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Abstract

In this work, we study the dynamics of rogue waves in the partiallyPT -symmetric nonlocal Davey-Stewartson(DS)

systems. Using the Darboux transformation method, general rogue waves in the partially PT -symmetric nonlocal

DS equations are derived. For the partially PT -symmetric nonlocal DS-I equation, the solutions are obtained and

expressed in term of determinants. For the partiallyPT -symmetric DS-II equation, the solutions are represented as

quasi-Gram determinants. It is shown that the fundamental rogue waves in these two systems are rational solutions

which arises from a constant background at t → −∞, and develops finite-time singularity on an entire hyperbola

in the spatial plane at the critical time. It is also shown that the interaction of several fundamental rogue waves

is described by the multi rogue waves. And the interaction of fundamental rogue waves with dark and anti-dark

rational travelling waves generates the novel hybrid-pattern waves. However, no high-order rogue waves are found

in this partially PT -symmetric nonlocal DS systems. Instead, it can produce some high-order travelling waves

from the high-order rational solutions.

Keywords: Nonlocal Davey-Stewartson equations, Darboux transformation, Rogue waves

1. Introduction

It is known to us all that the integrable nonlinear evolution equations are exactly solvable models which play

an important role in a lot of branches of nonlinear science, especially in the study of nonlinear physical systems,

including water waves, nonlinear optics, Bose-Einstein condensates and plasma physics. There are numerous

celebrated continuous and discrete integrable systems that are physically revelent. In particular, the nonlinear

Schrödinger (NLS) [1] and the Davey-Stewartson (DS) [2] equations are classical examples of generic integrable

PDEs. The NLS-type equations are the essential models describing optical wave propagation in nonlinear optics.

The DS equations, which can be seen as the multi-dimensional extension of NLS equation, are also the universal

models governing the evolution of two-dimensional wave packet on water of finite depth.

In the last several years, PT -symmetric systems, which allow for lossless-like propagation due to their balance

of gain and loss, have attracted considerable attention and triggered renewed interest in integrable systems. Quite

a lot of work were done on the new nonlocal integrable systems [3–22]. These nonlocal integrable equations are

different from local integrable equations and could produce novel patterns of solution dynamics and intrigue new

physical applications. Among these models, the PT -symmetric NLS equation was the first nonlocal integrable

equation proposed in [3]:

iqt(x, t) = qxx(x, t) + V(x, t)q(x, t), (1)
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with V(x, t) = −2σq(x, t)q∗(−x, t), σ = ±1. It is shown to be an integrable infinite dimensional Hamiltonian

equation with a self-induced potential satisfying the PT -symmetry condition: V(x, t) = V∗(−x, t). The nonlocality

occurs in the form that one of the nonlinear terms is dependent on variable evaluated at −x. One-soliton solution

with singularity for the focusing nonloc-NLS equation (1) has been obtained via the inverse scattering transform

(IST). More detailed study of the inverse scattering theory for eq.(1) was developed and the Cauchy problem was

formulated in [7] via the Riemann-Hilbert problem (RHP).

As an integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation, a new integrable

nonlocal Davey-Stewartson (DS) equation is recently introduced in Refs.[9, 12]:

iut +
1
2
α2uxx +

1
2

uyy + (uv − w)u = 0,

wxx − α
2wyy − 2 [(uv)]xx = 0, (2)

where u, v and w are functions of x, y, t, α2 = ±1 is the equation-type parameter(with α2 = 1 being the DS-I and

α2 = −1 being DS-II). With different symmetry reductions of potential function u and v, this equation contains two

nonlocal versions:

(i). PT− symmetric nonlocal reduction : v(x, y, t) = εū(−x,−y, t);

(ii). Partially PT− symmetric nonlocal reduction : v(x, y, t) = εū(−x, y, t),

here the sign ū represents the complex conjugation of this function, and ε = ±1 is the sign of nonlinearity. For

these two nolocal versions, several results have been obtained in [15–17] by Darboux transformation or the Hirota

bilinear method. Furthermore, other versions of nonlocal DS equations are also proposed and studied in [12]

according to different types of time-space coupling. Especially, when v(x, y, t) = εū(x,−y, t), it produces another

version of partially PT -symmetric nonlocal DS equations.

In this article, we focus on the nonlocal DS systems with partially PT -symmetric potential (i.e., the nonlocal

version (ii)). Using the Darboux transformation method, general rogue waves in the partially PT -symmetric

nonlocal DS equations are derived. On the one hand, solutions of the partially PT -symmetric nonlocal DS-I

equation are obtained and expressed in terms of determinants. On the other hand, through the binary DT, solutions

of the partially PT -symmetric DS-II equation are constructed and represented as quasi-Gram determinants.

With different parameters chosen in the fundamental rational solutions, it is shown that the fundamental rogue

waves in these two systems are rational solutions which arises from a constant background at t → −∞, and

develops finite-time singularity on an entire hyperbola in the spatial plane at the critical time. It is also shown that

the interaction of several fundamental rogue waves is described by the multi rogue waves, which are generated from

multi-rational solutions, and the singular time points in these multi rogue waves appear in pairs or in a time interval.

It is further shown that the interaction of fundamental rogue waves with dark and anti-dark rational travelling waves

generates the hybrid-pattern waves. This novel pattern, which contains three different wave patterns in one solution,

to the best of our knowledge, has never been reported in the local and nonlocal DS systems.

As we know, the local DS systems possess several patterns of high-order rogue waves [23, 24]. However,

in this partially PT -symmetric nonlocal DS systems, we can not find any high-order rogue waves, even though

there are some high-order rational travelling waves produced from the high-order rational solutions. This might

because the singularity in the fundamental rogue waves will quickly increase if one proceeds the iteration through

the high-order DT. While the iteration of N-fold DT only increase the numbers or the range of singularities, as

what we have shown in the multi-rogue waves. It is found in refs. [25–29] that some possible applications in optics

have been shown in the partially PT -symmetric physical systems. We expect these rogue-wave solutions could

have interesting implications for partially PT -symmetric in multi-dimensions.

2



2. Darboux transformation for nonlocal DS system

In this section, we first work on the form of Darboux transformation in the general Davey-Stewartson system

with the partially PT−symmetric nonlocal reduction. For eqs.(2), the corresponding auxiliary linear system is

reduced from the (2+1) dimensional AKNS system:

Φy = JΦx + PΦ, (3)

Φt =

n∑
j=0

Vn− j∂
jΦ, (4)

where ∂ = ∂/∂x, V j are N ×N matrices, J is N ×N constant diagonal matrix, and P is a N ×N off-diagonal matrix.

Taking N = 2, n = 2 in (3)-(4), it generate the following Lax-pair for systems (2) :

LΦ = 0, L = ∂y − J∂x − P, (5)

MΦ = 0, M = ∂t −

2∑
j=0

V2− j∂
j = ∂t − iα−1J∂2

x − iα−1P∂x − α
−1V, (6)

where,

J = α−1

 1 0

0 −1

 , P =

 0 u

−v 0

 ,
V =

i
2

 ω1 ux + αuy

−vx + αvy ω2

 ,
with

w = uv −
1

2α
(ω1 − ω2). (7)

With the partially PT− symmetric reduction v(x, y, t) = εū(−x, y, t), the integrability condition:

Φy,t = Φt,y

leads to the partially PT− symmetric nonlocal DS equations.

2.1. Darboux transformation for partially PT -symmetric nonlocal DS-I

It is already known in [30, 31] that for any invertible matrix θ such that L(θ) = M(θ) = 0, the operator

Gθ = θ∂θ−1, ∂ = ∂x, (8)

makes L and M form invariant under the elementary Darboux transformation:

L→ L̃ = GθLG−1
θ , M → M̃ = GθMG−1

θ .

Next, we introduce some notations. For operator L and its adjoint operator L†, defining the space S and S †

which stand for the sets of nontrivial solutions in the kernel of the operator, i.e.,:

S = {θ, θ is nonsingular : L(θ) = 0},

S † = {ρ, ρ is nonsingular : L†(ρ) = 0},
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and define S̃ , S̃ † for operator L̃, L̃† etc. Thus, this elementary DT (8) defines the mapping:

Gθ : S → S̃ .

For the Darboux transformation, as we known, if we pose some restriction to the potential (e.g. this v(x, y, t) =

εū(−x,−y, t) in the partially PT -symmetric nonlocal DS equations), then the transforation does not naturally pre-

serve the conditions. Therefore, in this case, we need more restrictions on the choices of solution matrix θ.

Let σ =

 0 −ε

1 0

 , then potential matrix P and V2 in (5)-(6) satisfy the following symmetric reduction

σP(x, y, t)σ−1 = P(−x, y, t), σV2(x, y, t)σ−1 = V2(−x, y, t), (9)

here we need the property ω1(x, y, t) = −ω2(−x, y, t), which can be derived form the integrability condition.

This give rise to the symmetry constraint in L,M:

σLσ−1 = L(x→−x), σMσ−1 = M(x→−x). (10)

Suppose

 ξ(x, y, t)

η(x, y, t)

 is a vector solution of equations (5)-(6), it is inferred from symmetry (10) that

 −εη̄(−x, y, t)

ξ̄(−x, y, t)


is also a solution. Hence we can choose the matrix θ as:

θ =

 ξ(x, y, t) −εη̄(−x, y, t)

η(x, y, t) ξ̄(−x, y, t)

 , (11)

and θ also admits the symmetry

θ(x, y, t) = σθ(−x, y, t)σ−1. (12)

Since the n-fold DT is nothing but a n-times iteration of the one-fold DT, we merely consider the one-fold DT.

With the action of elementary DT, we obtain the relation between potential matrices:

P̃ = P + [J, S ], S = θxθ
−1, (13)

Ṽ2 = V2 + V1,x + 2V0S x + [V0, S ]S + [V1, S ]. (14)

Moreover, it can be verified that transformation Gθ keep the reduction relation (9) and (10) invariant, i.e:

σP̃(x, y, t)σ−1 = P̃(−x, y, t), σL̃σ−1 = L̃(x→−x),

σṼ2(x, y, t)σ−1 = Ṽ2(−x, y, t), σM̃σ−1 = M̃(x→−x),

which implies the solution for partially PT -symmetric nonlocal DS-I equation:

ũ = u + 2α−1S 1,2, ũ = u + 2εα−1S 2,1, (15)

w̃ = w − 2α2[tr(S )]x = w − 2α2[ln(det(θ))]xx. (16)

In general, the N-fold Darboux matrix for partially PT -symmetric nonlocal DS-I equation has the form:

TN = ∂N −

N∑
k=1

sk∂
N−k. (17)
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Transformation (17) maps: L → L̃ = TN LT−1
N , with L̃ = ∂y − J∂x − P[N], and the potential matrix has the

relation:

P[N] = P + [J, s1], (18)

V2,[N] = V2 + V1,x + 2V0s1,x + [V0, s1]s1 + [V1, s1]. (19)

The coefficients matrices s1, s2, . . . , sN are determined by the system of linear algebraic equations:

TN (Ψk) = 0, Ψk =

 ξk −εη̄k

ηk ξ̄k

 , k = 1, 2, ...,N. (20)

Furthermore, the N-th order potential function for partially PT -symmetric nonlocal DS-I equation solved from

(18)-(19) can be represented in a determinant form:

u[N] = u + 2α−1 (s1)1,2 , u[N] = u + 2εα−1 (s1)2,1 , (21)

w[N] = w − 2α−2[tr(s1)]x, (22)

where

(s1)1,2 = det Σ1,2 det Σ−1, (s1)2,1 = det Σ2,1 det Σ−1, Σ =


∂N−1Ψ1 · · · ∂N−1ΨN

· · · · · · · · ·

Ψ1 · · · ΨN

 , (23)

Σ j,k is the matrix which derived by replacing the k-th row of Σ with the j-th row of
(
∂NΨ1, · · · , ∂

NΨN

)
,

(s1)k, j stands the entry in the k-th row and the j-th column of matrixs1.

Furthermore, (22) can be further simplified into another form:

w[N] = w − 2α−2[ln(det(Σ))]xx, (24)

and this can be verified via a direct calculation.

2.2. Binary Darboux transformation for the partially PT -symmetric nonlocal DS-II

As we known, the local DS-I equation does not possess a Darboux transformation in differential form. Instead,

it has a binary Darboux transformation in integral form. As it has been shown for this partially PT -symmetric

nonlocal DS-I equation, we can construct an elementary DT in differential form, which has the same form with

the DT reported in [15] where the DT is used to derive several types of bounded global explicit soliton solutions.

However, for this partially PT -symmetric nonlocal DS-II equation, the elementary DT is not enough. In the

following, we are going to construct a binary DT in integral form for this equation.

Firstly, we recall some important properties for quasi-determinants which are introduced in Refs.[32–36]. It is

a generalization of the determinant to matrices with noncommutative entries. For a n × n matrix M = (mi, j) over

an, in general, non-commutative ring R, the quasi-determinant for M is defined by

|M|i, j = mi, j − r j
i (Mi, j)−1ci

j, (25)

where r j
i represents the i-th row of M with the j-th element removed, ci

j is the j-th column of M with the i-th

element removed, and Mi, j is a (n − 1) × (n − 1) minor obtained by deleting the i-th row and the j-th column
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in M. Usually, as what is shown below, quasi-determinants can be denoted by boxing the entry about which the

expansion is made

|M|i, j =

∣∣∣∣∣∣∣∣ Mi, j ci
j

r j
i mi, j

∣∣∣∣∣∣∣∣ . (26)

In this paper, we consider the quasi-determinants that are only expanded about a term in the last entry. Taking

a block matrix M =

 A B

C d

 for example, where d ∈ R, A is a square matrix over R of arbitrary size, B, C are

column and row vectors over R with compatible lengths, respectively, then the quasi-determinant of M expended

about d is ∣∣∣∣∣∣∣ A B

C d

∣∣∣∣∣∣∣ = d −CA−1B.

Moreover, as a quasi-determinant version of Jacobis identity for determinants, the noncommutative Sylvesters

theorem was established in [32], and a simple version of this theorem is given by∣∣∣∣∣∣∣∣∣∣∣
E F G

H A B

J C D

∣∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ E F

J D

∣∣∣∣∣∣∣ −
∣∣∣∣∣∣∣ E F

J C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ E F

J A

∣∣∣∣∣∣∣
−1 ∣∣∣∣∣∣∣ E G

H B

∣∣∣∣∣∣∣ . (27)

Next, we give a brief derivation of the DT for the partially PT -symmetric nonlocal DS-II equation. For this

equation, the operator L has the constraint

−κL†κ−1 = L(x→−x), κ =

 1 0

0 ε

 . (28)

Here the denotation L(x→−x) means changing all the variables x in L to −x. However, for this operator, one can

not find a suitable matrix solution θ to construct the DT to preserve the constraint (28). In order to overcome this

problem one need to use the binary Darboux transformation (BDT). The standard BDT scheme has been introduced

and developed in ref. [30]. Several different forms of Darboux transformations for the DS equations have been

studied in Refs.[37, 38]. In this work, we inherit the idea from [30, 31] and construct a corresponding BDT for this

partially PT -symmetric nonlocal DS-II equation.

Considering operators L̂, which is another copy of L with new coefficients. Define the corresponding sets of

non-singular solutions Ŝ , let θ̂ ∈ Ŝ s.t Gθ̂ : Ŝ → S̃ . Thus, we can get the following mapping:

S
Gθ
−→ S̃

G−1
θ̂
−→ Ŝ

S †
G†
−1
θ
−→ S̃ †

G†
θ̂
−→ Ŝ †

For a given φ ∈ S †, G†
−1

θ (φ) ∈ S̃ †, by determine the kernel of G†
θ̂

we can obtain some nontrivial solutions in S̃ †.

Thus, one can further define a solution θ̂ =

(
G†

−1

θ (φ)
)†−1

= −θΩ−1(θ, φ), and the BDT for operator L is:

Gθ,φ = G−1
θ̂

Gθ = I − θΩ−1(θ, φ)∂−1φ†, Ω(θ, φ) = ∂−1(φ†θ). (29)
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To proceed the iteration of DT we also need

G†
−1

θ,φ = G†
θ̂
G†

−1

θ = I − φΩ†
−1

(θ, φ)∂−1θ†. (30)

This Darboux transformation makes sense for any m × k matrices θ and φ, and we only need Ω(θ, φ) to be an

invertible square matrix. To reduce (29) to the BDT for the partially PT -symmetric nonlocal DS-II equation, we

have to take the choice according to symmetry (28) that: φ(x, y, t) = R†(θ (−x, y, t)), R = −iκ. Then the potential

solutions in this equation can be constructed by the combination of an elementary DT with its inverse:

P̂ = P + [J, θΩ−1(θ, φ)φ†], (31)

ŵ = w − 2[tr(θΩ−1(θ, φ)φ†)]x. (32)

The above Binary DT is iterated as following:

Φ[n+1] = Gθ[n],φ[n]

(
Φ[n]

)
= Φ[n] − θ[n]Ω

−1(θ[n], φ[n])Ω(Φ[n], φ[n]), (33)

Ψ[n+1] = G†
−1

θ[n],φ[n]

(
Ψ[n]

)
= Ψ[n] − φ[n]Ω

†−1
(θ[n], φ[n])Ω(Ψ[n], θ[n]), (34)

θ[n] = lim
Φ→θn

Φ[n], φ[n] = lim
Ψ→φn

Ψ[n]. (35)

For the potential matrix, introducing a 2 × 2 matrix Q s.t P = [Q, J], which of the form:

Q = −
α

2

 ∗ u(x, y, t)

εū(−x, y, t) ∗

 , (36)

while the entries * are arbitrary and do not contribute to P. Then it follows from (22) that:

P̂ = [Q̂, J], (37)

Q̂ = Q − θΩ−1(θ, φ)φ†. (38)

After n times applications of the BDT we obtain:

Q[n+1] = Q[n] − θ[n]Ω
−1(θ[n], φ[n])φ

†

[n], (39)

w[n+1] = w[n] − 2[tr(θ[n]Ω
−1(θ[n], φ[n])φ

†

[n])]x. (40)

Denoting

Θ = (θ1, · · · , θn) , P = (φ1, · · · , φn) , W =

 ∂−1(w)
2 0

0 0

 .
By using the noncommutative Jacobi identity (27), one can express the above results on n-th order BDT in

terms of quasi-determinants:

Φ[n+1] =

∣∣∣∣∣∣∣∣ Ω(Θ,P) Ω(Φ[1],P)

Θ Φ[1]

∣∣∣∣∣∣∣∣ , Ψ[n+1] =

∣∣∣∣∣∣∣∣ Ω†(Θ,P) Ω†(Θ,Ψ[1])

P Ψ[1]

∣∣∣∣∣∣∣∣ , (41)

Q[n+1] =

∣∣∣∣∣∣∣∣ Ω(Θ,P) P†

Θ Q[1]

∣∣∣∣∣∣∣∣ , w[n+1] = 2∂x[tr


∣∣∣∣∣∣∣ Ω(Θ,P) P†

Θ W

∣∣∣∣∣∣∣
]. (42)
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For convenience, introducing vectors ψi and ϕi, i = 1, 2, which satisfy:

Θ =

 ψ1

ψ2

 , P =

 ϕ1

ϕ2

 ,
we further obtain :

Q[n+1] = Q[1] +



∣∣∣∣∣∣∣ Ω(Θ,P) ϕ†1

ψ1 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ Ω(Θ,P) ϕ†2

ψ1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣ Ω(Θ,P) ϕ†1

ψ2 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ Ω(Θ,P) ϕ†2

ψ2 0

∣∣∣∣∣∣∣


. (43)

Then, combination of (39)-(40) and (43) leads to the transformations between potential functions in terms of

quasi-grammian expressions:

u[n+1](x, y, t) = u(x, y, t) −
2
α

∣∣∣∣∣∣∣ Ω(Θ,P) ϕ†2

ψ1 0

∣∣∣∣∣∣∣ , (44)

w[n+1](x, y, t) = w(x, y, t) + 2∂x[tr


∣∣∣∣∣∣∣ Ω(Θ,P) P†

Θ 0

∣∣∣∣∣∣∣
]. (45)

Here 0 represents a 2 × 2 zero matrix. Noting that in this expression one has to calculate the inverse of matrix

Ω(Θ,P). To overcome this problem, we can reformulate the expression into the quotient of determinants instead

of using quasi determinants, that is∣∣∣∣∣∣∣ Ω(Θ,P) ϕ†j

ψk 0

∣∣∣∣∣∣∣ =
det

(
M(k, j)

)
det(Ω(Θ,P))

, where M(k, j) =

 Ω(Θ,P) ϕ†j

ψk 0

 , 1 ≤ k, j ≤ 2. (46)

Remark 2.2.1 Moreover, formula (45) can be further transformed into a more compact form:

w[n+1](x, y, t) = w(x, y, t) − 2∂2
x{log [det (Ω(Θ,P))]}. (47)

Proof. In fact, via the Laplace expansion into the trace in (35), we can show that

tr


∣∣∣∣∣∣∣ Ω(Θ,P) P†

Θ 0

∣∣∣∣∣∣∣
 =

∑n
k=1

∑n
j=1(−1) j+k−1

(
φ†jθk

)
M j,k

det (Ω(Θ,P))
,

where M j,k is the minor matrix of Ω(Θ,P), i.e., the determinant of a (n − 1) × (n − 1) matrix that results

from the j-th row and the k-th column of (Ω(Θ,P)). On the other hand, it can be easily verified that

∂x{det (Ω(Θ,P))} =

n∑
k=1

n∑
j=1

(−1) j+k
(
φ†jθk

)
M j,k.

And this completes the proof.

2.3. High-order Darboux transformation for the partially PT -symmetric nonlocal DS system

To construct the high-order solution, the high-order Darboux transformation are needed. It is assumed by

introducing a parameter ki in the fundamental matrix solution θi(ki). As it was pointed in Ref[30], a generalized
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DT does exist. Through a limiting process, the general high-order DT for nonlocal DS-I equation is constructed in

the following forms:

Theorem 1 (Theorem 2, [39]) Assuming Ψi(ki), i = 1, 2, ..., n (which are given in (21)) are n distinct matrix

solutions of the linear problem (5)-(6), and their Taylor expansions are

Ψi(ki + δ) = Ψi(ki) + Ψ
[1]
i δ + · · · + Ψ

[mi]
i δmi + · · · , i = 1, 2, . . . , n,

Ψ
[ j]
i =

1
j!
∂ j

∂k j Ψi(k)|k=ki , j = 1, 2, · · · .

Then the N-fold generalized Darboux transformation is defined as

T = GnGn−1 · · ·G0,

where,

Gi =Gi[mi] · · ·Gi[1] (i ≥ 1), G0 = I, n +

n∑
i=1

mi = N,

Gi[ j] = ∂x − Ψi,x[ j − 1]Ψi[ j − 1]−1, 1 ≤ j ≤ mi,

Ψi[k] = lim
δ→0

[Gi[k] · · ·Gi[1]Gi−1 · · ·G0]
δk Ψi(ki + δ),

= Gi[k] · · ·Gi[1]Gi−1 · · ·G0[Ψ[k]
i (ki)].

By performing the above limit process on the determinant form (21), we get the formula for high-order solutions

for the partially PT -symmetric nonlocal DS-I equation:

u[N] = u + 2α−1 det Σ
1,2
0 (det Σ0)−1 , (48)

w[N] = w − 2α−2[ln(det(Σ0))]xx, (49)

where,

Σ0 = [Σ1 ... Σn], Σ
1,2
0 = [Σ1,2

1 ... Σ1,2
n ], Σi =


∂N−1Ψi · · · ∂N−1Ψ

[mi]
i

· · · · · · · · ·

Ψi · · · Ψ
[mi]
i

 ,
and Σ

j,k
i is the matrix which derived by replacing the k-th row of Σi with the j-th row of

(
∂NΨi, · · · , ∂

NΨ
[mi]
i

)
.

Next, following the idea proposed for the nonlinear Schrödinger equation in [39], we construct the correspond-

ing high-order DT in the partially PT -symmetric nonlocal DS-II equation. Indeed, the binary DT considered

above are degenerate in the sense that Gθ1,φ1 (θ1) = 0 and G†
−1

θ1,φ1
(φ1) = 0, thus we may work with

θ1[1] = lim
δ→0

Gθ1,φ1 (θ1(k1 + δ))
δ

= Gθ1,φ1

dθ1

dk
|k=k1 , φ1[1] = lim

δ̃→0

G†
−1

θ1,φ1
(φ1(k̃1 + δ̃))

δ̃
= G†

−1

θ1,φ1

dφ1

dk̃
|k̃=k̃1

.

This serves the seed solution for proceeding the next step binary Darboux transformation. Generally, we

assume that solutions θi = (ξi, ηi)T (i = 1 . . . s) are given for the Lax operator L and solutions ρi = (µi, νi)T (i =

1 . . . s) are given for its adjoint operator L†, then we have the following generalized Binary DT.

Theorem 2 Let solutions (ξi, ηi)T ∈ S , and (µi, νi)T ∈ S † (i = 1 . . . s), so the high-order Binary DT is

9



constructed in the form as

GN = Gθ[ms−1]
s , ρ[ms−1]

s
· · ·Gθs, ρs · · ·Gθ

[m1−1]
1 , ρ

[m1−1]
1
· · ·Gθ1, ρ1 ,

where N =
∑s

i=1 mi, and

Gθ
[ j]
i , ρ

[ j]
i

= I − θ[ j]
i Ω−1

(
θ

[ j]
i , ρ

[ j]
i

)
∂−1ρ

[ j]†
i ,

G†
−1

θ
[ j]
i , ρ

[ j]
i

= I − ρ[ j]
i Ω−1

(
ρ

[ j]
i , θ

[ j]
i

)
∂−1θ

[ j]†
i ,

here θ[ j]
i and ρ[ j]

i are derived by performing the limit on the fundamental eigenfunctions with perturbation param-

eters δ and δ̃:

θ
[ j]
i = lim

δ→0

[
Gθ

[ j−1]
i , ρ

[ j−1]
i
· · ·Gθi, ρi · · ·Gθ

[m1−1]
1 , ρ

[m1−1]
1
· · ·Gθ1, ρ1

]
k=ki+δ

θi(ki + δ)

δ j ,

ρ
[ j]
i = lim

δ̃→0

[
G†

−1

θ
[ j−1]
i , ρ

[ j−1]
i

· · ·G†
−1

θi, ρi
· · ·G†

−1

θ
[m1−1]
1 , ρ

[m1−1]
1

· · ·G†
−1

θ1, ρ1

]
k=k̃i+δ̃

ρi(k̃i + δ̃)

δ̃ j
.

By taking above limitation directly on (44)-(45), the transformations between potential matrices can be repre-

sented in a form of quasi-gram determinant.

Theorem 3 The above generalized binary Darboux matrix and the corresponding transformation between

the potential matrices can be represented as the following forms:

Q[N] = Q[1] +

∣∣∣∣∣∣∣ Ω(Θ,P) P†

Θ 0

∣∣∣∣∣∣∣ = Q[1] − ΘΩ−1(Θ,P)P†, (50)

w[N](x, y, t) = w[1](x, y, t) − 2∂2
x{log [det (Ω(Θ,P))]}, (51)

where,

θi = θi(ki + δ), ρ j = ρ j(k̃i + δ̃),

Θ = (Θ1,Θ2, . . . ,Θs) , Θi =

(
θi,

dθi

dδ
, . . . ,

1
(ri − 1)!

dri−1θi

dδri−1

)
|δ→0,

P = (P1,P2, . . . ,Ps) , P j =

(
ρ j,

dρ j

dδ̃
, . . . ,

1
(r j − 1)!

dr j−1ρ j

dδ̃r j−1

)
|δ̃→0,

Ω(Θ,P) =
(
Ω[i j]

)
1≤i, j≤s

, Ω[i j] =
(
Ω[i j]m,n

)
ri×r j

,

Ω[i j]m,n = lim
δ, δ̃→0

1
(m − 1)!(n − 1)!

∂m+n−2

∂δn−1∂δ̃m−1
Ω(θ j, ρi).

Proof : The above results can be obtained by directly taking limits in formula (42) with property (46).

One can further derive the Bucklünd transformation of solution u[N](x, y, t) from (50), which is taken from the

1-st row and the 2-nd column element in potential matrix Q[N].

3. General rational solution in partially PT -symmetric nonlocal DS-I system

It is shown in ref.[23, 24] that with the bilinear method, a family of rational solutions lead to the rogue waves

for the local DS equations. In this work, the rogue wave solution for nonlocal DS equations was derived via a
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generalized version of Darboux transformation.

The general form of eigenfunctions are solved from the system (5)-(6) when the initial potential solution u is

taken as a real constant ρ, which of the form:

ξi(x, y, t) = ρi exp
[
ωi(x, y, t)

]
,

ηi(x, y, t) =
λiρi

ρ
exp

[
ωi(x, y, t)

]
,

ωi(x, y, t) = αix + βiy + γit,

αi = −
1
2
α

(
λi +

ερ2

λi

)
, βi =

1
2

(
λi −

ερ2

λi

)
, γi = iα−1αiβi,

where λi = ri exp (iϕi), ri, ϕi and ρ are free real parameters, ρi is set to be complex.

Generally, to derive rational type solutions, we choose the eigenfunction via superposition principle, which can

be written in the form as:

{Fk + ∂ϕk } (ξk, ηk)T :=

 Pk(x, y, t)ξk

Qk(x, y, t)ηk

 , Fk = ek + ifk, (ek, fk ∈ R) , (52)

where,

Pk(x, y, t) = Fk + ρ−1
k ρk,ϕk + (−iαβk) x +

(
−iα−1αk

)
y +

1
2

λ2
k +

ρ4

λ2
k

 t;

Qk(x, y, t) = Fk + λkρ
−1

(
iρk + ρk,ϕk

)
+ (−iαβk) x +

(
−iα−1αk

)
y +

1
2

λ2
k +

ρ4

λ2
k

 t;

3.1. Fundamental rogue-wave in partially PT -symmetric nonlocal DS-I

To derive the first order rational solution, we set N = 1, ρ = 1 with ρ1 = exp
(
−iϕ1

2

)
in formula (21)-(22). Then

the first-order rational solution is

u1(x, y, t) = 1 −
2iF1(x, y, t) + 1

F(x, y, t)
, (53)

w1(x, y, t) = ε − 2[ln(F(x, y, t))]xx, (54)

where,

F(x, y, t) = F2
1(x, y, t) + F2

2(x, y, t) +
εr2

1

(ε + r2
1)2

, p1 =
r1 − εr−1

1

2
, q1 =

r1 + εr−1
1

2
,

F1(x, y, t) = −ip1x cosϕ1 − p1y sinϕ1 + (p2
1 + q2

1)t cos 2ϕ1 + e1,

F2(x, y, t) = iq1x sinϕ1 − q1y cosϕ1 − 2p1q1t sin 2ϕ1 +
p1

2q1
+ f1.

By analysing the denominator in solution (53), it is shown that this rational solution has different dynamical

patterns according to the parameter values of r1 and ϕ1.

(i). If ϕ1 = kπ (k = 0,±1,±2, ...), then λ1 = (−1)nr1 is a real number. In this case, it is a rogue wave which

approaches a constant background, i.e., u1 → 1, w1 → ε as t → −∞. And the function F in solution (53) becomes

F(x, y, t) =
[
ip1(−1)n+1x + (p2

1 + q2
1)t + e1

]2
+

[
(−1)n+1q1y +

p1

2q1
+ f1

]2

+
εr2

1

(ε + r2
1)2

.
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This function becomes zero at a critical time tc =
−2e1r2

1
1+r4

1
, and it occurs on the (x, y) plane when r2

1 , 1:

−p2
1x2 +

[
(−1)n+1q1y +

p1

2q1
+ f1

]2

+
εr2

1

(ε + r2
1)2

= 0.

Thus, this rogue wave arises from a constant background and develops finite-time singularity on a hyperbola at

tc =
−2e1r2

1
1+r4

1
, and it shows some cross-shape properties at some time points. For example, if we take ϕ1 = 2π, r1 = 2

with f1 = 1, e1 = 0, the singularity of this solution occurs when t = 0. Here we only plot solutions up to time

t = −0.03 in Fig.1, shortly before the exploding time, where the amplitude of rogue wave could attain very high.

Figure 1: Time evolution for the 1-st order cross-shape exploding fundamental rogue wave solution in the nonlocal DS-I equation, with
parameters: ϕ1 = 2π, r1 = 2, e1 = 0, f1 = 1.

Moreover, in the de-focusing case ε = −1, for any tc ∈ Ic, where

Ic =

− |r1|

|r2
1 − 1|

− e1

 2
(r2

1 − r−2
1 )

,

 |r1|

|r2
1 − 1|

− e1

 2
(r2

1 − r−2
1 )

 , r2
1 , 1,

function F(x, y, t) becomes zero at the spatial locations x = 0, y = y±c, and y±c are solved from the following

quadratic equation:

[
(−1)n+1q1y +

p1

2q1
+ f1

]2

=
r2

1

(r2
1 − 1)2

−

 r2
1 + r−2

1

2

 tc + e1

2

.

Therefore, when ε = −1, this rogue wave develops extra singularity on a finite-time interval.
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In addition, as a special case, when r1 = 1, ε = 1, this rogue wave is x-independent and degenerates into the

following Peregrine soliton for the nonlocal NLS equation

u1(x, y, t) = 1 −
2it + 2ie1 + 1

(y ± f1)2 + (t + e1)2 + 1
4

, (55)

where the parameters e1 and f1 can be moved by a shifting. Besides, this solution, in terms of the (1+2) dimensional

space, is a (1+1) dimensional line rogue wave in this nonlocal DS-I equation, see Fig.2.

As a trivial case, when r1 = 1 and ε = −1, then u1(x, y, t)→ 1.

Figure 2: Fundamental (1+1)-dimensional line rogue wave in the nonlocal DS-I equation, with parameters: f1 = 0, e1 = 0.

(ii). In another case, when ε = 1, ϕ1 =
(2k−1)π

2 , i.e., λ is a purely imaginary. It can generate a two-dimensional

non-singular rational travelling wave solution(while ε = −1 may cause some singularities). The ridge of the

solution lays approximately on the following [x(t), y(t)] trajectory:

(−1)k−1 (1+r2
1)

r1
x + (−1)k−1 (1−r2

1)
r1

y − 1+r4
1

r2
1

t + e1 = 0,

(−1)k (1+r2
1)

r1
x + (−1)k−1 (1−r2

1)
r1

y − 1+r4
1

r2
1

t + e1 = 0.

Figure 3: The interactions of rational travelling wave solution for nonlocal DS-I equation at different time points, with parameters: r1 = 2,
e1 = 0, f1 = 1.

Although this solution is generated from the 1-st iteration of DT, it contains two rational travelling waves laying

on different trajectories. For example, if one takes r1 = 2, a time evolution process for this solution is displayed in

Fig.3. When t → ±∞, two rational travelling waves move away from each other on a constant background, which

behaviours like an interaction between a bright and dark soliton.
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Especially, when r1 = 1, the above solution is reduced to:

u1(x, t) = 1 +
4i(2t − 2e1 + i)

4(e1 − t)2 − 4(x + if1)2 + 1
.

This is an interesting one-dimension rational soliton solution for nonlocal NLS equation. Actually, under the

variable transform u → ũ = ue−iα2t, then ũ satisfy the nonlocal NLS equation which are reduced from nonlocal

system by removing the y-independence of the equation. Generally, utilizing this parameters choosing rules in

nonlocal DS-I system, we may also derive multi-rogue waves which are just nonlinear combinations of these

fundamental patterns.

3.2. Multi-rational solution in partially PT -symmetric nonlocal DS-I equation

Normally, N-rational solutions are generated from N eigenfunctions with 4n parameters via Darboux transfor-

mation. With appropriate combinations of these parameters, it will present different dynamical patterns, including

singular multi-rogue waves blow-up in the finite time interval and the nonsingular mixture of fundamental rogue

wave and rational travelling wave solutions.

For instance, taking N = 2 in formula (21)-(22) and choose the special parameters as: ϕ1 = 2π, ϕ2 = 2π, r2 =

1/r1, F1 = 0, F2 = 0. It generates the two-rogue wave solution with particular singulary time points which are

obtained by analysing its singularity. The imaginary part in the denominator is 16xyt[r4
1(r4

1 + 1)2]. Therefore, when

t = 0, the imaginary part of the denominator vanishes while the real part becomes

Σs(x, y) =

[
x2r2

1

(
r2

1 − 1
)

2 − y2r2
1

(
r2

1 + 1
)2

+ 3r14
]2

+ 24y2r8
1 − 12x2r6

1

(
r4

1 + 1
)
.

Obviously, this part will give rise to the singularities on above surface Σs(x, y) = 0 at t = 0. Next, if y = 0, the

singularity time for this solution will happen on a finite interval [t−, t+], where t± = ±
|r1 |

3
√

3(r2
1−1)2+4r2

1

|r2
1−1|(r4

1+1)
√

(r4
1−r2

1+1)
. Once t

falls into the interval, there will be two pairs of singularity points distribute centered on x-axis. And these points are

substantially the real roots of a quartic equation dependent on variable y. However, the number of the pairs down

to one if t is locate on the edges of the interval. At last, the real part of the denominator is proved to be definite

positive if x = 0. As an example, when r1 = 2, we find that the solution rises from a nearly constant background

at t = −∞, and then it appears a cross-shape wave in a intermediate time near t = t−. However, finally this wave

explodes to infinity at t = t−. Once the solution exploded, the evolution of the wave will cease. There are also

similar phenomena which appeared in the second-order and two-rogue waves of local DS-II equation[23]. What

is shown in fig.4 is the evolution of a two-rogue waves interaction together with the coming up of singularities.

Especially, when r1 = 2, the corresponding time interval is about [−0.285287, 0.285287], so that the singular time

t = −0.2 shown in fig.4 accurately falls into this interval.

Another novel hybrid multi-rogue wave pattern is obtained by taking N = 2 in formula (21)-(22) with the

parameters: ϕ1 = π, r1 = 1, ϕ2 = π
2 , r2 = 1, F1 = 0, F2 = e2 + if2, which leads a two-rational solution:

u2(x, y, t) =
G(x, y, t)
F(x, y, t)

, (56)

where,

F(x, y, t) = 4y2
(
1 + 4(e2 − t)2

)
−

(
16y2 + 16t2 + 4

)
(x + if2)2 +

(
−4t2 + 4te2 + 3

)2
+ 4e2

2,

G(x, y, t) = 4[(2t − 2i)2 + 1] (x + if2)2 − [(2t − e2)2 + (ie2 − 1)2 − 4][(2t − e2)2 + (ie2 + 3)2 − 4]

+4[4(i(e2 − t) + 1)2 − 1]y2.
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Figure 4: Time evolution of a two-rogue wave solution for nonlocal DS-I equation with singularity points in pairs, with parameters: ϕ1 =

2π, ϕ2 = 2π, r1 = 2, r2 = 1/r1, F1 = 0, F2 = 0.

With two free parameters given in expression (56), it can produces an interesting novel hybrid pattern. This

pattern is described by the interaction of line rogue wave with dark and anti-dark travelling wave solution. In

other words, three different patterns appear at the same time in one solution. For any f2 , 0, when x = 0, the

imaginary part of the denominator in solution (56) becomes zero while the real part is positive definite. Therefore,

this solution is nonsingular except for f2 = 0. Furthermore, with adequate combinations of e2 and f2, solution (56)

can generate several interesting structures.

Figure 5: The interactions of line rogue waves with dark and anti-dark rational travelling waves in the nonlocal DS-I equation, where the
parameters are: ϕ1 = π, r1 = 1, ϕ2 = π

2 , r2 = 1, F1 = 0, F2 = 10 + 2i.

For example, choosing e2 = 0 with f2 = 1, there is a fundamental line rogue wave and a travelling wave

interaction at about t = 0. When t → ±∞, it approaches two rational travelling waves which slowly move away

from each other. Next, if one takes a larger value in f2, i.e., e2 = 0 and f2 = 10. This solution behaviours more

like a fundamental line rogue wave. This is because the amplitude of the travelling wave is much smaller than that

of the rogue wave. However, as t → ±∞, the rogue wave part decades very fast to a constant while the travelling
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wave portion continue moving apart.

Moreover, considering e2 as a nonzero constant: e2 = 10, f2 = 2. As it is shown in Fig.5 that when t → −∞,

a dark and anti-dark rational travelling waves move away from each other. It is also shown that a hybrid pattern

of line rogue wave with dark and anti-dark travelling waves interactions appear around t = 0. Afterwards, the line

rogue wave soon disappears, then the dark and anti-dark rational travelling waves intersect and interact at about

t = 10, then they separate and move away from each other in an opposite direction as t → +∞.

3.3. High-order rational solution in the partially PT -symmetric nonlocal DS-I equation

The high-order rational solution is another subclass of rational solutions which exhibit different dynamics with

multi-rational solution. And they can be obtained through the high-order Darboux transformation constructed in

Theorem 1. Firstly, the second order rational solution is reduced from formula (48) by setting N = 1. Next, taking

ε = 1, α = 1, ϕ1 = π/4, r1 = 1, F1 = e1 for instance, here e1 is a free real parameter, then solution u[1]
1 (x, y, t)

becomes

u[1]
1 = −1 +

16(1 + 2ie1)[(−ix + y)2 + 4t] + 16i
(
2x2 + 2y2 + 4e3

1 + e
)

+ 24
(
4e2

1 + 1
)

[
8t − 2(−ix + y)2 + 4e2

1 + 3
]2

+ 2
[
4e1(−ix + y) − 2(−ix − y)

]2
+ 8(−ix + y)2 + 16e2

1

. (57)

This solution is a very special case in the high-order solution for nonlocal DS-I equation. It is because solu-

tion (57) has the same form with the second-order rogue wave solution in local DS-II system except for a simple

variable transformation x → ix, t → −t. However, we make this transformation at the price of causing complex

singularities to solution (57). And these singularities are moving with the time. Furthermore, by another transfor-

mation u[1]
1 (x, y, t)→ (−

√
2)u[1]

1 (ix, y, t − 3
8 ), solution (57) becomes the second-order rogue wave solution for local

DS-II equation which is derived in [23] via the bilinear method.

Moreover, the nonsingular solutions can be also reduced from the second order rational solution by taking

ϕ1 = π/2, e1 = 1, and this yields a nonsingular high-order rational travelling wave solution but not a rogue wave.

4. General rational solution for the partially PT -symmetric nonlocal DS-II equation

In this section, as what we have shown for nonlocal DS-I system, we construct the general rogue wave solution

for nonlocal DS-II equation and analyze the dynamics of these rogue waves. In addition, we also exhibit other

types of rational solutions which are reduced from the Darboux transformation.

4.1. Fundamental rogue waves for nonlocal DS-II

To derive the fundamental rogue waves for nonlocal DS-II equation, we first need to present the general one-

rational solution of the first order, which is obtained by taking n = 1 in formula (44)-(45):

u1(x, y, t) = 1 −
2iG(x, y, t) + 1

F(x, y, t)
, (58)

w1(x, y, t) = ε + 2[ln(F(x, y, t))]xx, (59)

where,

F(x, y, t) = G2(x, y, t) + H2(x, y, t) +
1

4 cos2 ϕ1
, p1 =

r1 + εr−1
1

2
, q1 =

r1 − εr−1
1

2
,

G(x, y, t) = ip1x sinϕ1 − q1y sinϕ1 + (p2
1 + q2

1)t cos 2ϕ1 + (e1 +
1
2

tanϕ1),

H(x, y, t) = iq1x cosϕ1 − p1y cosϕ1 − 2p1q1t sin 2ϕ1 − (f1 +
1
2

).
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For this rational solution, different dynamics can be exhibited depending on the parameters ε, ϕ1 and r1. By

performing solution analysis analogous to that in nonlocal DS-I equation, we find that:

(i).When ε = 1, r1 = 1, then |λ1| = 1. In this case, we obtain the fundamental rogue wave solution. And this

rogue wave arises from a constant background as t → −∞ and develops finite-time singularity on a certain spatial

location. To be specific, when ϕ1 =
(2k−1)π

2 , we have u(x, y, t) = 1. For ∀ϕ1 ,
(2k−1)π

2 , the imaginary part of the

denominator is x sinϕ1 (tanϕ1 + 2t cos 2ϕ1). If x = 0, it can be shown the real part of the denominator is nonzero.

Hence no singularities will appear in this situation. However, if t =
2e cosϕ1+sinϕ1
−2 cos 2ϕ1 cosϕ1

, the singularities will occurs at

one time point and locates on the certain elliptic curve in the (x, y) plane:

(2y cos2 ϕ1 + cosϕ1)2 − (x sin 2ϕ1)2 + 1 = 0.

For example, if we take ϕ1 = −π/6 with e1 = 0, then the singularity time occurs at tc =
√

3/3. Before this point, the

rogue wave is nonsingular and it shows some cross-shape or interaction phenomena, which are quite different from

the solution dynamics exhibited by the rogue wave in the local DS systems. The dynamic evolution of this rogue

wave is presented in Fig.6, including its shape at singular time tc, where a truncation surface is obvious to see from

the figure. It is remarkable that this kind of exploding fundamental rogue waves in the partially PT -symmetric

nonlocal sytems were first obtained in [22] by a simple “transformation” method. Here, by using DT theory, one

can easily generalize solution formulas and parameters choices to the multi-rogue waves.

Figure 6: Fundamental cross-shape rogue wave in the the partially PT -symmetric nonlocal DS-II equation, behaviours from the constant
background to the exploding time, with parameters: r1 = 1, ϕ1 = −π/6, e1 = 0, f1 = 0.

In addition, if r1 = 1, ϕ1 = kπ, as what we have found in the nonlocal DS-I system, this solution can also

degenerate into a (1+1)-dimensional line rogue wave solution:

u1(y, t) = 1 −
4(1 + 2it)

4t2 + 4y2 + 1
.

The graphs of this rogue wave solution are qualitatively similar to those in Fig.2.

(ii). When ε = −1, r1 = 1, i.e., |λ1| = 1. In generic case, if we require f1 , −1/2, one can derive a nonsingular

solution with three parameters, which is nothing but the rational travelling wave for the nonlocal DS-II equation.

In fact, this solution can be seen as the corresponding counterpart of travelling wave solution for nonlocal DS-I
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system. Similarly, the ridge of this solution lays approximately on two lines with opposite slope, which is:

l1 : 2t cosϕ1 cos 2ϕ1 − y sin 2ϕ1 + 2x cos2 ϕ1 + sinϕ1 + e1 = 0,

l2 : 2t cosϕ1 cos 2ϕ1 − y sin 2ϕ1 − 2x cos2 ϕ1 + sinϕ1 + e1 = 0.

It is easy to see that the angle of l1 and l2 is 2ϕ1. And the solution are moving along these two center lines with the

evolution of time.

Figure 7: Rational travelling waves interaction for the nonlocal DS-II equation, with parameters: ε = −1, ϕ1 = π/6, r1 = 1, e1 = 1, f1 = 0.

Therefore, this lead us to make a summing up for the fundamental solutions of nonlocal DS systems. For the

nonlocal DS-II equation, the value of ε determines the type of the fundamental rational solution under the unitary

module reduction condition: |λ1| = 1, which is quite different from the condition we previously discussed in the

system of nonlocal DS-I equation, where the solution patterns are classified by the fact that whether λ1 is a real or

pure imaginary number. In the following, as what have already been shown in the nonlocal DS-I equation, these

parameters conditions can also applied for every λi and it will produce several patterns of multi-rogue waves for

the nonlocal DS-II system.

4.2. Multi-rational solution for nonlocal DS-II equation

To obtain the multi-rouge waves, one should make use of multi eigenfunctions with the form given in (52). And

this will bring more free parameters. However, we have noted that for ∀k, j, the denominator in the integration

Ω(ϕ j, φk) has the term: rkr j

(
rk + r jeiϕ j+iϕk

)3
.

Therefore, one should choose parameters rk and ϕk carefully because that may cause indeterminacy to the

solution. Here we set all nonzero rk ∈ R, and parameters are limited to the condition: rkr j

(
rk + r jeiϕ j+iϕk

)3
, 0.

More specifically:

(1). If eiθ j+iθk = 1, then rk + r j , 0; (2). If eiθ j+iθk = −1, then rk − r j , 0; (3). Once rk = r j, then eiθ j+iθk , −1.

These parameters can not be taken directly on the possible singular value points. However, the above restric-

tions might be removed through a limiting process. For example, taking n = 2 in formula (44)-(45), it gener-

ates a family of general two-rational solution for nonlocal DS-II equation. Firstly, if we choose the parameters

ε = 1, α = i, ϕ1 = 2π, r1 = 1, r2 = 1, F1 = 0, F2 = 0 in (44)-(45) and take the limit ϕ2 →
π
2 , then this

two-rational solution reduce to the one-dimensional fundamental rogue wave solution

u2(y, t) = −1 +
4 + 8it

4t2 + 4y2 + 1
.
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Next, when ϕ2 continuously changes between 0 and 2π except for some particular values like 0, π/2, π and 2π.

A family of rational solutions can be found with singularities existing on the corresponding time interval. However,

usually it is a tedious process to determine the accurate interval values. Therefore, as a concrete example, we

choose the special parameters ε = 1, α = i, ϕ1 = 2π, r1 = 1, ϕ2 = π
4 , r2 = 1, F1 = 0, F2 = 0 for the convenience

in the following analysis. Then it becomes the two-rational solution with its singularity time t0 occurs no more at

one time point but on a finite time interval Is. In this case, t0 ∈ Is = [0.326232, 0.628852], while these two end

points are the approximate values of the real roots satisfing the following quadratic equation:

16
√

2c2 − 20c2 − 64
√

2c + 88c + 52
√

2 − 73 = 0.

In fact, this equation come from analysing the possible singular points from the denominator of the solution.

First of all, the imaginary part of the this denominator is:

4x
[
4
(
4
√

2 − 5
)

y2 + P1(t)
]
, where P1(t) = 4t

(
4
√

2t − 5t − 16
√

2 + 22
)

+ 52
√

2 − 73.

If x = 0, it is verified that the real part of the denominator is positive definite. Hence x = 0 can not be the

singularity point. Next, for
(
4
√

2 − 5
)

y2 ≥ 0, if there exists t0 such that P1(t0) ≤ 0, one can obtain a point y0 s.t

4
(
4
√

2 − 5
)

y2
0 + P1(t0) = 0, thus the imaginary part becomes zero. Subsequently, put points (y0, t0) to the real

part, and then we can also solve out a real point x0 to makes the real part be zero. However, if P1(t0) > 0, then the

imaginary part is proved to be nonzero. Hence the solution has no singularity under this condition.

The dynamics for this solution are shown in Fig.7. We can see that as t → ±∞, this solution approaches

a “X ”-shape background wave with very small amplitude. While the solution could reach very high maximum

amplitude near t = 0. Moreover, when t = 0.4, which belongs to the singular interval Is, the solution exploding at

this singular time point.

Figure 8: Dynamics of exploding two-rogue wave solution in the nonlocal DS-II equation, with parameters: ε = 1, α = i, ϕ1 = 2π, r1 =

1, ϕ2 = π
4 , r2 = 1, F1 = 0, F2 = 0.

4.3. High-order rational solutions for nonlocal DS-II

As the case in the nonlocal DS-I quation, the high-order rational solution for nonlocal DS-II equation can

be constructed via the generalized binary DT (50)-(51). For N = 2, we have noted that the denominator in the

integration Ω(ϕ j, φk) all contains the term: 1 + e2iϕ1 . Thus, one should choose parameter carefully with ϕ1. For
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instance, choosing ε = 1, α = i with ϕ1 = 2π, r1 = 1, F1 = 0, we obtain the second-order rational solution

u[1]
1 = 1 +

8(1 + 2it)[4it(1 + it) + 4ix − 4y2 + 1]

16
[
t4 + t2 (

−2ix + 2y2 + 1/2
)

+
(
ix + y2)2

]
+ 8ix + 24y2 + 5

, (60)

w[1]
1 = −1 +

64
(
−16

[
t4 + t2

(
−2ix − 6y2 − 3/2

)
+

(
ix + y2

)2
]
− 8ix + 8y2 + 3

)
(
16

[
t4 + t2 (

−2ix + 2y2 + 1/2
)

+
(
ix + y2)2

]
+ 8ix + 24y2 + 5

)2 . (61)

For this solution, it can be shown that it is singular for almost full time points except for a transient time interval.

Moreover, if we take the variable transformation x → −ix, t → −t, as what we have done for the high-order

rational solution in nonlocal DS-I system, then solution (60) becomes

u[1]
1 = 1 +

8(1 − 2it)
[
−4it(1 − it) + 4x − 4y2 + 1

]
16

[
t4 + t2 (

−2x + 2y2 + 1/2
)

+
(
x + y2)2

]
+ 8x + 24y2 + 5

. (62)

And this is the high-order rogue wave in the local DS-I equation which has been derived in [24] through bilinear

method. In this case, via a simple variable transformation, we derive this well-posed high-order solution in the

local DS-I equation from a ill-posed one with full-time singularity in the nonlocal DS-II equation.

5. Summary and discussion

In summary, we have derived general rogue waves in the partially PT -symmetric nonlocal DS-I and nonlocal

DS-II equations. The tool we have used is the Darboux transformation method in soliton theory, and the solutions in

these two equations are given in terms of determinants and quasi-determinants, separately. We have shown that the

fundamental rogue waves in these two systems are rational solutions which arises from a constant background and

then develops finite-time singularity on an entire hyperbola in the spatial plane at the critical time (or at certain time

interval, as what is shown in the de-focusing nonlocal DS-I equation). We have also shown that multi rogue waves

describes the interactions of several fundamental rogue waves. Especially, a novel hybrid-pattern rogue wave is

found, which contains three different types of waves in one solution. It exhibits different dynamics and is generated

from the interaction of line rogue waves with dark and anti-dark rational travelling waves. In addition, some high-

order travelling waves can be reduced from the high-order rational solutions, and some singular solutions are

also discovered, which can be transformed to the high-order rogue waves in the local DS systems through simple

variables transformations.

Furthermore, it is interesting and meaningful to compare these rogue wave in the nonlocal DS equations with

those in the local DS equations (see refs.[23, 24]). Firstly, the parameter conditions for the generations of fun-

damental rogue waves are quite different between local and nonlocal DS equations. Secondly, we have known

that for the local DS-II equation [23], rogue waves exist only when ε = 1, but in the nonlocal DS-I equation,

we have shown that rogue waves exist for both signs of nonlinearity ε = ±1. Thirdly, in the local DS equations,

fundamental rogue waves are line rogue waves which are never blow up in finite time; While in the nonlocal DS

equations, fundamental rogue waves have richer structures, including (1+2)-dimensional exploding rogue waves

and (1+1)-dimensional line rogue waves. Although some non-generic multi-rogue waves and higher-order rogue

waves of the local DS-II equation in ref.[23] can also exploding in finite time, but the blowup only occurs at a

single time point, unlike the fundamental rogue waves of the nonlocal DS equations where the blowup occurs on

an entire hyperbola of the spatial plane.

Since partially PT -symmetric physical systems has been shown possible applications in optics. We ex-

pect these rogue-wave solutions could have interesting implications for the partially PT -symmetric in multi-
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dimensions. Moreover, we hope these solutions could play a role in the physical understanding of rogue water

waves in the ocean.
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