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Abstract In this paper, the truncated Painlevé analysis and the consistent tanh expansion (CTE) method are
developed for the (2+1)-dimensional breaking soliton equation. As a result, the soliton-cnoidal wave interaction solution
of the equation is explicitly given, which is difficult to be found by other traditional methods. When the value of the
Jacobi elliptic function modulus m = 1, the soliton-cnoidal wave interaction solution reduces back to the two-soliton
solution. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.
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1 Introduction
The investigation of exact solutions for nonlinear evo-

lution equations (NLEEs) arising from many science fields
is of an important significance. The exact solutions
of NLEEs can be constructed by many powerful meth-
ods, such as the inverse scattering transformation,[1] the
Darboux transformations (DT),[2] the Bäcklund trans-
formation (BT),[3] Hirota’s bilinear method,[4] Lie group
method,[5−6] Painlevé analysis[7] and various function
expansion methods,[8−15] etc. Many kinds of nonlin-
ear waves such as the solitons, cnoidal periodic waves,
Painlevé waves are found by various effective methods.
However, except for the interactions among solitons, find-
ing the interactions among these nonlinear waves is very
difficult. Recently, according to the result of the sym-
metry reductions with nonlocal symmetries,[16−18] Lou et

al.[19−24] proposed the consistent tanh expansion (CTE)
method, which is a simple but effective method to look
for interaction solutions between solitons and other types
of nonlinear excitations and possible new physical proper-
ties.

We consider the (2+1)-dimensional breaking soliton
equation[25]

vt + vxxy − 4vvy − 2vx∂−1
x vy = 0 , (1)

with ∂−1
x =

∫

·dx. Setting v = ux, Eq. (1) becomes

uxt + uxxxy − 4uxuxy − 2uxxuy = 0 , (2)

which decribes the (2+1)-dimensional interaction of a Rie-
mann wave propagating along the y-axis with a long wave
along the x-axis.[26] For y = x, Eq. (1) is reduced to the
KdV equation. The Painlevé property, the Lax pair, the
Hamiltonian structure, and various exact solutions have

been studied.[27−36] In this paper, the analytic interac-
tion solution between the soliton and the cnoidal periodic
wave for the (2+1)-dimensional breaking soliton equation
is shown by means of the truncated Painlevé analysis and
CTE method.

The paper is arranged as follows. In Sec. 2, for the
(2+1)-dimensional breaking equation, we derive explicit
interaction solution between the soliton and the cnoidal
periodic wave with the help of the truncated Painlevé
analysis and the CTE method. In the last section, some
conclusions and discussions are given.

2 Soliton-Cnoidal Wave Interaction Solution
for the (2+1)-Dimensional Breaking
Soliton Equation
It is well known that painlevé test is a systematic

method to identify the integrability of NLEEs. Moreover,
the painlevé test can be used to solve special solutions for
NLEEs. Balancing the nonlinear and dispersive terms in
Eq. (2), we have the truncated Painlevé expansion in the
form

u =
u0

φ
+ u1 , (3)

where u0, u1 and φ are arbitrary functions with respect to
x, y, and t. Substituting Eq. (3) into Eq. (2) and vanishing
coefficients of the different powers 1/φ, we obtain

u0 = −2φx , u1 =
1

2

φxx

φx

+
1

4

∫

φ2
xx

φ2
x

dx , (4)

which yields the solution of Eq. (2) as follows:

u = −
2φx

φ
+

1

2

φxx

φx

+
1

4

∫

φ2
xx

φ2
x

dx , (5)
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with the associated compatibility condition of φ

φxt + φxxxy −
3φxxφxxy

φx

−
φxxφt

φx

−
φxyφxxx

φx

+
3φxyφ2

xx

φ2
x

= 0 . (6)

Therefore,

v = ux =
2φ2

x

φ2
−

2φxx

φ
+

1

2

φxxx

φx

−
1

4

φ2
xx

φ2
x

(7)

is a solution of Eq. (1).
Compatibility condition (6) can be written as Schwa-

rzian form of Eq. (2)

Cx + KSx + 2SKx + Kxxx = 0 , (8)

where

C =
φt

φx

, K =
φy

φx

, S =
φxxx

φx

−
3

2

φ2
xx

φ2
x

. (9)

The above Schwartzian equation (8) is consistent with the
result of Ref. [37]. Due to all the quantities C, K, and S
are Möbious transformation

φ →
a + bφ

c + dφ
, (ad 6= bc) , (10)

invariants, the Schwarzian equation (8) is invariant under
the Möbious transformation (10).

Using the following straightening transformation

φ =
2

tanh(w) − 1
, (11)

the solution (7) can be rewritten as

v = 2w2
x tanh2(w) − 2wxx tanh(w) − w2

x

+
1

2

wxxx

wx

−
1

4

w2
xx

w2
x

, (12)

with the equivalent compatibility condition of w

Cx + KSx + 2SKx + Kxxx − 4wxwxy = 0 , (13)

where

C =
wt

wx

, K =
wy

wx

, S =
wxxx

wx

−
3

2

w2
xx

w2
x

. (14)

It is seen that solution (12) can be considered as
the generalization of the usual tanh function expansion
method. Here we can obtain the solution (12) via the
CTE method.[19−24] By using the leading order analysis
for Eq. (2), we may take the following generalized trun-
cated tanh function expansion

u = u0 + u1 tanh(w) , (15)

where u0, u1, and w are functions of (x, y, t) to be de-
termined later. Substituting Eq. (15) into Eq. (2) and

setting zero the coefficients of tanhi(w), we have six over-
determined equations for only three undetermined func-
tions. It is fortunate to find that these over-determined
equations are consistent and possess the following solution

u1 = −2wx , u0 =
1

2

wxx

wx

+

∫

w2
xdx+

1

4

∫

w2
xx

w2
x

dx , (16)

then we deduce the same solution (12) of Eq. (1) with the
compatibility condition (13).

Due to the fact that the single soliton solution of the
Eq. (1) is only the straightened solution w = k0x+l0y+ω0t
of Eq. (13), the interaction solutions between solitons and
other nonlinear excitations of Eq. (1) can be constructed
by solving Eq. (13). In order to obtain the interaction
solution of Eq. (1), we consider w in the form

w = k0x + l0y + ω0t + g , (17)

where g is a function of x, y and t. In this study, we only
discuss the solutions with the form

w = k0x+l0y+ω0t+W (X) , X = k1x+l1y+ω1t . (18)

Substituting Eq. (18) into Eq. (13), we can find that
W1(X) satisfies

W1(X)2X = 4W1(X)4 + 2a1W1(X)3

+ 2a2W1(X)2 + a3W1(X) + a4 , (19)

with

W (X)X = W1(X) ,

a1 =
4k0 − C1k

3
1

k1
,

a2 =
2k2

0 − 3C1k0k
3
1 + C2k

3
1

k2
1

,

a3 =
k1ω0 − k0ω1 − 6C1k

2
0k

3
1l1 + 4C2k0k

3
1l1

k3
1l1

,

a4 =
k0(k1ω0 − k0ω1 − 2C1k

2
0k3

1l1 + 2C2k0k
3
1l1)

k4
1 l1

, (20)

and C1, C2 are arbitrary constants.
It is known that the general solution of Eq. (19) can be

written out in terms of Jacobi elliptic functions. To show
more clearly of this kind of solution, two special cases are
listed.
Case 1 A special solution of Eq. (19) reads

W (X) = cEπ(sn(X, m), n, m) , (21)

which leads to the soliton-cnoidal wave interaction solu-
tion of Eq. (1):

v =
[

2k2
0 −

4ck0k1

nS2 − 1
+

2c2k2
1

(nS2 − 1)2

]

tanh2(k0x + l0y + ω0t + cEπ(S, n, m))

−
4ck2

1nSCD

(nS2 − 1)2
tanh(k0x + l0y + ω0t + cEπ(S, n, m)) −

[ck1 − k0(nS2 − 1)]2

(nS2 − 1)2

−
ck3

1nD2{k0[n
2S4(2C2 + 1) − 2nS2 − 2C2 + 1] + ck1[−nS2(C2 + 1) − 2C2 + 1]}

[ck1 − k0(nS2 − 1)]2(nS2 − 1)2

+
ck3

1nm2S2C2

(nS2 − 1)[ck1 − k0(nS2 − 1)]
, (22)
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where {k1, l0, l1, ω1, m, n} are arbitrary constants, S ≡ sn(k1x + l1y + ω1t, m), C ≡ cn(k1x + l1y + ω1t, m), D ≡
dn(k1x + l1y + ω1t, m), and

c2 = −
(n − 1)(m2 − n)

n
, k0 = −ck1 , ω0 = 4ck2

1l1n − cω1 . (23)

In solution (22), Eπ(ζ, n, m) is the third type of incomplete elliptic integral.

The solution given in Eq. (22) denotes the analytic interaction solution between the soliton and the cnoidal periodic
wave. The simulation of soliton-cnoidal wave solution (22) is illustrated in Figs. 1 and 2 at two different choices of
the arbitrary parameters. In Fig. 1, we plot the interaction solution between the solitary wave and the cnoidal wave
when the value of the Jacobi elliptic function modulus m 6= 1. We can see that a soliton propagates on a cnoidal wave
background instead of on the plane continuous wave background. This kind of solution can be easily applicable to the
analysis of physically interesting processes. If setting the modulus m = 1, the soliton-cnoidal wave interaction solution
reduces back to the two-soliton solution, whose interaction behaviors are displayed in Fig. 2.

Case 2 Another special solution of Eq. (19) is given as

W (X) = Aarctanh(sn(X, m)) , (24)

which yields the soliton-cnoidal wave interaction solution of Eq. (1):

v =
k2
1 [S

4(m4 + 6m2 + 1) − 4S2(m2 + 1)(CD + 2) + 8(CD + 1)]

2(1 − S2 + CD)2
tanh2

(

k0x + l0y + ω0t +
1

2
arctanh(S)

)

+
k2
1

[

S3(1 − m4) + 2S(m2 − 1)(CD + 1)
]

(1 − S2 + CD)2
tanh

(

k0x + l0y + ω0t +
1

2
arctanh(S)

)

−
k2
1 [S

4(1 + 8m2 − m4) − S2(m2 + 3)(2CD + m2 + 3) + 2(m2 + 3)(CD + 1)]

4(1 − S2 + CD)2
, (25)

where {k1, l0, l1, ω1, m} are arbitrary constants, S ≡ sn(k1x+ l1y + ω1t, m), C ≡ cn(k1x+ l1y + ω1t, m), D ≡ dn(k1x+
l1y + ω1t, m), and

A =
1

2
, k0 =

k1

2
, ω0 = k2

1l1(m
2 − 1) +

ω1

2
. (26)

Fig. 1 Soliton-cnoidal wave interaction solution for Eq. (1) given by Eq. (22), with the parameters k1 = 1,
l0 = 1.2, l1 = 0.5, ω1 = 0.8, m = 0.9, and n = 0.5. (a) One-dimensional image at t = 0 and y = 0; (b)
One-dimensional image at t = 0 and x = 0; (c) The two-dimensional perspective view of the corresponding
solution.
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Fig. 2 Two-soliton solution for Eq. (1) given by Eq. (22), with the parameters k1 = l0 = l1 = ω1 = 1, m = 1,
and n = 0.5. (a) One-dimensional image at t = 0 and y = 0; (b) One-dimensional image at t = 0 and x = 0; (c)
The two-dimensional perspective view of the corresponding solution.

3 Summary and Discussion
In conclusion, the (2+1)-dimensional breaking soliton

equation is investigated by using the truncated Painlevé
analysis and the CTE method to find the soliton-cnoidal
wave solution. This kind of solution can be easily appli-
cable to the analysis of physically interesting processes.
Despite the simplicity of the CTE method, it did provide
us with the result which is quite nontrivial and difficult to

be obtained by other traditional approaches.

The method presented here could be applied to other

kinds of integrable models, especially for supersymmet-

ric models and discrete ones. The details on the CTE

method and other methods to solve interaction solutions

among different kinds of nonlinear waves will be discussed

in our future research work.
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