic region.

The paper is organized as follows. Section II introduces the
theoretical model and tight-binding approximation is applied
in Sec. III. In Sec. IV we present the phase diagram and
discuss its implications. Section V is devoted to the multifractal
analysis of the atomic wave function, from which the proposed
phase diagram is verified. The diffusion dynamics is studied in
Sec. VI for an initially localized Gaussian wave packet. Finally
we conclude in Sec. VII.

II. MODEL AND HAMILTONIAN

We consider the following model depicted in Fig. 1: cold
atomic gas with internal spin states |↑〉 and |↓〉 confined in
a spin-independent 1D quasiperiodic optical lattice potential
s1ER1 sin2 (k1x) + s2ER1 sin2 (k2x + φ) along the x direction,
which is formed by combining two incommensurate optical
lattices together [5]. Here ki = 2π/λi is the lattice wave
number, si is the height of the lattice in units of the recoil
energy ER1 = h2/2mλ2

1, and φ is the relative phase between
the two standing-wave modes (without loss of generality, we
assume φ = 0 in the following discussion). It is assumed that
the depth of the lattice with wave vector k1 is deep enough to
serve as the tight-binding primary lattice. Meanwhile, a pair
of counterpropagating Raman beams couple the atomic states
|↑,kx = q〉 and |↓,kx = q + 2kR〉, which creates the effective
SO coupling [13].

In the basis composed of atomic pseudospin states
{|↑〉,|↓〉}, the single-particle Hamiltonian reads

ĥ =
[

p2
x

2m
+ s1ER1 sin2 (k1x) + s2ER1 sin2 (k2x)

]
Î

+ �

2

(
0 e2ikRx

e−2ikRx 0

)
,

with � the effective Raman coupling strength. Here we have
assumed that the Raman two-photon detuning is 0. Then we in-
troduce the dressed pseudospin states {|↑〉′ = |↑〉e−ikRx,|↓〉′ =
|↓〉eikRx}, which is equivalent to performing a pseudospin ro-
tation with the operator R̂ (kR) = exp (−ikRxσ̂z), and perform
a global pseudospin rotation σ̂z → σ̂y , σ̂y → σ̂x , σ̂x → σ̂z

[13,16]. In the new basis, Hamiltonian ĥ can then be rewritten
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FIG. 1. (Color online) Schematic diagram showing the system
under consideration.

as

ĥ = ĥSO + V = (px − Â)2

2m
+ �

2
σ̂z

+s1ER1 sin2(k1x) + s2ER1 sin2(k2x), (1)

in which ĥSO describes single-particle motion in the
presence of the effective SO coupling, which is em-
bodied in the vector potential Â = −mλσ̂y (λ = h̄kR/m

characterizes spin-orbit coupling strength) and the effective
Zeeman field �/2.

ĥ effectively describes a spin-1/2 particle moving in a 1D
quasiperiodic potential and subject to both the Zeeman field
and equal Rashba-Dresselhaus SO coupling, which can be
used to simulate the corresponding condensed-matter system
such as the motion of an electron in a one-dimensional
semiconductor nanowire with disorder and SO interactions.

III. TIGHT-BINDING APPROXIMATION

In the language of quantum field theory, the total Hamilto-
nian describing our system reads

Ĥ (x) =
∫

dx �̂† (x) ĥ (x) �̂ (x) , (2)

with �̂ = (ψ̂↑,ψ̂↓)T the atomic field operators.
In the tight-binding limit, the atomic field operator can

be expanded as �̂ (x) = ∑
j wj (x) ĉj , where wj (x) = w(x −

xj ) is the Wannier state of the primary lattice at the j th site
and ĉj = (ĉj↑,ĉj↓)T are annihilation operators. By considering
that the tunneling takes place between nearest-neighbor sites
and retaining only the on-site contribution of the secondary
lattice, one can achieve the following description of Eq. (2)
(with the energy measured in units of ER1 and length scaled
in units of k−1

1 ):

Ĥ =
∑

j

[
−(ĉ†j T̂ ĉj+1 + H.c.) − 	 cos (2πβj ) ĉ

†
j ĉj

+ �

2
ĉ
†
j σ̂zĉj

]

=
∑

j

{
−J [ĉ†j (cos πγ − iσ̂y sin πγ )ĉj+1 + H.c.]

−	 cos (2πβj ) ĉ
†
j ĉj + �

2
ĉ
†
j σ̂zĉj

}
,

where the tunneling amplitude T̂ = J exp(−i/h̄
∫
Â dl) is

obtained through Peierls substitution [19,20], which was also
used in recent works to study the impact of SO coupling on
a two-dimensional Bose-Hubbard model [21–23].

∫
Â dl =

Â(xj − xj+1) = h̄πγ σ̂y is the integral of the vector potential
along the hopping path with γ = kR/k1. J is the tunneling
amplitude without SO coupling, β = k2/k1. J and 	 can be
calculated as

J = −
∫

dx wj+1(x)

[
− d2

dx2
+ s1 sin2 x

]
wj (x) ,

	 = s2β
2

2

∫
dx cos (2βx) |w (x)|2 .

By writing |ψ〉 = ∑
j,σ ψj,σ ĉ

†
j,σ |0〉, the stationary

Schrödinger equation Ĥ |ψ〉 = E |ψ〉 leads to

−J cos(πγ )(ψj+1,↑ + ψj−1,↑) − J sin(πγ )(ψj+1,↓

−ψj−1,↓) − 	 cos(2πβj )ψj,↑ + �

2
ψj,↑ = Eψj,↑, (3a)

−J cos(πγ )(ψj+1,↓ + ψj−1,↓) + J sin(πγ )(ψj+1,↑

−ψj−1,↑) − 	 cos(2πβj )ψj,↓ − �

2
ψj,↓ = Eψj,↓. (3b)

The second terms on the left-hand side of Eqs. (3), which
are proportional to J sin(πγ ), represent the spin-flipping
tunneling which arises from the effective SO interaction. In
the absence of SO coupling (γ = 0, � = 0), spin-↑ and ↓
components are decoupled and we have

−J (ψj+1 + ψj−1) − 	 cos(2πβj )ψj = Eψj , (4)

which represents the typical Harper equation [24] or the
Aubry-André model [25]. Equation (4) satisfies Aubry duality,
as can be seen by performing the transformation ψj =∑

m ψ̃meim(2πβj ); inserting it into Eq. (4) will lead to

−	

2
(ψ̃m+1 + ψ̃m−1) − 2J cos (2πβm) ψ̃m = Eψ̃m. (5)

Equations (4) and (5) are identical at 	/J = 2. Since the
transformation made above represents the typical Fourier
transform which transforms localized states to extended states
and vice versa, then the critical point 	/J = 2 is identified as
the transition point between the localized states and extended
states, i.e., all the single-particle states are extended when
	/J < 2 and localized when 	/J > 2.

The properties of the Aubry-André model, as represented
by Eq. (4), have been theoretically studied [26,27] and can
be implemented in systems of Bloch electrons [20] and cold
atoms [5]. We have also studied this model with 	 dressed by
a cavity field through nonlinear feedback [9].

A similar transformation ψj,σ = εσ

∑
m ψ̃m,σ eim(2πβj )

(ε↑ = 1,ε↓ = i) made to Eqs. (3) will lead to

−	

2
(ψ̃m+1,↑ + ψ̃m−1,↑) + 2J sin(πγ ) sin(2πβm)ψ̃m,↓

− 2J cos(πγ ) cos(2πβm)ψ̃m,↑ + �

2
ψ̃m,↑ = Eψ̃m,↑,

(6a)

−	

2
(ψ̃m+1,↓ + ψ̃m−1,↓) + 2J sin(πγ ) sin(2πβm)ψ̃m,↑

− 2J cos(πγ ) cos(2πβm)ψ̃m,↓ − �

2
ψ̃m,↓ = Eψ̃m,↓.

(6b)
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A comparison between Eqs. (3) and (6) shows that the
presence of the spin-flipping tunneling terms breaks the
duality. This distinguishes our current work from that reported
in Ref. [11], in which the authors studied a system of
two-dimensional (2D) electrons on a square lattice subject to
Rashba spin-orbit coupling and immersed in a perpendicular
uniform magnetic field. In this system, it has been shown [11]
that a generalized Aubry duality is preserved when tunneling
along the two perpendicular lattice directions is exchanged.
Such an operation is not available in our system as ours is an
intrinsically 1D model.

Due to the lack of duality in the current model, it is not clear
whether there exists a phase transition between the localized
and extended states in the present system. In addition, what
effect will SO coupling take? Will it enhance the tendency to
localization or delocalization? We focus on these problems in
the following discussion.

IV. PHASE DIAGRAM ANALYSIS

Here we follow the method in Ref. [11] to map the phase
diagram using a quantity called the total width of all the energy
bands B, which had been proved to be useful in investigating
phase transition in a quasiperiodic system [11,26,27]. In order
to observe its property, as people usually do, we first choose
the optical lattice wavelength ratio β to be βn = Fn/Fn+1 =
p/q, in which Fn is the nth Fibonacci number defined by
the recursion relation Fn+1 = Fn + Fn−1 with F0 = F1 = 1.
When n → ∞, βn → (

√
5 − 1)/2, which is the inverse of the

golden ratio.
Since p and q are integers prime to each other,

the system is periodic with the period q. Under
the periodic boundary condition, according to Bloch’s
theorem, ψi+q,σ = eikxqψi,σ . Equations (3) then re-
duce to an eigenvalue problem Hψ = Eψ with ψ =
(ψ1,↑,ψ1,↓,ψ2,↑,ψ2,↓, . . . ,ψq−1,↑,ψq−1,↓,ψq,↑,ψq,↓) and the
2q × 2q matrix H takes the following form:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1 L 0 · · · 0 e−ikxqL†

L† H2 L 0 0

0 L† H3 L 0

0 · · ·
· · · L 0

0 0 L† Hq−1 L

eikxqL 0 0 L† Hq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

Hj =
(
−	 cos(2πβj + φ) + �

2 0

0 −	 cos(2πβj + φ) − �
2

)

and

L =
(−J cos (πγ ) −J sin (πγ )

J sin(πγ ) −J cos (πγ )

)
.

The Hermite matrix H can be diagonalized with 2q real
eigenvalues Ei (kx), which form 2q energy bands as the
function of kx in the first Brillouin zone q |kx | � π .

In the absence of SO coupling, the energy bands are
degenerate for spin-↑ and ↓, with the band edges located

Ω

Δ

FIG. 2. (Color online) Phase diagram for Anderson localization
of SO-coupled BEC in 1D quasiperiodic lattice in the parameter space
	-�. γ = 0.7, 	 and � are estimated in units of J .

at kx = 0 and kx = ±π/q, so B can be calculated by
B = ∑2q

i=1|Ei(0) − Ei(±π/q)|. It was first demonstrated in
Ref. [26] that for extended states with 	/J < 2, B approaches
a finite value for q → ∞, while for localized states 	/J > 2,
B rapidly tends to zero as q → ∞, at the critical point
	/J = 2, B ≈ q−1. In this manner, the critical value 	 = 	c

signaling AL transition can be determined by observing the
property of B as a function of the period q.

Now taking SO coupling into account, we anticipate that
the phase diagram is composed of three different phases:
(i) extended phase in which the energy spectrum is purely
continuous and all the eigenstates are extended; (ii) localized
phase is characterized by a purely dense point and all the
wave functions are localized; and (iii) the energy spectrum is
mixed in the critical phase with extended eigenstates coexisting
with localized ones. Using the method described above, 	c is
determined as a function of �, which is indicated in the phase
diagram of Fig. 2 by the line separating the regions signaling
localized phase and critical phase. Calculation is performed
with the parameter of γ = 0.7, which is used throughout the
paper and can be experimentally realized for 87Rb atoms by
adjusting the angle between Raman beams [13]. At � = 0,
AL transition occurs at 	/J = 2, reminiscent of the situation
without SO coupling. This can be understood from Eq. (1) that
SO interaction can be removed from the Hamiltonian through a
unitary transformation with the operator Ŝ = exp(−ixσ̂y/2ξ )
when � = 0. Examples of data are shown in Fig. 3(a). At
	/J = 2.02, B tends to zero for � < � (	c) and B tends to
a finite value for � > � (	c).

Due to the fact that duality is broken by the SO coupling
here, the boundary between extended phase and critical phase
is not related to that which separates localized phase and
critical phase, which is different from Ref. [11]. The extended
phase and critical phase cannot be differentiated by examining
the properties of B, since the energy spectrum contains abso-
lutely continuous parts in both of these phases, which leads B

to a finite value in the quasiperiodic limit, as shown in Fig. 3(b).
The localization property of the atomic wave function can

be characterized with the inverse participation ratio (IPR)
which is defined as

P −1 =
N∑

j=1

(|ψj,↑|4 + |ψj,↓|4),
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Ω
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FIG. 3. Total bandwidth versus period q. At q → ∞ the system
becomes quasiperiodic. The parameters are specified in the figure.

in which N is the number of lattice sites and ψj,↑(↓) are
solutions of Eqs. (3) and fulfill the normalization condition∑

j (|ψj,↑|2 + |ψj,↓|2) = 1. IPR reflects the inverse of the
number of lattice sites being occupied by the atoms. For
extended states, P −1 → 1/N and approach 0 for large N ,
while for localized states, IPR tends to a finite value and a
larger value of P −1 means that the atoms are more localized
in space.

We use IPR to determine the boundary separating the
extended phase and critical phase, which is identified by
the turning point of IPR as a function of 	/J , as had been
done in many previous works [9,12,28,29]. The calculation is
performed with β = F14/F15 = 610/987 and N = F15 = 987
under periodic boundary condition. This gives the extend-
critical phase boundary shown in Fig. 2, which indicates that
with the increase of the Rabi frequency � the system is more
likely to start to become localized. In order to understand this,
we plot the energy spectrum as a function of 	/J . When �

is relatively small, the spectrum shown in Fig. 4(a) possesses
similar properties to that in the absence of SO coupling: Along
with the increase of 	/J , two major gaps divide the spectrum

1 2 3
−4

−2

0

2

4

Δ/J

En
er
gy

(a)

1 2 3
−4

−2

0

2

4

Δ/J

(b)

FIG. 4. Eigenenergies obtained from numerical diagonalization
of Hamiltonian matrix, as a function of 	/J . Calculations are
performed under periodic condition with β = 610/987, N = 987,
γ = 0.7 and (a) � = 0.1; (b) � = 1.

into three parts, each of which in turn divides into three smaller
parts, and so on. This is because the value of 1/β lies between
2 and 3. The spectrum of localized states is then characterized
by the presence of an infinite number of gaps and bands.
The effective Zeeman term which is proportional to �, in
combination with SO coupling and the lattice structure, takes
the effect of opening gaps between different energy bands, as
shown in Fig. 4(b). So the critical value 	c takes a smaller
value with the increase of �.

V. MULTIFRACTAL ANALYSIS OF WAVE FUNCTIONS

To check the proposed phase diagram, we investigate the
scaling property of the wave functions using the method of
multifractal analysis described in [11]. Taking the period of
the lattice to be Fibonacci number Fn, from the wave functions
{ψj,σ } we have the probability pj = |ψj,↑|2 + |ψj,↓|2, which
is normalized as

∑Fn

j=1pj = 1. The scaling index α for pj is
defined as pj = F−α

n . We then assume that the number of sites
satisfying the scaling is proportional to F

fn(α)
n , and f (α) can

be calculated as f (α) = limn→∞ fn(α).
The localization properties of wave functions are charac-

terized by f (α) in the following manner: For extended wave
functions, all the lattices satisfy pj ∼ F−1

n , so f (α) is fixed at
f (α = 1) = 1. On the other hand, a localized wave function
has a nonvanishing probability only on a finite number of
sites. These sites have α = 0 [f (0) = 0] and other sites with
probability zero have α = ∞ [f (∞) = 1]. For critical wave
functions, α has a distribution, which means that f (α) is a
smooth function defined on a finite interval

[
αmin ,αmax

]
.

Numerically we calculate fn (α) for Fibonacci indices n

and extrapolate them to n → ∞. One can then discriminate
extended, localized, and critical wave functions by examining
the minimum value of α in the following manner:

extended wave function αmin = 1,

critical wave function αmin �= 0,1,

localized wave function αmin = 0.

α

FIG. 5. αmin versus 1/n for the wave functions of the lowest
band © (i = 1) and the center band � (i = Fn). (a) �/J = 0.2,
	/J = 1.5; (b) �/J = 0.4, 	/J = 1.5; and (c) �/J = 2.5, 	/J =
0.1 correspond to extend phase, critical phase, and localize phase,
respectively.
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Δ Δ

FIG. 6. Time evolution of the wave packet width w (t): (a) without
SO interaction; (b) in the presence of SO interaction with γ = 0.7
and �/J = 0.2.

αmin is calculated, for example, for wave functions and the
results are shown in Fig. 5. The wave function of the lowest
band is denoted by i = 1, while that at the center of the energy
spectrum is denoted by i = Fn. First, for �/J = 0.2, 	/J =
1.5 at which the system is in the extended phase according to
the phase diagram in Fig. 2, αmin extrapolates to 1 for both i =
1 and i = Fn, as shown in Fig. 5(a), indicating that the energy
spectrum is purely continuous and all the wave functions are
extended. The point �/J = 0.4, 	/J = 1.5 corresponds to
the critical phase in Fig. 2, and in Fig. 5(b) one can find that
αmin extrapolates to 0 for i = 1 and αmin extrapolates to 1 for
i = Fn. This suggests that the wave function at the edge of

the energy spectrum is localized, while that at the center is
extended, which indicates the existence of mobility edges.

The appearance of mobility edges here can be understood
as the result of the breaking of original self-duality via SO
interaction, which can also be aroused by other effects such as
hopping beyond neighboring lattice sites [29,30]. We would
like to note that, even if the duality is preserved, SO coupling
can also lead to the appearance of critical phase and mobility
edges, as had been demonstrated in [11].

VI. DIFFUSION DYNAMICS

In realistic experiment, localization properties can be inves-
tigated by loading the SO-coupled BEC into the quasiperiodic
potential and observing its transportation along the lattice [5].
The equation of motion associated with Eqs. (3) is

i
∂�j

∂t
= −Je−iπγ σ̂y (�j+1 + �j−1)

+
[
−	 cos(2πβj ) + �

2
σ̂z

]
�j, (7)

where �j = (ψj,↑,ψj,↓)T . We study the diffusion of ultracold
atomic gas in quasiperiodic optical lattice with Eq. (7) by
taking the initial atomic wave function to be a localized
Gaussian wave packet with width a,

�j (t = 0) = (2a
√

π )−1/2e−j 2/2a2

(
1

i

)
,

in which we take a = 5 in the following calculation. Here we
assume that the atomic wave packets initially lie in the center at

Δ

Δ

Δ

FIG. 7. Time evolution of wave packets |ψj,↑|2 corresponds to Fig. 6(b) at specific times.
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j = 0 with the system size of 2000 lattice sites. The numerical
simulation is performed with vanishing boundary condition
and during the time evolution the atomic wave packet never
reaches the boundaries so that the effect of boundary condition
does not appear.

To measure the localization, we use the width of the wave
packet defined as

w =
√

〈(	x)2〉 =
{ ∑

j

j 2(|ψj,↑|2 + |ψj,↓|2)

}1/2

.

In the absence of SO coupling, the time evolution of w (t)
can be parametrized as w (t) ∼ tη [6,31], and its property is
intimately related to the localization properties of the system:

(i) In the extended phase of 	/J < 2, the wave packet will
experience ballistic expansion with η = 1.

(ii) At the critical point of 	/J = 2 the wave packet is
subject to subdiffusion with η ∼ 0.5.

(iii) The wave packet is localized when 	/J > 2 and
η = 0.

The above time-evolution properties are demonstrated in
Fig. 6(a). In Fig. 6(b) we present the results in the presence
of SO interaction. One can find that, for 	/J = 2.1, which
corresponds to the critical phase shown in Fig. 2, the wave
packet still subdiffuses with time evolution. In addition, the
time evolution of the wave packet at sample time is shown
in Fig. 7. At 	/J = 1.5 corresponding to the system in the
extended phase, the wave packet rapidly diffuses and almost
all the lattice sites become populated, while at 	/J = 2.5 for
the localized phase of the system, there is no diffusion because
in this regime the initial Gaussian wave packet can be decom-
posed into the superposition of several single-particle localized
eigenstates. For the system in the critical phase at 	/J = 2.1,
the wave-packet diffusion is accompanied with solitonlike
structures in the center and spreading sideband, which reflects
that extended and localized eigenstates coexist in the system.

Besides that, the nature of localized states can also
be extracted from the momentum distribution of the atom
stationary states. This is because a more localized atomic
wave function corresponds to a wider momentum distribution
via Fourier transformation. The momentum distribution can
be measured by turning off the Raman lasers, releasing the
atoms from the lattice, and performing time-of-flight imaging.
Since our above discussions are for the dressed spin states

{|↑,k〉d ,|↓,k〉d}, their momentum distribution can be mapped
from that of the bare spins |↑,k + kR〉 and |↓,k − kR〉 in the
following manner:

|↑,k〉d = 1 + i

2
|↑,k + kR〉 + −1 + i

2
|↓,k − kR〉,

|↓,k〉d = 1 + i

2
|↑,k + kR〉 + 1 − i

2
|↓,k − kR〉.

VII. CONCLUSION

In conclusion, we have studied the system of a SO-coupled
spin-1/2 particle moving in a one-dimensional quasiperiodic
potential. We mapped out the system phase diagram in the
tight-binding regime and accordingly discussed the localiza-
tion properties. In the absence of SO interaction the system
can be mapped into the AA model and self-dual if 	/J = 2;
SO interaction breaks the duality and leads to the appearance
of critical phase, in which the extended and localized states
coexist in the energy spectra. We also verified the phase
diagram via multifractal analysis of the wave functions and
diffusion dynamics of an initially localized Gaussian wave
packet. Experimental detection of localization properties is
discussed. We proposed an experimental realization of the
system using cold atomic gas trapped in a quasiperiodic
optical lattice potential and external laser fields. Since the
two ingredients of our proposed scheme, the quasiperiodic
optical lattice potential [5] and SO coupling [13,15,16], had
already been achieved for cold atoms, it is expected that the
localization properties discussed in this work can be readily
observed in experiment.
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