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Abstract The extended form of modified Kadomtsev–Petviashvili equation with variable-coefficient is investigated

in the framework of Painlevé analysis. The Lax pairs are obtained by analysing two Painlevé branches of this equation.

Starting with the Lax pair, the N-times Darboux transformation is constructed and the N-soliton solution formula is

given, which contains 2n free parameters and two arbitrary functions. Furthermore, with different combinations of

the parameters, several types of soliton solutions are calculated from the first order to the third order. The regularity

conditions are discussed in order to avoid the singularity of the solutions. Moreover, we construct the generalized Darboux

transformation matrix by considering a special limiting process and find a rational-type solution for this equation.

PACS numbers: 02.30.Ik, 02.30.Jr
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1 Introduction

Integrable systems are differential and difference equa-

tions with various mathematica structures and wide ap-

plications in physics and engineering. Most integral equa-

tions have multi-soliton solutions. Among these equa-

tions, the Kadomtsev–Petviashvili (KP) equation has

been considered as a ubiquitous and important physical

model. It is a (2+1)-dimensional partial differential equa-

tion which describes nonlinear wave motion:[1]

(ut + 6uux + uxxx)x − uyy = 0 . (1)

This equation can be applied to model long wavelengths

water waves with weakly non-linear restoring forces and

frequency dispersion. It is a two-dimensional generaliza-

tion of one-dimensional Korteweg-de Vries (KdV) equa-

tion.

The modified Kadomtsev–Petviashvili (mKP) equa-

tion:

ut + uxxx + 3∂−1
x uyy − 6u2ux − 6ux∂

−1
x uy = 0 (2)

describes water waves in (x, y) plane when the nonlin-

earity is higher than the KP equation. Equation (2)

can be considered as a model for the propagation of

the water waves in fluid dynamics,[2−3] ionacoustic waves

in a plasma with nonisothermal electrons,[4−6] nonlinear

Alfvén waves in a cold collision-free plasma,[7] and elec-

tromagnetic wave in an isotropic charge-free infinite ferro-

magnetic thin film.[8−9] The Darboux transformation for

Eq. (2) was obtained in Ref. [10] via Painlevé analysis,

and the line soliton solutions for this equation were con-

structed by means of the Hirota bilinear method.[11] The

Miura transformations between mKP and KP equation

were also studied in Ref. [12].

Generally, there is a considerable amount of work

in the extended forms of nonlinear evolution equations.

These works focus on the effect of the additional terms on

the integrability, the dispersion relations of the equation,

the amplitudes, the velocity and other physical phenom-

ena of the solutions.

An extended form of the mKP equation (2)

ut + uxxx + 3∂−1
x uyy − 6u2ux − 6ux∂

−1
x uy + αuy + βux

= 0 (3)

is investigated in Ref. [3], where α and β are arbitrary

constants, and ux, uy are the potentials in the x- and the

y-directions, respectively. This extended form of the mKP

equation is obtained by adding the terms αuy and βux to

Eq. (2).

The celebrated KP-like equations possess certain im-

portant properties and physical applications from water

waves to plasma physics as well as field theories. Because

of the assumptions of the constant coefficients, the physi-

cal models in which they arise tend to be highly idealized,

for example, in the propagation of small-amplitude sur-

face waves in a fluid with constant depth. However, the
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variable-coefficient generalizations of the KP-like equation

are better able to provide us with more certain realistic

physical satiation in these models, such as the dynamics of

nonlinear waves in a real ocean,[13−15] which is inhomoge-

neous, and the waves are comparatively influenced by the

refraction and geometric divergence. In fact, the KP-like

models with variable-coefficient are among the most inter-

esting variable-coefficient nonlinear evolution equations.

Based on the facts we have clarified above, and in order

to possess the soliton solutions with more parametric free-

dom, we consider the following variable-coefficient version

for Eq. (3):

ut + uxxx + 3∂−1
x uyy − 6u2ux − 6ux∂

−1
x uy + α(t)uy

+ β(t)ux = 0 , (4)

where α(t) and β(t) are two arbitrary functions.

The main proposal in our paper is to construct

the Lax-pair and N -times Darboux transformation for

the extended form of the mKP equation with variable-

coefficient. Singularity analysis and the Painlevé property

are considered to be the important methods for determin-

ing the integrability of nonlinear partial differential equa-

tions (PDEs). Based on the Painlevé property, we can

use the singular manifold method to obtain the Bäcklund

transformations and Lax pairs of a nonlinear PDE.[16−18]

However, this method has a disadvantage when it is ap-

plied to the PDEs with Painlevé expansion branches more

than one. Afterwards, the modification version for this

method, which is called the generalized singular manifold

method proposed in Ref. [19] by Estevez and Gordoa. It

solves PDEs that include as many singular manifolds as

Painlevé branches. This modification procedure was ap-

plied to Boussinesq equation, the modified Korteweg de

Vries equation[20] and the Mikhailov–Shabat systems,[19]

and the relation between singular manifolds and Hirota’s

τ functions[21] was clearly established in these papers.

Following the method proposed in Ref. [10], we would

like to find the Lax-pairs for Eq. (4). First of all, we imple-

ment the Painlevè analysis to Eq. (4), so we can write its

solution as the form of Painlevè expansion. Then, by com-

paring the coefficients in the leading term of the expan-

sion, we derive two Painlevè branches with the correspond-

ing singular manifold being introduced, which constitutes

an auto-Bäcklund transformation between two pairs of so-

lutions. After a series of complicated calculation and pro-

cedures of linearization, we derive the Lax-pair for Eq. (4).

Secondly, with this Lax-pair, we construct the Darboux

transformation for this equation.

Darboux transformation is a powerful tool in the

construction of solutions for integral partial differential

equations, including multi-solitons, breather solutions and

other interesting solutions. It is essentially a kind of gauge

transformation which can keep the form of the Lax-pair

invariant. Especially, we investigate the N -times Darboux

transformation for Eq. (4). Moreover, the N -soliton solu-

tion formula are also derived in the form of Wronskian de-

terminant. Finally, using the idea inherited from Ref. [23],

we construct a special generalized Darboux transforma-

tion for this equation where the Lax-pair does not contain

a spectral parameter. As a result, the N -times formula

for the rational form solutions are calculated.

The paper is organized as follows. In Sec. 2, the

Lax pairs for the extended mKP equation with variable

coefficients are calculated by analysing its two Painlevé

branches. In Sec. 3, we construct the N -times Darboux

transformation for this equation. The N -times general-

ized Darboux transformation are constructed in Sec. 4.

The final section contains some conclusions discussions.

2 Painlevé Analysis and the Construction of
Lax Pair

2.1 Painlevé Analysis and Auto-Bäcklund Trans-

formations

We can consider Eq. (4) as a two component system

with the following form:

ut + uxxx + 3ωy − 6u2ux − 6ωux + α(t)uy + β(t)ux = 0 ,

ωx − uy = 0 . (5)

In terms of the singularity analysis, Eq. (5) enjoys the

Painlevé property, which means that its solution can be

written as a Painlevé expansion such as

u =
∞
∑

i=0

uj(x, y, t)[χ(x, y, t)]j−α, (6a)

ω =

∞
∑

i=0

ωj(x, y, t)[χ(x, y, t)]j−β . (6b)

The analysis of the leading term provides:

α = 1, β = 1, u0 = aχx, ω0 = aχy , (7)

where a = ±1 and χ(x, y, z) is an arbitrary function.

Therefore, there exist two Painlevé branches which can

appear simultaneously in the truncated expansion for

Eq. (5). For each branch, the auto-Bäcklund transfor-

mation can be introduced as

u′ = u+
φx

φ
− σx

σ
, ω′ = ω +

φy

φ
− σy

σ
, (8)

where, φ is the singular manifold for a = 1 and σ for

a = −1. Obviously, there exists two pairs of solutions

(u, ω) and (u′, ω′) of Eq. (5),

ut + uxxx + 3ωy − 6u2ux − 6ωux + α(t)uy + β(t)ux = 0 ,

ωx − uy = 0 , (9)

and

u′t + u′xxx + 3ω′
y − 6u′2u′x − 6ω′u′x + α(t)u′y + β(t)u′x = 0 ,

ω′
x − u′y = 0 . (10)
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Assume that we can decouple the crossed terms

(φx/φ)(σx/σ) through the following expression

φx

φ

σx

σ
= A

φx

φ
+B

σx

σ
, (11)

and define

v1 =
φxx

φx
, w1 =

φt

φx
, τ1 =

φy

φx
,

v2 =
σxx

σx
, w2 =

σt

σx
, τ2 =

σy

σx
. (12)

Substitute (8) into (10), and use (11) to decouple the

crossed product, then the set of equations can be pro-

vided,

A =
1

2
(2u+ v1 + τ1), B =

1

2
(−2u+ v2 − τ2) ,

6(ω − ux + u2) = w1 + 4v1x + v2
1 + 3τ2

1 + α(t)τ1 + β(t) ,

6(ω + ux + u2) = w2 + 4v2x + v2
2 + 3τ2

2 + α(t)τ2 + β(t) ,
(

w1 + v1x − v2
1

2
+

3

2
τ2
1 + α(t)τ1

)

x
+ 3τ1y = 0 ,

(

w2 + v2x − v2
2

2
+

3

2
τ2
2 − α(t)τ2

)

x
+ 3τ2y = 0 . (13)

From (13), we obtain the following relations:

(AB)x = AB(τ2 − τ1) ,

[AB(2A− 2B + v1 − v2 − 3τ1 − 3τ2) − α(t)]x

= AB(w2 − w1) . (14)

In this case, taking the derivative of (11) with respect to

x, y and t, and using (11) again, we have:

Ax = A(v2 −A−B), Bx = B(v1 −A−B) ,

Ay = [A(τ2 +B)]x, By = [B(τ1 −A)]x ,

At = [Aw2 +AB(2A− 2B + v1 − v2 − 3τ1

− 3τ2 − α(t))]x ,

Bt = [−Bw1 +AB(2A− 2B + v1 − v2 − 3τ1

− 3τ2 − α(t))]x . (15)

2.2 Construction of Lax Pairs

In order to linearize Eq. (15), the following changes

should be introduced,

A =
ψ2x

ψ2
, B =

ψ1x

ψ1
, (16)

in which case Eq. (15) can be written as the following two

Lax pairs:

ψ1xx + 2uψ1x + ψ1y = 0 ,

ψ1t + 4ψ1xxx + 6
[

ux + u2 − ω − 1

3
α(t)u +

1

6
β(t)

]

ψ1x

+ (12u− α(t))ψ1xx , (17)

ψ2xx − 2uψ2x − ψ2y = 0 ,

ψ2t + 4ψ2xxx + 6
[

ux + u2 − ω − 1

3
α(t)u +

1

6
β(t)

]

ψ2x

− (12u− α(t))ψ2xx . (18)

3 Darboux Transformation and N-soliton So-
lutions

3.1 N-times Darboux Transformation

From Eq. (17), we can obtain the Lax pair for Eq. (5)

φ1y = −φ1xx − 2uφ1x, φ1t = A(u)φ , (19)

A(u) = −4∂3 − (12u− α(t))∂2

− 6
(

ux + u2 − (∂−1uy) −
1

3
α(t)u +

1

6
β(t)

)

∂ ,

where ∂ = ∂x and ∂∂−1 = ∂−1∂ = 1.

The elementary Darboux transformation of the spec-

tral problem (19) is:

T [1]φ , φ[1] = φ− φ1

φ1x
φx , (20)

and the potential satisfies the relation:

u[1] = u+ ∂ ln
(φ1x

φ1

)

, (21)

where u[1] satisfies Eq. (4), and (u[1], φ[1]) also satisfies

(19):

φy[1] = −φxx[1] − 2u[1]φx[1] ,

φt[1] = A(u[1])φ[1] . (22)

Remark 1 Denoting u[i], φ[i] and φj [i] as the action of

i-times repeated Darboux transformation (20), (21) on the

seed solutions: u, φ, φj , then:

φj,y [i] = −φj,xx[i] − 2u[i]φj,x[i] ,

φj,t[i] = A(u[i])φj [i] . (23)

Before we construct the N -times Darboux transformation,

the following lemma is needed:

Lemma 1 For arbitrary integral l, k (1 6 l 6 n− 1, 1 6
k 6 l − 1), we have

W2(φl+1[l], φl+2[l], . . . , φl+k[l]) = (−1)k φk
l [l − 1]

φk+1
l,x [l − 1]

W2(φl[l − 1], φl+1[l − 1], . . . , φl+k[l − 1]) ,

W1(φl+1[l], φl+2[l], . . . , φl+k[l]) = (−1)k φ
k−1
l [l − 1]

φk
l,x[l − 1]

W1(φl[l − 1], φl+1[l − 1], . . . , φl+k[l − 1]) ,

W1(φ[l], φl+1[l], . . . , φl+k[l]) = (−1)k φk
l [l − 1]

φk+1
l,x [l − 1]

W1(φ[l − 1], φl[l − 1], . . . , φl+k[l − 1]) .
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The proof of this Lemma was given in Ref. [22]. And

the following theorem gives the N -times Darboux trans-

formation for Eq. (5):

Theorem 1 φ1, φ2, . . . , φN is the solution of (19), and

u is the solution of extended form of mKP equation with

variable coefficients, then the N -times Darboux transfor-

mation is:

φ[N ] =
W1(φ, φ1, φ2, . . . , φN )

W2(φ1, φ2, . . . , φN )
, (24)

u[N ] = u+ ∂ ln
W2(φ1, φ2, . . . , φN )

W1(φ1, φ2, . . . , φN )
, (25)

and (φ[N ], u[N ]) satisfies:

φy[N ] = −φxx[N ] − 2u[N ]φx[N ] ,

φt[N ] = A(u[N ])φ[N ] , (26)

where, w1, w2 are two types of Wronskian determinant

defined by:

W1(φ1, φ2, . . . , φk) = det(A), Ai,j =
dj−1

dxj−1
φi , (27)

W2(φ1, φ2, . . . , φk) = det(B), Bi,j =
dj

dxj
φi . (28)

Hence, with the conclusion of Lemma 1, we have:

φ[N ] = φ[N − 1] − φN [N − 1]

φN,x[N − 1]
φx[N − 1]

=
W1[φ[N − 1], φN [N − 1]]

W2(φN [N − 1])
= · · ·

=
W1(φ1, φ2, . . . , φN )

W2(φ1, φ2, . . . , φN )
, (29)

with,

u[N ] = u[N − 1] + ∂ ln
φN,x[N − 1]

φN [N − 1]

= u[N − 2] + ∂ ln
φN−1,x[N − 2]

φN−1[N − 2]

+ ∂ ln
W2(φN [N − 1])

W1(φN [N − 1])

= u[N − 2] + ∂ ln
W2[φN−1[N − 2], φN [N − 2]]

W1[φN−1[N − 2], φN [N − 2]]

= · · · = u+ ∂ ln
W2(φ1, φ2, . . . , φN )

W1(φ1, φ2, . . . , φN )
. (30)

This completes the proof of Theorem 1. �

3.2 N-soliton Solutions Formula

(i) One-soliton solution

Next, using formulation (30) we intend to find the soli-

ton solution for Eq. (4). Starting from the seed solution

u = c, where c is a constant, then the solution for (19) is:

φ1 = φk1
+ φp1

,

φk1
= ek1x+(−2ck1−k2

1
)y−

∫

(6c2k1−2cα(t)k1+12ck2

1
−α(t)k2

1
+β(t)k1+4k3

1
) dt+P1(k1) ,

φp1
= e−p1x+(2cp1−p2

1
)y−

∫

(−6c2p1+2cα(t)p1+12cp2

1
−α(t)p2

1
−β(t)p1−4p3

1
) dt+F1(p1) , (31)

where, k1 and p1 are arbitrary constants. P1(k1) and

F1(p1) are polynomials of k1 and p1, respectively.

In the case of vacuum seed where c = 0, we take

P1(k1) = F1(p1) = 0 for convenience, then solution (31)

is reduced to

φk1
= ek1x−k2

1
y+

∫

(−4k3

1
+α(t)k2

1
−k1β(t))dt ,

φp1
= e−p1x−p2

1
y+

∫

(4p3

1
+α(t)p2

1
+p1β(t))dt .

Therefore, relation (21) gives one-soliton solution with

arbitrary function α(t), β(t):

u[1] =
k2
1φk1

+ p2
1φp1

k1φk1
− p1φp1

− k1φk1
− p1φp1

φk1
+ φp1

. (32)

It is noted that the condition k1 6= p1 and k1p1 < 0

must be satisfied. Moreover, to make sure the amplitude

is positive, one needs k1 > 0, p1 < 0. Solution (32) is

equivalent to the following form:

u[1] = γ1(2 cosh[θ1(x, y, t) + ϕ1] + ν1)
−1, (33)

where, θ1(x, y, t) = (k1+p1)x+(p2
1−k2

1)y+
∫

−4(k3
1+p3

1)+

α(t)(k2
1 −p2

1)−β(t)(k1 +p1)dt, γ1 = (k1 + p1)
2/
√
−k1p1,

ν1 = (k1 − p1)/
√
−k1p1, and ϕ1 = (1/2) ln(−k1/p1) is the

phase position.

The amplitude of soliton solution is γ1/(2 + ν1). The

center trajectory is

θ1(x, y, t) + ϕ1 = 0 .

If k1 and p1 satisfy the relation (k1−p1)
2 +4k1p1 = 0,

then u[1] becomes

u[1] =
γ1

4
sech2

[θ1(x, y, t)

2
+
ϕ1

2

]

,

when y = 0, α(t) and β(t) are taken as constants, so the

wave velocity relative to x-axis is vu = −4(k2
1 − k1p1 +

p2
1) + α(t)(k1 − p1) − β(t).

Solving equations
∫

(−4k3
1 + α(t)k2

1 − k1β(t))dt = c1ω1(t) ,

∫

(4p3
1 + α(t)p2

1 + p1β(t))dt = c2ω2(t) ,

it yields

α(t) = −−4k3
1p1 + 4k1p

3
1 − c1p1ω

′
1(t) − c2k1ω

′
2(t)

k1p1(k1 + p1)
,
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β(t) = −4k3
1p

2
1 + 4k2

1p
3
1 + c1p

2
1ω

′
1(t) − c2k

2
1ω

′
2(t)

k1p1(k1 + p1)
.

In addition, choosing different functions α(t), β(t), we

can obtain several types of soliton solutions, which are

listed in the following.

a) Taking k1 = 1, p1 = −1/2, c1 = 1, ω′
1(t) =

cos(µ1t), c2 = 1, ω′
2(t) = cos(µ2t), we obtain the

“periodic-type” soliton u[1]:

u[1](x, y, t) =
exp[12x+ 3

4y + sin(µ1t)
µ1

+ sin(µ2t)
µ2

]

4 exp[x+ 2sin(µ1t)
µ1

] + 6 exp[12x+ 3
4y + sin(µ1t)

µ1
+ sin(µ2t)

µ2
] + 2 exp[32y + 2sin(µ2t)

µ2
]
. (34)

Fig. 1 (a)–(b) 3-D plot for the one “periodic-type” soliton when x = 0, y = 0, respectively; (c) Transverse plot of
solution (34) when x = y = 0.

Let µ1 = 1, µ2 = 2, Figs. 1(a)–1(c) show the image of the solution as x = 0, y = 0, and x = y = 0. Moreover, this

“periodic-type” soliton solution is actually a kind of periodic solution, which has the period 2π.

Fig. 2 (a)–(c) 3-D plot for the one “parabolic-type” soliton (35) when x = 0, t = 0 and y = 0, respectively.

b) Taking k1 = 1, p1 = −1/2, c1 = 1, ω′
1(t) = a1t, c2 = 1, ω′

2(t) = a2t, then we obtain a “parabolic-type” soliton:

u[1](x, y, t) =
exp[12x+ 3

4y + 1
2 t

2a1 + 1
2 t

2a2]

4 exp[x+ t2a1] + 2 exp[32y + t2a2] + 6 exp[12x+ 3
4y + 1

2 t
2a1 + 1

2 t
2a2]

. (35)

When a1 = 2, a2 = 1, Fig. 2(a)–Fig. 2(c) show the images of solution (35) as x = 0, t = 0, and y = 0.

c) Taking k1 = 14, p1 = −1/2, c1 = 1, ω′
1(t) = sech2(η1t), c2 = 1, ω′

2(t) = sech2(η2t), then it yields the

“tanh-type” soliton solution:

u[1](x, y, t) =
exp[12x+ 3

4y + tanh(tη1)
η1

+ tanh(tη2)
η2

]

4 exp[x+ 2tanh(tη1)
η1

] + 6 exp[12x+ 3
4y + tanh(tη1)

η1
+ tanh(tη2)

η2
] + 2 exp[32y + 2tanh(tη2)

η2
]
. (36)

Fig. 3 (a)–(b) 3-D plot for the one “tanh-type” soliton when y = 0, x = 0, respectively; (c) Transverse plot of solution
(36) when x = y = 0.
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If we choose η1 = 1/2, η2 = 1, there exist Figs. 3(a)– 3(c) to show the image of this solution as y = 0, x = 0, and

x = y = 0.

(ii) Two-soliton solution

General expressions for two-soliton solutions can be easily obtained by taking N = 2 in (30). However, in order

to guarantee for the regularity of the two-soliton solution, we need to do some regularity analysis. In terms of the

potential relation (30), it must be ensued that functions W1(φ1, . . . , φN ) and W2(φ1, . . . , φN ) are certainly not zero.

Hence, the choice of the parameters k1, k2, p1, p2 must satisfy the following regularity condition:

k2 − k1 R 0, k1 − p2 R 0, k2 + p1 R 0, p1 − p2 R 0 ,

with,

p1p2(p1 − p2) R 0, k1k2(k2 − k1) R 0, k1p2(k1 + p2) R 0, −p1k2(p1 + k2) R 0 .

Fig. 4 (a) 3D-plot of two-soliton when y = 0 and α(t) = β(t) = 0; (b) 3D-plot of two-soliton when y = 0 and α(t) = 1,
β(t) = −1; (c)–(e) The interaction progress of two solitons when t is orderly taken as −30, 0, 30.

Fig. 5 3D-plot of two “parabolic-type” solitons inter-
actions.

With the above condition, taking k1 = 1/2, k2 = 2/3,

p1 = −1/4, p2 = −1, α(t) = 0, β(t) = 0, one can derive

the elementary 2-soliton solutions interactions depicted in

Fig. 4(a). While Fig. 4(b) corresponds to the case when

α(t) = 1, β(t) = −1. Figures 4(c)–4(e) describe the in-

teraction progress of two solitons when t is orderly taken

as −30, 0, 30. It is easy to verify that the wave velocity

admits vu1
> vu2

, hence soliton u1 is chasing after soliton

u2, which the amplitude is higher than u1. Then they

have a collision near the moment t = 0, and break into

two original single soliton soon after the interaction.

When the parameters are taken as: k1 = 0.2, p1 =

−0.1, k2 = 0.4, p2 = −0.3, c1 = 1, ω′(t) = t, β(t) =

t, α(t) = (c1ω
′(t) + k1β(t) + 4k3

1)/k
2
1 , one obtains the

“Parabolic-Type” soliton interactions in Fig. 5.

If the parameters are taken as: k1 = 0.2, p1 = −0.1,

k2 = 0.4, p2 = −0.3, c1 = 1, ω′(t) = sin(t/6), β(t) =

sin(t), α(t) = (c1ω
′(t) + k1β(t) + 4k3

1)/k
2
1 , it will appear

two-periodic soliton interactions shown in Fig. 6(a). Fig-

ures 6(b) and 6(c) are the density plots for another two

soliton solutions where the variable coefficients are taken

as ω1(t) = cos(t/6), ω2(t) = cos(t/6) and ω1(t) = cos(t/6),

ω2(t) = cos(t/8), separately.
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Fig. 6 (a) 3D-plot of two periodic soliton interctions; (b)–(c) Density plot for the two periodic solitons.

(iii) Three-soliton solution

In order to analysis the singularities for the 3-soliton solution, we especially define the 3 × 3 Vandermonde deter-

minate Vd[f1, f2, f3] as:

Vd[f1, f2, f3] : =

∣

∣

∣

∣

∣

∣

∣

1 1 1

f1 f2 f3

f2
1 f2

2 f2
3

∣

∣

∣

∣

∣

∣

∣

. (37)

Fig. 7 (a) 3-D plot for elementary 3-soliton solutions; (b) Density plot of (a); (c)–(e) Transverse plot of (a) when
x = y = 0, and the interaction progress of 3-solitons when t is orderly taken as −85, 1, 85.

Then the parameters k1, k2, k3, p1, p2, p3 must satisfy the following regularity condition:

(k1k2k3)Vd[k1, k2, k3] R 0, (k1k2p3)Vd[k1,−p3, k2] R 0 ,

(k1p2k3)Vd[k1, k3,−p2] R 0, (p1k2k3)Vd[−p1, k2, k3] R 0 ,

(p1p2k3)Vd[p1,−k3, p2] R 0, (p1k2p3)Vd[−k2, p1, p3] R 0 ,

(k1p2p3)Vd[p2,−k1, p3] R 0, (p1p2p3)Vd[p1, p2, p3] R 0 ,

simultaneously with,

Vd[k1, k2, k3] R 0, Vd[k1,−p3, k2] R 0, Vd[k1, k3,−p2] R 0, Vd[−p1, k2, k3] R 0 ,

Vd[p1,−k3, p2] R 0, Vd[−k2, p1, p3] R 0, Vd[p2,−k1, p3] R 0, Vd[p2, p1, p3] R 0 .
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Hence we choose k1 = 0.2, k2 = 0.4, k3 = 0.6,

p1 = −0.3, p2 = −0.5, p3 = −0.7, α(t) = 0, β(t) = 0,

which satisfied the above regularity condition. The el-

ementary 3-soliton solutions interactions are dipicted in

Fig. 7(a). Moreover, one can see in Figs. 7(c)–7(e) that

soliton u3 is running after u1 and u2 while u1 is going after

u2, simultaneously, which is rooted in the relation of the

wave velocity: vu3
> vu1

> vu2
.

Next, taking variable coefficients as α(t) = t, β(t) = t,

and y = 0, then Fig. 8 shows the interactions of three

“parabolic-type” soliton solutions.

Moreover, in the case of non-vacuum seed where c 6= 0,

we can derive the soliton solution on the nonzero plane.

Specifically, Figs. 9(a) and 9(b) separately show the one-

soliton solution and the two-soliton solution with the con-

stant background c = 2 and c = 1 where the parameters

are taken as k1 = 1/2, p1 = −1/4, k2 = 2/3, p2 = −1,

α(t) = 1, β(t) = 2.

Fig. 8 3-D plot for the interactions of three “parabolic-
type” soliton solutions.

Fig. 9 (a)–(b) One-soliton solution and two-soliton solutions with different constant backgrounds c = 2 and c = 1,
seperately.

4 Generalized Darboux Transformation and Rational Type Solutions
From (31) we can regard φ1 = φ1(k1, p1) as a function on variable k1, p1, which plays the same role as spectral

parameters, then φ1(k1 + ǫ, p1 + ǫ) also admits (19) when u = 0, where ǫ is a small perturbation of the parameters.
Because of the property exits for the DT (20):

T [1]φ1 = φ1 −
φ1

φ1x
φ1x = 0 , (38)

it is obvious to see that:
T [1]φ1(k1 + ǫ, p1 + ǫ) → 0, as ǫ→ 0 .

Let φ2 = φ1(k1 + ǫ, p1 + ǫ), we may consider the limitation:

lim
ǫ→0

T [1]φ2

ǫ
= lim

ǫ→0

T [1]φ1(k1, p1) + ((d/dǫ)T [1]φ2|ǫ→0)ǫ+ o(ǫ)

ǫ
= lim

ǫ→0

d

dǫ
φ2[1] . (39)

Denoting φ1[1] = (d/dǫ)φ2[1]|ǫ→0, so φ1[1] can be used to the next step Darboux transformation:

φ[2] = φ[1] − φ1[1]

φ1,x[1]
φx[1] . (40)

It should be noted that one can only consider the small perturbation on single parameter:

φ1(k1 + ǫ, p1), or φ1(k1, p1 + ǫ) ,

and then the above limiting process can be still implemented.
Following this idea, we look back to the Wronskian solution expression:
Taking N = 2 as a concrete example:

u[2] = u+ ∂ ln
W2(φ1, φ2)

W1(φ1, φ2)
= u+ ∂ ln

det

(

φ′1 φ′′1
φ′2 φ′′2

)

det

(

φ1 φ′1
φ2 φ′2

) . (41)
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Taylor expansion at ǫ→ 0:
∣

∣

∣

∣

φ1 φ′1
φ2 φ′2

∣

∣

∣

∣

=

∣

∣

∣

∣

φ1 φ′1
φ1 + φ

[1]
1 ǫ+ o(ǫ) (φ1 + φ

[1]
1 ǫ+ o(ǫ))′

∣

∣

∣

∣

=

∣

∣

∣

∣

φ1 φ′1
φ

[1]
1 (φ

[1]
1 )′

∣

∣

∣

∣

ǫ+ o(ǫ) ,

∣

∣

∣

∣

φ′1 φ′′1
φ′2 φ′′2

∣

∣

∣

∣

=

∣

∣

∣

∣

φ′1 φ′′1
φ′1 + (φ

[1]
1 )′ǫ+ o(ǫ) φ′′1 + (φ

[1]
1 )′′ǫ+ o(ǫ)

∣

∣

∣

∣

=

∣

∣

∣

∣

φ′1 φ′′1
(φ

[1]
1 )′ (φ

[1]
1 )′′

∣

∣

∣

∣

ǫ+ o(ǫ) ,

where, φ
[1]
1 = (d/dǫ)(φ1(k1 + ǫ, p1 + ǫ))|ǫ→0.

Hence,

u[2] = u+ ∂ ln

∣

∣

∣

∣

φ′1 φ′′1
(φ

[1]
1 )′ (φ

[1]
1 )′′

∣

∣

∣

∣

∣

∣

∣

∣

φ1 φ′1
φ

[1]
1 (φ

[1]
1 )′

∣

∣

∣

∣

, (42)

which is a new solution to Eq. (4).
In general, we consider N distinct functions:

φj = φ1(kj , pj) , kj = k1 + ǫj , pj = p1 + ǫj ,

j = 2, 3, . . . , N .

Taking the limit kj → k1, pj → p1 in u[N ], then the
N -times iterated DT of the potential can be reduced to:

u[N ] = u+ lim
ǫ2,...,ǫN→0

∂ ln
W2(φ1, φ2, . . . , φN )

W1(φ1, φ2, . . . , φN )

= u+ ∂ ln
W2(φ1, φ

[1]
1 , . . . , φ

[N−1]
1 )

W1(φ1, φ
[1]
1 , . . . , φ

[N−1]
1 )

, (43)

where,

φ
[j−1]
1 = lim

ǫj→0

dj−1

dǫj−1
j

φ1(k1 + ǫj , p1 + ǫj) ,

j = 1, . . . , N . (44)

Taking N = 2 in above formula, we find a rational
type solution:

u[2] = u+ ∂ ln
W2(φ1, φ

[1]
1 )

W1(φ1, φ
[1]
1 )

, (45)

with W1 and W2 having the following forms:

W1 = eϕk − eϕp + F1(x, y, t) e(ϕk+ϕp)/2 ,

W2 = k2
1 eϕk − p2

1 eϕp + F2(x, y, t) e(ϕk+ϕp)/2,

ϕk = 2xk1 − 2yk2
1 + 2

∫

(−4k3
1 + k2

1α[t] − k1β[t]) dt ,

ϕp = −2xp1 − 2yp2
1 + 2

∫

(4p3
1 + p2

1α[t] + p1β[t]) dt ,

with,

C1 =

∫

[(k1 − p1)α(t) − β(t)]dt ,

F1(x, y, t) = 2(k1 + p1)[x+ (p1 − k1)y

− 6(k2
1 + p2

1)t+ C1] ,

F2(x, y, t) = k2
1 − p2

1 + 2k1p1(k1 + p1)[−x+ (k1 − p1)y

+ 6(k2
1 + p2

1)t− C1] .

Different with the soliton solution we have discussed in

the previous section, the rational type solution (45) which

derived via the above generalized DT procedure is actu-

ally the combination of exponential functions and rational

polynomials with integral of arbitrary functions. It is ob-

vious to notice from W1 to W2 that solution (45) has some

singularity, therefore, the regularity condition is difficult

and cumbersome to discuss.

5 Conclusion

In conclusion, we investigate the extended form of

the mKP equation with variable coefficients in the frame-

work of Painlevé analysis. The Lax-pairs for the extended

form of the mKP equation are obtained via analysing its

two Painlevé branches. Meanwhile, the N -times Darboux

transformation is constructed with the N -soliton solution

formula given, which has 2n free parameters and two ar-

bitrary functions. In particular, according to different

choices of parameters, several types of soliton solutions are

calculated from the first to the third order, while the regu-

larity conditions are also discussed to avoid the singularity

of the soliton solutions. In addition, using a special limit-

ing process, we construct the generalized Darboux trans-

formation matrix for the extended form of mKP equation

with variable coefficients, and the rational-type solution

is also calculated.

It should be noted that the extended form of mKP

equation is real equation, so we believe that the binary

Darboux transformation can be implemented into this

equation to derive other physical solutions, including the

lump solution or the rogue wave solution, etc. This work

is in progress and will be reported in our further paper.
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