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Localized waves of the coupled cubic–quintic nonlinear Schrödinger
equations in nonlinear optics∗
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We investigate some novel localized waves on the plane wave background in the coupled cubic–quintic nonlinear
Schrödinger (CCQNLS) equations through the generalized Darboux transformation (DT). A special vector solution of
the Lax pair of the CCQNLS system is elaborately constructed, based on the vector solution, various types of higher-
order localized wave solutions of the CCQNLS system are constructed via the generalized DT. These abundant and novel
localized waves constructed in the CCQNLS system include higher-order rogue waves, higher-order rogues interacting
with multi-soliton or multi-breather separately. The first- and second-order semi-rational localized waves including several
free parameters are mainly discussed: (i) the semi-rational solutions degenerate to the first- and second-order vector rogue
wave solutions; (ii) hybrid solutions between a first-order rogue wave and a dark or bright soliton, a second-order rogue
wave and two dark or bright solitons; (iii) hybrid solutions between a first-order rogue wave and a breather, a second-order
rogue wave and two breathers. Some interesting and appealing dynamic properties of these types of localized waves are
demonstrated, for example, these nonlinear waves merge with each other markedly by increasing the absolute value of α .
These results further uncover some striking dynamic structures in the CCQNLS system.
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1. Introduction
In recent years, nonlinear localized waves, including

solitons,[1–3] rogue waves,[4–7] and breathers,[8–10] have been
one of the intense studies in the field of nonlinear science.
Many attentions have been focused on the common solitons
including bright and dark solitons. Owing to the instability
of small amplitude perturbations, the breathers may develop
and even grow in size to disastrous proportions. In many
present literatures, there are mainly two kinds of breathers
such as Ma breathers (time-periodic breather solutions)[11] and
Akhmediev breathers (space-periodic breather solutions).[4,12]

While the rogue waves are modeled as transient wave packets
localized in both time and space, they reveal a unique phe-
nomenon that seems to appear from nowhere and disappear
without a trace.[13] Up to now, the authentic interpretations of
the generation mechanism of the rogue waves are that modu-
lation instability and rational function solution.[14] The rogue
wave phenomenon appears in a class of fields, among them
nonlinear optics,[15,16] capillary flow,[17] superfluidity,[18]

Bose–Einstein condensates,[19] plasma physics,[20] and even
finance.[21]

Recent studies have been extended to localized wave so-
lutions including rogue waves and some other nonlinear wave
in various nonlinear systems.[22–24] In Ref. [25], the hybrid so-

lutions consisted of rogue waves and cnoidal periodic waves
in the focusing NLS equation were constructed by the Dar-
boux transformation (DT) scheme. Using the Hirota bilinear
method, the authors obtained the rogue wave triggered by the
interaction between lump soliton and a pair of resonance kink
stripe solitons.[26,27] As one special type of interactional so-
lutions, the semi-rational solution exhibits a range of abun-
dant and appealing dynamics in nonlinear models,[28] such
as dark–bright–rogue wave pair,[29,30] rogue wave interacting
with solitons and breathers.[31–33] In many cases, it shows that
these semi-rational solutions appear as a mixture of polyno-
mials with exponential functions. In Ref. [34], a new dark–
antidark soliton pair solutions and some special semi-rational
solutions of the coupled Sasa–Satsuma equations were dis-
cussed by DT. Utilizing the Hirota bilinear method, the au-
thors constructed a new kind of semi-rational solutions that
the rogue waves interacting with solitons and breathers at the
same time in the Boussinesq equation.[35] These results further
uncover some striking dynamic structures in nonlinear models.

It is greatly necessary to generate shorter (femtosecond,
even attosecond) pulses with high frequency in fibre to meet
the demand for high bit rates in optical communication. In
the field of ultra-short pulses, where the width of optical pulse
is in the order of femtosecond (10−15 s) and the spectrum of
these ultrashort pulses is approximately of the order 1015 s−1,
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the standard NLS equation is less accurate. This boosts greatly
the study of higher order nonlinear effects in optics, which are
modeled by various higher order NLS systems. In this paper,

our aim is to investigate the localized waves of the follow-
ing coupled cubic-quintic nonlinear Schrödinger (CCQNLS)
equations[36–39]

iq1t +q1xx +2(|q1|2 + |q2|2)q1 +(ρ1|q1|2 +ρ2|q2|2)2q1−2i[(ρ1|q1|2 +ρ2|q2|2)q1]x +2i(ρ1q∗1q1x +ρ2q∗2q2x)q1 = 0,

iq2t +q2xx +2(|q1|2 + |q2|2)q2 +(ρ1|q1|2 +ρ2|q2|2)2q2−2i[(ρ1|q1|2 +ρ2|q2|2)q2]x +2i(ρ1q∗1q1x +ρ2q∗2q2x)q2=0, (1)

which describe the effects of quintic nonlinearity on the ul-
trashort optical pulse propagation in non-Kerr media. For
convenience, the independent variables z and t of the CC-
QNLS equations in Refs. [36]– [39] are replaced by variables
t and x in the CCQNLS system (1), respectively. The two
components q1 and q2 are the complex smooth envelop func-
tions and they denote that two electromagnetic fields propa-
gate along the coordinate z (or t) in the two cores of an op-
tical waveguide, and t (or x)is the local time. Besides, each
non-numeric subscripted variable stands for partial differen-
tiation and the asterisk denotes complex conjugation. The
parameters ρ1 and ρ2 are all real constants. When q1 = u,
q2 = 0, and ρ1 = 2β , the CCQNLS system (1) can turn into
the integrable Kundu–Eckhaus equation.[40] There have been
many reports on the Kundu–Eckhaus equation,[41] such as
its Hamiltonian structure,[42] solitons solutions,[43] and rogue
wave solutions.[44,45] Recently, the multi-soliton solutions and
the bound states of the solitons of the CCQNLS system (1)
were discussed in Refs. [36] and [37]. In Ref. [38], the au-
thors constructed the generalized DT of the CCQNLS system
and obtained its rogue wave solutions. Besides, The DT of
the multi-component CCQNLS system were obtained and its
rogue waves were also constructed.[39]

Here, we are interested in the hybrid solutions between
rogue waves and some other nonlinear wave solutions in the
CCQNLS system (1), for example, multi-dark, multi-bright
solitons, and multi-breathers. To the best of our knowledge,
there are no reports on this kind of interactional solution of
the CCQNLS system up to the present. Baronio et al.[46] ob-
tained some semi-rational solutions in the coupled NLS, which
include a first-order rogue wave, a first-order rogue wave in-
teracting with a bright soliton, a dark soliton, and a breather,
respectively. However, the higher-order interactional solutions
cannot be generated by Baronio’s method. Based on the gener-
alized DT[14,47] and the special vector solution of the Lax pair
of the three-component coupled NLS system, we obtained its

higher-order interactional solutions successfully.[31] Starting
from an appropriate periodic seed solution, a special vector
solution of the Lax pair of the system (1) is elaborately con-
structed. Based on this kind of the special vector solution,
some abundant higher-order localized waves of the CCQNLS
equations are generated by the generalized DT. Especially, the
first- and second-order semi-rational localized wave solutions
are discussed in detail. These semi-rational localized wave so-
lutions are discussed in three cases: the first one is the first-
and second-order vector rogue wave solutions; the second one
is the hybrid solutions between a first-order rogue wave and a
dark or bright soliton, a second-order rogue wave and two dark
or bright solitons; the last one is the interactional solutions be-
tween a first-order rogue wave and a breather, a second-order
rogue wave and two breathers. These interesting and appealing
solutions will further reveal some striking dynamic structures
in the CCQNLS system.

Our paper is organized as follows. In Section 2, we con-
struct the generalized DT to Eq. (1), then the first- to fourth-
step generalized Darboux transformations are obtained by us-
ing the direct iterative rule. In Section 3, some nonlinear lo-
calized wave solutions of Eq. (1) are obtained. Especially, the
first- and second-order localized waves are discussed in detail
and some figures of these kinds of localized wave solutions are
also exhibited. In Section 4, we give some conclusions.

2. Generalized Darboux transformation
In this section, we construct the generalized DT[14,47] to

the CCQNLS system (1). The Lax pair of the system (1) can
be expressed as[38,39]

Ψx =𝑈Ψ , Ψt = 𝑉Ψ , (2)

where Ψ = (ψ(x, t),φ(x, t),χ(x, t))T with T denoting the
transpose of the vector, while 𝑈 and 𝑉 are all the 3×3 matri-
ces and they can be given as

𝑈 =


−iλ +

1
2

i(ρ1|q1|2 +ρ2|q2|2) q1 q2

−q∗1 iλ − 1
2

i(ρ1|q1|2 +ρ2|q2|2) 0

−q∗2 0 iλ − 1
2

i(ρ1|q1|2 +ρ2|q2|2)

 ,
120200-2



Chin. Phys. B Vol. 26, No. 12 (2017) 120200

𝑉 =

 ω + i(|q1|2 + |q2|2) s1 s2

iq∗1x−2λq∗1−q∗1(ρ1|q1|2 +ρ2|q2|2) −ω− i|q1|2 −iq2q∗1
iq∗2x−2λq∗2−q∗2(ρ1|q1|2 +ρ2|q2|2) −iq1q∗2 −ω− i|q2|2

 ,

where

ω =−2iλ 2 + i(ρ1|q1|2 +ρ2|q2|2)2

+
1
2

ρ1(q1q∗1x−q1xq∗1)+
1
2

ρ2(q2q∗2x−q2xq∗2),

s1 = 2λq1 +(ρ1|q1|2 +ρ2|q2|2)q1 + iq1x,

s2 = 2λq2 +(ρ1|q1|2 +ρ2|q2|2)q2 + iq2x,

and λ is the spectral parameter. Besides, the CCQNLS
system (1) can be derived from the compatibility condition
𝑈t −𝑉x + [𝑈 ,𝑉 ]=0 through symbolic computation, where
the brackets represent the matrix commutator.

Let Ψ1 = (ψ1,φ1,χ1)
T be a special solution of the Lax

pair (2) with q1 = q1[0], q2 = q2[0], and λ = λ1, then based on
the DT constructed in Refs. [36]– [38], we give the first-step
elementary DT of the CCQNLS equations (1)

Ψ [1] = 𝛤𝑇Ψ ,

𝑇 = λ𝐼−𝐻𝛬𝐻−1 = (λ −λ
∗
1 )𝐼+(λ ∗1 −λ1)

Ψ1Ψ
†

1

Ψ
†

1 Ψ1
, (3)

q1[1] = e2η(q1[0]+
2i(λ ∗1 −λ1)ψ1φ ∗1

Ω
), (4)

q2[1] = e2η(q2[0]+
2i(λ ∗1 −λ1)ψ1χ∗1

Ω
), (5)

where

𝐼 =

1
1

1

 , 𝛤 =

eη

e−η

e−η

 ,

Λ =

λ1
λ ∗1

λ ∗1

 , 𝐻 =

ψ1 φ ∗1 χ∗1
φ1 −ψ∗1 0
χ1 0 −ψ∗1

 ,

Ω = |ψ1|2 + |φ1|2 + |χ1|2, η =
∫
(λ1−λ

∗
1 ) Ω

−2
∆ dx,

∆ = ρ1[ (q1[0]φ1ψ
∗
1 +q1[0]∗φ ∗1 ψ1) Ω

+ 2i(λ ∗1 −λ1)|ψ1|2|φ1|2]+ρ2[ (q2[0]χ1ψ
∗
1

+ q2[0]∗χ∗1 ψ1)Ω +2i(λ ∗1 −λ1)|ψ1|2|χ1|2],

the symbol † denotes the transpose and complex conjugation
of the vector.

According to the above elementary DT expressions (3)–
(5), we construct the generalized DT to the CCQNLS equa-
tions(1). Let Ψ1 = (ψ1,φ1,χ1)

T = Ψ1(λ1 + δ ) be a special
vector solution of the Lax pair (2) with q1 = q1[0], q2 = q2[0],
λ = λ1 + δ , and δ is a small parameter. Next, Ψ1 can be ex-
panded as the Taylor series at δ = 0

Ψ1 =Ψ
[0]

1 +Ψ
[1]

1 δ +Ψ
[2]

1 δ
2 + · · ·+Ψ

[N]
1 δ

N + · · · , (6)

where

Ψ
[l]

1 =(ψ
[l]
1 ,φ

[l]
1 ,χ

[l]
1 )T, Ψ

[l]
1 =

1
l!

∂ lΨ1

∂δ l |δ=0, (l = 0,1,2,3, . . .).

By means of the formulas (3)–(6), the first-step general-
ized DT of Eq. (1) can be directly constructed. In the fol-
lowing content of this section, we use these notations 𝐷[ j] =
𝛤

[ j]
1 𝑇 [ j], 𝐷1[ j] = 𝛤

[ j]
1 𝑇1[ j], and 𝑇1[ j] = 𝑇 [ j]|λ=λ1 = λ1𝐼 −

𝐻[ j−1]Λ1𝐻[ j−1]−1, ( j = 1,2,3, . . . ,N).
(i) The first-step generalized DT

Ψ [1] =𝐷[1]Ψ = 𝛤
[1]
1 𝑇 [1]Ψ , (7)

𝑇 [1] = λ𝐼−𝐻[0]𝛬1𝐻[0]−1

= (λ −λ
∗
1 )𝐼+(λ ∗1 −λ1)

Ψ1[0]Ψ1[0]†

Ψ1[0]†Ψ1[0]
, (8)

q1[1] = e2η
[1]
1

(
q1[0]+

2i(λ ∗1 −λ1)ψ1[0]φ1[0]∗

Ω1

)
, (9)

q2[1] = e2η
[1]
1

(
q2[0]+

2i(λ ∗1 −λ1)ψ1[0]χ1[0]∗

Ω1

)
, (10)

where Ψ1[0] =Ψ
[0]

1 = (ψ1[0],φ1[0],χ1[0])T,

𝛤
[1]
1 =

eη
[1]
1

e−η
[1]
1

e−η
[1]
1

 , 𝛬1 =

λ1
λ ∗1

λ ∗1

 ,

𝐻[0] =

ψ1[0] φ1[0]∗ χ1[0]∗

φ1[0] −ψ1[0]∗ 0
χ1[0] 0 −ψ1[0]∗

 ,

Ω1 = |ψ1[0]|2 + |φ1[0]|2 + |χ1[0]|2,

η
[1]
1 =

∫
(λ1−λ

∗
1 ) Ω

−2
1 ∆1 dx,

∆1 = ρ1[ (q1[0]φ1[0]ψ1[0]∗+q1[0]∗φ1[0]∗ψ1[0]) Ω1

+ 2i(λ ∗1 −λ1)|ψ1[0]|2|φ1[0]|2]+ρ2[ (q2[0]χ1[0]ψ1[0]∗

+ q2[0]∗χ1[0]∗ψ1[0]) Ω1 +2i(λ ∗1 −λ1)|ψ1[0]|2|χ1[0]|2].

(ii) The second-step generalized DT
It is shown that 𝑇 [1]Ψ1 is a vector solution of the Lax

pair (2) with q1 = q1[1], q2 = q2[1], and λ = λ1 +δ . Consid-
ering the following limit

lim
δ→0

𝐷[1]|λ=λ1+δ Ψ1

δ
= lim

δ→0

𝛤
[1]
1 (δ +𝑇1[1])Ψ1

δ

= 𝛤
[1]
1 (Ψ

[0]
1 +𝑇1[1]Ψ

[1]
1 )≡Ψ1[1], (11)

a nontrivial solution of the Lax pair (2) with q1 = q1[1],
q2 = q2[1], and λ = λ1 can be obtained. Here, we have used

120200-3



Chin. Phys. B Vol. 26, No. 12 (2017) 120200

the above generalized DT one time and also utilized the iden-
tity 𝛤

[1]
1 𝑇1[1]Ψ

[0]
1 = 0. Then the second-step generalized DT

holds

Ψ [2] =𝐷[2]𝐷[1]Ψ , (12)

𝑇 [2] = λ𝐼−𝐻[1]𝛬1𝐻[1]−1

= (λ −λ
∗
1 )𝐼+(λ ∗1 −λ1)

Ψ1[1]Ψ1[1]†

Ψ1[1]†Ψ1[1]
, (13)

q1[2] = e2η
[2]
1 (q1[1]+

2i(λ ∗1 −λ1)ψ1[1]φ1[1]∗

Ω2
), (14)

q2[2] = e2η
[2]
1 (q2[1]+

2i(λ ∗1 −λ1)ψ1[1]χ1[1]∗

Ω2
), (15)

where

Ψ1[1] = (ψ1[1],φ1[1],χ1[1])T,

𝑇1[1] = 𝑇 [1]|λ=λ1 = λ1𝐼−𝐻[0]𝛬1𝐻[0]−1,

and

𝛤
[2]
1 =

eη
[2]
1

e−η
[2]
1

e−η
[2]
1

 ,

𝐻[1] =

ψ1[1] φ1[1]∗ χ1[1]∗

φ1[1] −ψ1[1]∗ 0
χ1[1] 0 −ψ1[1]∗

 ,

Ω2 = |ψ1[1]|2 + |φ1[1]|2 + |χ1[1]|2,

η
[2]
1 =

∫
(λ1−λ

∗
1 ) Ω

−2
2 ∆2 dx,

∆2 = ρ1[ (q1[1]φ1[1]ψ1[1]∗+q1[1]∗φ1[1]∗ψ1[1]) Ω2

+ 2i(λ ∗1 −λ1)|ψ1[1]|2|φ1[1]|2]+ρ2[ (q2[1]χ1[1]ψ1[1]∗

+ q2[1]∗χ1[1]∗ψ1[1]) Ω2 +2i(λ ∗1 −λ1)|ψ1[1]|2|χ1[1]|2].

(iii) The third-step generalized DT.
In a similar way, by using the following limit

lim
δ→0

𝐷[2]𝐷[1]|λ=λ1+δΨ1

δ 2 = lim
δ→0

𝛤
[2]
1 (δ +𝑇1[2])𝛤

[1]
1 (δ +𝑇1[1])Ψ1

δ 2

= 𝛤
[2]
1 𝛤

[1]
1 Ψ

[0]
1 +(𝛤

[2]
1 𝐷1[1]+𝐷1[2]𝛤

[1]
1 )Ψ

[1]
1 +𝐷1[2]𝐷1[1]Ψ

[2]
1 ≡Ψ1[2], (16)

the special vector solution of the Lax pair (2) with q1 = q1[2],
q2 = q2[2], λ = λ1 can be derived. Besides, the following two
identities

𝐷1[1]Ψ
[0]

1 = 0, 𝐷1[2]Ψ1[1] = 0,

have been applied in the above process. Then the third-step
generalized DT can be obtained as

Ψ [3] =𝐷[3]𝐷[2]𝐷[1]Ψ , (17)

𝑇 [3] = λ𝐼−𝐻[2]𝛬1𝐻[2]−1

= (λ −λ
∗
1 )𝐼+(λ ∗1 −λ1)

Ψ1[2]Ψ1[2]†

Ψ1[2]†Ψ1[2]
, (18)

q1[3] = e2η
[3]
1 (q1[2]+

2i(λ ∗1 −λ1)ψ1[2]φ1[2]∗

Ω3
), (19)

q2[3] = e2η
[3]
1 (q2[2]+

2i(λ ∗1 −λ1)ψ1[2]χ1[2]∗

Ω3
), (20)

where Ψ1[2] = (ψ1[2],φ1[2],χ1[2])T and 𝑇1[2] = 𝑇 [2]|λ=λ1 =

λ1𝐼−𝐻[1]Λ1𝐻[1]−1,

𝛤
[3]
1 =

eη
[3]
1

e−η
[3]
1

e−η
[3]
1

 ,

𝐻[2] =

ψ1[2] φ1[2]∗ χ1[2]∗

φ1[2] −ψ1[2]∗ 0
χ1[2] 0 −ψ1[2]∗

 ,

Ω3 = |ψ1[2]|2 + |φ1[2]|2 + |χ1[2]|2,

η
[3]
1 =

∫
(λ1−λ

∗
1 ) Ω

−2
3 ∆3 dx,

∆3 = ρ1[ (q1[2]φ1[2]ψ1[2]∗+q1[2]∗φ1[2]∗ψ1[2]) Ω3

+ 2i(λ ∗1 −λ1)|ψ1[2]|2|φ1[2]|2]+ρ2[ (q2[2]χ1[2]ψ1[2]∗

+ q2[2]∗χ1[2]∗ψ1[2]) Ω3 +2i(λ ∗1 −λ1)|ψ1[2]|2|χ1[2]|2],

(iv) The fourth-step generalized DT.
In addition, the special vector solution of the Lax pair (2)

with q1 = q1[3], q2 = q2[3], and λ = λ1 can be presented as
follows:

lim
δ→0

𝐷[3]𝐷[2]𝐷[1]|λ=λ1+δΨ1

δ 3 = lim
δ→0

𝛤
[3]
1 (δ +𝑇1[3])𝛤

[2]
1 (δ +𝑇1[2])𝛤

[1]
1 (δ +𝑇1[1])

δ 3

= 𝛤
[3]
1 𝛤

[2]
1 𝛤

[1]
2 Ψ

[0]
1 +( 𝛤

[3]
1 𝛤

[2]
1 𝐷1[1]+𝛤

[3]
1 𝐷1[2]𝛤

[1]
1 +𝐷1[3]𝛤

[2]
1 𝛤

[1]
1 )Ψ

[1]
1

+(𝐷1[3]𝛤
[2]
1 𝐷1[1]+𝐷1[3]𝐷1[2]𝛤

[1]
1 )Ψ

[2]
1 +𝐷1[3]𝐷1[2]𝐷1[1]Ψ

[3]
1 ≡Ψ1[3], (21)
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by using the following three identities

𝐷1[1]Ψ
[0]

1 = 0, 𝐷1[2]Ψ1[1] = 0, 𝐷1[3]Ψ1[2] = 0.

Continuing the above process, we can construct the fourth-step
generalized DT as follows:

Ψ [4] =𝐷[4]𝐷[3]𝐷[2]𝐷[1]Ψ , (22)

𝑇 [4] = λ𝐼−𝐻[3]𝛬1𝐻[3]−1

= (λ −λ
∗
1 )𝐼+(λ ∗1 −λ1)

Ψ1[3]Ψ1[3]†

Ψ1[3]†Ψ1[3]
, (23)

q1[4] = e2η
[4]
1 (q1[3]+

2i(λ ∗1 −λ1)ψ1[3]φ1[3]∗

Ω4
), (24)

q2[4] = e2η
[4]
1 (q2[3]+

2i(λ ∗1 −λ1)ψ1[3]χ1[3]∗

Ω4
), (25)

where Ψ1[3] = (ψ1[3], φ1[3],χ1[3])T, and 𝑇1[3] = 𝑇 [3]|λ=λ1 =

λ1𝐼−𝐻[2]𝛬1𝐻[2]−1,

𝛤
[4]
1 =

eη
[4]
1

e−η
[4]
1

e−η
[4]
1

 ,

𝐻[3] =

ψ1[3] φ1[3]∗ χ1[3]∗

φ1[3] −ψ1[3]∗ 0
χ1[3] 0 −ψ1[3]∗

 ,

Ω4 = |ψ1[3]|2 + |φ1[3]|2 + |χ1[3]|2,

η
[4]
1 =

∫
(λ1−λ

∗
1 )Ω

−2
4 ∆4 dx,

∆4 = ρ1[ (q1[3]φ1[3]ψ1[3]∗+q1[3]∗φ1[3]∗ψ1[3])Ω4

+2i(λ ∗1 −λ1)|ψ1[3]|2|φ1[3]|2]+ρ2[ (q2[3]χ1[3]ψ1[3]∗

+q2[3]∗χ1[3]∗ψ1[3])Ω4 +2i(λ ∗1 −λ1)|ψ1[3]|2|χ1[3]|2].

Owing to the complexity and irregularity of the expres-
sions of Ψ1[ j], such as Eqs. (16) and (21), the unified formula

of the N-step generalized DT of the CCQNLS equations can-
not be given easily. Combing the special vector solution of
the Lax pair (2) and the higher-order generalized DT, we can
obtain the corresponding higher-order localized wave solu-
tions consisted of higher-order rogue wave, higher-order rogue
wave interacting with multi-soliton or multi-breather.

3. Nonlinear localized wave solutions
In this section, some nonlinear localized wave

solutions[31] of the CCQNLS equations (1) are constructed
through the above generalized DT. Here, the first- and second-
order localized waves are discussed in detail and some figures
of these kinds of localized wave solutions are also exhibited.
Besides, some dynamic structures of these nonlinear waves
are demonstrated.

3.1. The first-order localized wave solutions

In the following, we choose a nontrivial seed solution of
the CCQNLS equations (1)

q1[0] = d1 e iθ , q2[0] = d2 e iθ , (26)

where θ = [(ρ1d2
1 + ρ2d2

2)
2 + 2(d2

1 + d2
2)]t, d1 and d2 are all

real constants (d1 6= d2). For convenience, the above seed so-
lutions are chosen periodically in time variable t without de-
pending on space variable x. Choosing q1 = q1[0], q2 = q2[0],
the special vector solutions of the Lax pair (2) can be elabo-
rately expressed as

Ψ1 =

 (c1 eM1 − c2 e−M1)e iθ/2

r1(c1 e−M1 − c2 eM1)e−iθ/2−αd2 eM2

r2(c1 e−M1 − c2 eM1)e−iθ/2 +αd1 eM2

 , (27)

where

c1 =

[
(2λ −ρ1d2

1 −ρ2d2
2)−

√
(2λ −ρ1d2

1 −ρ2d2
2)

2 +4(d2
1 +d2

2)
]1/2

√
(2λ −ρ1d2

1 −ρ2d2
2)

2 +4(d2
1 +d2

2)
,

c2 =

[
(2λ −ρ1d2

1 −ρ2d2
2)+

√
(2λ −ρ1d2

1 −ρ2d2
2)

2 +4(d2
1 +d2

2)
]1/2

√
(2λ −ρ1d2

1 −ρ2d2
2)

2 +4(d2
1 +d2

2)
,

r1 =
d1√

d2
1 +d2

2

, r2 =
d2√

d2
1 +d2

2

, sk = mk + ink (16 k 6 N),

M1 =
i
2

√
(2λ −ρ1d2

1 −ρ2d2
2)

2 +4(d2
1 +d2

2)

[
x+(2λ +ρ1d2

1 +ρ2d2
2)t +

N

∑
k=1

skε
2k
]
,

M2 =
i
2
[(2λ −ρ1d2

1 −ρ2d2
2)x+(4λ

2−2(ρ1d2
1 +ρ2d2

2)
2)t],

here, mk, nk, and α are all real free parameters. Choosing the spectral parameter λ = (1/2)(ρ1d2
1 +ρ2d2

2)+ i
√

d2
1 +d2

2 +ε2 with
a small real parameter ε , the Taylor expansion of the above vector function Ψ1 at ε = 0 can be derived as

Ψ1(ε) =Ψ
[0]

1 +Ψ
[1]

1 ε
2 +Ψ

[2]
1 ε

4 +Ψ
[3]

1 ε
6 + · · ·+Ψ

[l]
1 ε

2l + · · · , (28)
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where

Ψ
[l]

1 = (ψ
[l]
1 ,φ

[l]
1 ,χ

[l]
1 )T =

∂ 2lΨ1

(2l)!∂ε2l

∣∣∣∣
ε=0

(l = 0,1,2,3, . . .),

and

ψ
[0]
1 =

(−1+ i)[4
√

d2
1 +d2

2(ρ1d2
1 +ρ2d2

2)t +4i(d2
1 +d2

2)t +2
√

d2
1 +d2

2x+1]e iθ/2

2(d2
1 +d2

2)
1/4 ,

φ
[0]
1 =

(1− i)d1[4
√

d2
1 +d2

2(ρ1d2
1 +ρ2d2

1)t +4i(d2
1 +d2

2)t +2
√

d2
1 +d2

2x−1]e−iθ/2

2(d2
1 +d2

1)
3/4 −αd2 eξ ,

χ
[0]
1 =

(1− i)d2[4
√

d2
1 +d2

2(ρ1d2
1 +ρ2d2

1)t +4i(d2
1 +d2

2)t +2
√

d2
1 +d2

2x−1]e−iθ/2

2(d2
1 +d2

1)
3/4 +αd1 eξ ,

ψ
[1]
1 = Ge iθ/2,

φ
[1]
1 =

d1√
d2

1 +d2
2

[
−G+(1+ i)(d2

1 +d2
2)

1/4
(

x+2
(

ρ1d2
1 +ρ2d2

2 + i
√

d2
1 +d2

2

)
t
)2
− 1+ i

4(d2
1 +d2

2)
3/4

]
e−iθ/2

− iαd2

[
x+2

(
ρ1d2

1 +ρ2d2
2 +2i

√
d2

1 +d2
2

)
t
]

eξ ,

χ
[1]
1 =

d2√
d2

1 +d2
2

[
−G+(1+ i)(d2

1 +d2
2)

1/4
(

x+2
(

ρ1d2
1 +ρ2d2

2 + i
√

d2
1 +d2

2

)
t
)2
− 1+ i

4(d2
1 +d2

2)
3/4

]
e−iθ/2

+ iαd1

[
x+2

(
ρ1d2

1 +ρ2d2
2 +2i

√
d2

1 +d2
2

)
t
]

eξ ,

· · ·

with

ξ =−
√

d2
1 +d2

2x−
[ i

2
(ρ1d2

1 +ρ2d2
2)

2 +2
√

d2
1 +d2

2(ρ1d2
1 +ρ2d2

2)+2i(d2
1 +d2

2)
]
t,

G =
1
3
(1+ i)(d2

1 +d2
2)

3/4
[
x+2

(
ρ1d2

1 +ρ2d2
2 + i

√
d2

1 +d2
2

)
t
]3

+
1
2
(1+ i)(d2

1 +d2
2)

1/4

·
[
x+2

(
ρ1d2

1 +ρ2d2
2 + i

√
d2

1 +d2
2

)
t
]2

+
1+ i

4(d2
1 +d2

2)
1/4

[
x+2

(
ρ1d2

1 +ρ2d2
2 + i

√
d2

1 +d2
2

)
t
]

+ (−1+ i)(d2
1 +d2

2)
1/4(2t +m1 + in1)−

1+ i
8(d2

1 +d2
2)

3/4 .

It can be found that the vector function Ψ
[0]

1 is a solu-

tion of the Lax pair (2) at q1 = q1[0], q2 = q2[0], and λ =

λ1 = (1/2)(ρ1d2
1 +ρ2d2

2)+ i
√

d2
1 +d2

2 . Through the first-step

generalized DT (8)–(10), we can gain the first-order localized

wave solutions of the CCQNLS system (1). Owing to the

complicated integral operation exist in η
[1]
1 , we choose to ob-

tain the expressions of the first-order semi-rational solutions

of Eq. (1) after fixing the values of the free parameters. Ac-

cording to different values of the free parameters α , d1, and d2,

we can obtain three types of the first-order nonlinear localized
waves in the CCQNLS equations.[31,32]

i) When α = 0, in order to gain the nontrivial solutions of
Eq. (1), we set that d1 and d2 are all not zero, hereby, the com-
ponents q1 and q2 are proportional to each other. Here, the
first-order semi-rational solutions degenerate to the rational
ones and we can obviously find they are the first-order rogue
waves, see Fig. 1. Choosing d1 = 1, d2 =−2, ρ1 = 1/10, and
ρ2 = 1/20, the expression of the first-order rogue wave solu-
tions of Eq. (1) can be written as

q1[1] =
400it−2036t2−120tx−100x2 +15

2036t2 +120tx+100x2 +5
exp
[

i(2054324t3 +121080t2x+100900tx2 +5765t +1200x)
100(2036t2 +120tx+100x2 +5)

]
, (29)

q2[1] =−2
400it−2036t2−120tx−100x2 +15

2036t2 +120tx+100x2 +5
exp
[

i(2054324t3 +121080t2x+100900tx2 +5765t +1200x)
100(2036t2 +120tx+100x2 +5)

]
. (30)
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Fig. 1. (color online) Evolution plot of the first-order rogue wave in the CCQNLS: (a) q1,(b)q2.

ii) Setting one of the two free parameters d1 and d2 is zero and α 6= 0, we can obtain the first kind of the second-order
semi-rational solutions that a first-order rogue wave interacting with a bright soliton and a dark soliton respectively in the two
components q1 and q2. Choosing d1 = 0, d2 = 1, ρ1 = 1/10, and ρ2 = 1/20, the first kind of the first-order semi-rational solution
of Eq. (1) can be expressed as

q1[1] =
2α[(19/5)it +(21/5)t−2ix+2x+1− i]eξ1

(401/25)t2 +(4/5)tx+4x2 +1+α2 e−1/5t−2x , (31)

q2[1] =
{

1+
2[1− (401/25)t2− (4/5)tx+8it−4x2]

(401/25)t2 +(4/5)tx+4x2 +1+α2 e−1/5t−2x

}
eξ2 , (32)

where

ξ1 =
1

400(25α2 e−(1/5)t−2x +401t2 +20tx+100x2 +25)

{[
(30025i−1000)α2t−10000α

2x−3000iα2]e−(1/5)t−2x

+ 481601it3 +24020it2x+120100itx2−16040t3−161200xt2−12000x2t−40000x3

+(30425i−1000)t +(4000i−10000)x
}
,

ξ2 =
1

400(25α2 e−(1/5)t−2x +401t2 +20tx+100x2 +25)

[
(20025α

2t−3000α
2)e−(1/5)t−2x

+ 321201t3 +16020xt2 +80100x2t +20425t +4000x
]
.
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(a) (b)

Fig. 2. (color online) Evolution plot of the interactional solution between the first-order rogue wave and one-soliton in the CCQNLS equations with the
parameters chosen by α = 1/10. (a) A first-order rogue wave and a bright soliton separate in q1 component; (b) a first-order rogue wave and a dark soliton
separate in q2 component.

Here, the interesting interactional phenomenon can be demonstrated in Figs. 2 and 3. Moreover, by decreasing the absolute
value of α , it can be shown that a first-order rogue wave and a bight (dark) soliton separate in Fig. 2. While increasing the
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absolute value of α , it demonstrates the first-order rogue wave merges with one soliton in Fig. 3. We notice that in Fig. 2(b), a
dark soliton and a rogue wave emerge on the distribution of the spacial-temporal structure, and the amplitude of the rogue wave
is about three times greater than the height of the background. However, when the bright soliton and the rogue wave divide in
Fig. 2(a), we can find that the rogue wave cannot be easily identified. At this time, the amplitude of the plane wave background
in q1 component is zero and the amplitude of the rogue wave is dependent on this background, so the rogue wave is not observed
easily.
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Fig. 3. (color online) Evolution plot of the interactional solution between the first-order rogue wave and one-soliton in the CCQNLS equations with the
parameters chosen by α = 10. (a) A first-order rogue wave merges with a bright soliton in q1 component; (b) a first-order rogue wave merges with a dark
soliton in q2 component.

iii) Setting d1 6= 0, d2 6= 0, and α 6= 0, the second kind of the first-order semi-rational solutions consisted of one first-order
rogue wave and one breather can be generated in both q1 and q2 components. Choosing d1 = 1, d2 = −2, ρ1 = 1/10, and
ρ2 = 1/20, the second kind of the first-order semi-rational solution of Eq. (1) can be written as

q1[1] =
F1 exp

[(1609
400

)
it
]
+F2 exp

[(2409
400

)
it−
√

2x− 3
10

√
2t
]
+50
√

2α2 exp
[(1609

400

)
it− 3

5

√
2t−2

√
2x
]

1618t2 +120xt +200x2 +25+50
√

2α2 exp
[
−
√

2
5

(3t +10x)
] e2ξ3 , (33)

q2[1] =
F1 exp

[(1609
400

)
it
]
−F2 exp

[(2409
400

)
it−
√

2x− 3
10

√
2t
]
+50
√

2α2 exp
[(1609

400

)
it− 3

5

√
2t−2

√
2x
]

1618t2 +120xt +200x2 +25+50
√

2α2 exp
[
−
(√2

5

)
(3t +10x)

] e2ξ3 , (34)

where

F1 = 800it−1618t2−120tx−200x2 +75,

F2 =
100
809

21/4
α(20i

√
2+20

√
2+3−3i)(400i

√
2x−15

√
2+200i−1618t−60x),

ξ3 =
1

40(50
√

2α2 exp[−(
√

2/5)(3t +10x)]+1618t2 +120tx+200x2 +25)

[ 5
809

21/4
α(3i
√

2+3
√

2−40+40i)

· (400i
√

2x+15
√

2−200i−1618t−60x)exp[−(3
√

2/10)t−
√

2x+2it]− 5
809

21/4
α(3i
√

2−3
√

2+40+40i)(400i
√

2x

−15
√

2−200i +1618t +60x)exp
[
− (3/10)

√
2t−
√

2x−2it
]
− 3

1618
i
√

2(400i
√

2x−15
√

2+200i−1618t−60x)

· (400i
√

2x+200i +15
√

2+1618t +60x)
]
.

It is shown that the two components q1 and q2 are all the hybrid solutions between one breather and one first-order rogue wave in
Figs. 4 and 5. Similarly, by decreasing the absolute value of α , we can observe that the first-order rogue wave and one breather
separate in Fig. 4. While through increasing the absolute value of α , the first-order rogue wave and one breather merge in Fig. 5.
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Fig. 4. (color online) Evolution plot of the interactional solution between the first-order rogue wave and one-breather in the CCQNLS equations with the
parameters chosen by α = 10−4. A first-order rogue wave and a breather separate in the two components: (a) q1 component,(b) q2 component.
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Fig. 5. (color online) Evolution plot of the interactional solution between the first-order rogue wave and one-breather in the CCQNLS equations with the
parameters chosen by α = 1/10. A first-order rogue wave merges with a breather in the two components: (a) q1 component, (b) q2 component.

3.2. The second-order localized wave solutions

In this subsection, we construct the second-order localized wave solutions of the CCQNLS equations (1), which include the
second-order rogue wave, two dark (bright) solitons interacting with the second-order rogue wave, and two parallel breathers
together with the second-order rogue wave.[32,33]

Considering the following limit

lim
ε→0

𝛤
[1]
1 𝑇 [1]|λ=λ1+ε2Φ1

ε2 = lim
ε→0

Γ
[1]
1 (ε2 +𝑇1[1])Φ1

ε2 = 𝛤
[1]
1 (Ψ

[0]
1 +𝑇1[1]Ψ

[1]
1 )≡Ψ1[1], (35)

where

𝑇1[1] = λ1𝐼−𝐻[0]𝛬1𝐻[0]−1 = (λ1−λ
∗
1 )𝐼+(λ ∗1 −λ1)

Ψ
[0]

1 Ψ
[0]†

1

Ψ
[0]†

1 Ψ
[0]

1

= 2i
√

d2
1 +d2

2

(
I−

Ψ
[0]

1 Ψ
[0]†

1

Ψ
[0]†

1 Ψ
[0]

1

)
, (36)
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a special vector solution Ψ1[1] is generated through choosing q1 = q1[1], q2 = q2[1], and λ1 = (1/2)(ρ1d2
1 +ρ2d2

2)+ i
√

d2
1 +d2

2
in the Lax pair (2).

Proposition 1 In order to avoid the complicated integral operation in the expression of Γ
[1]

1 , we give the expressions of
modules of q1[2] and q2[2] through Eqs. (8)–(15),

|q1[2]|=

∣∣∣∣∣q1[0]+
2i(λ ∗1 −λ1)ψ1[0]φ1[0]∗

|ψ1[0]|2 + |φ1[0]|2 + |χ1[0]|2
+

2i(λ ∗1 −λ1)φ
(1)
1 [1]φ (2)∗

1 [1]

|φ (1)
1 [1]|2 + |φ (2)

1 [1]|2 + |φ (3)
1 [1]|2

∣∣∣∣∣ , (37)

|q2[2]|=

∣∣∣∣∣q2[0]+
2i(λ ∗1 −λ1)ψ1[0]χ1[0]∗

|ψ1[0]|2 + |φ1[0]|2 + |χ1[0]|2
+

2i(λ ∗1 −λ1)φ
(1)
1 [1]φ (3)∗

1 [1]

|φ (1)
1 [1]|2 + |φ (2)

1 [1]|2 + |φ (3)
1 [1]|2

∣∣∣∣∣ , (38)

where Φ1[1] =Ψ
[0]

1 +𝑇1[1]Ψ
[1]

1 = (φ
(1)
1 [1],φ (2)

1 [1],φ (3)
1 [1])T.

Proof From the expressions of Λ1 and Λ2, we can gain the following equalities

Ω1 = ρ1[2Re(q1[0]φ1[0]ψ1[0]∗)Ω1 +4Im(λ1)|ψ1[0]|2|φ1[0]|2]+ρ2[2Re(q2[0]χ1[0]ψ1[0]∗)Ω1 +4Im(λ1)|ψ1[0]|2|χ1[0]|2], (39)

Ω2 = ρ1[2Re(q1[1]φ1[1]ψ1[1]∗)Ω2 +4Im(λ1)|ψ1[1]|2|φ1[1]|2]+ρ2[2Re(q2[1]χ1[1]ψ1[1]∗)Ω2 +4Im(λ1)|ψ1[1]|2|χ1[1]|2]. (40)

Furthermore, it is clear that Ω1 and Ω2 are all real functions
of x and t through Eqs. (39) and (40). Thus, the expressions of
η
[1]
1 and η

[2]
1 can be written as

η
[1]
1 = i

∫
2Im(λ1) Ω

−2
1 ∆1 dx,

η
[2]
1 = i

∫
2Im(λ1) Ω

−2
2 ∆2 dx. (41)

Choosing the integration constants in Eq. (41) to be zero,
we can find that η

[1]
1 and η

[2]
1 are pure imaginary functions of

x and t. Based on the above facts, the two following relations
can be obtained as

|eη
[1]
1 |= 1, |eη

[2]
1 |= 1.

Utilizing the relation Ψ1[1] = Γ
[1]

1 Φ1[1], the corresponding re-
lations between the three components in the vector function
Ψ1[1] and the ones in the vector function Φ1[1] can be derived
as

ψ1[1]
φ1[1]
χ1[1]

=


eη

[1]
1 φ

(1)
1 [1]

e−η
[1]
1 φ

(2)
1 [1]

e−η
[1]
1 φ

(3)
1 [1]

 . (42)

Through Eqs. (9) and (14), the module of q1[2] can be directly
generated as

|q1[2]|=
∣∣∣∣e2η

[2]
1 (q1[1]+

2i(λ ∗1 −λ1)ψ1[1]φ1[1]∗

|ψ1[1]|2 + |φ1[1]|2 + |χ1[1]|2
)

∣∣∣∣
=

∣∣∣∣q1[1]+
2i(λ ∗1 −λ1)ψ1[1]φ1[1]∗

|ψ1[1]|2 + |φ1[1]|2 + |χ1[1]|2

∣∣∣∣
=

∣∣∣∣e2η
[1]
1 (q1[0]+

2i(λ ∗1 −λ1)ψ1[0]φ1[0]∗

|ψ1[0]|2 + |φ1[0]|2 + |χ1[0]|2
)+

2i(λ ∗1 −λ1)ψ1[1]φ1[1]∗

|ψ1[1]|2 + |φ1[1]|2 + |χ1[1]|2

∣∣∣∣
=

∣∣∣∣∣q1[0]+
2i(λ ∗1 −λ1)ψ1[0]φ1[0]∗

|ψ1[0]|2 + |φ1[0]|2 + |χ1[0]|2
+

2i(λ ∗1 −λ1)φ
(1)
1 [1]φ (2)∗

1 [1]

|φ (1)
1 [1]|2 + |φ (2)

1 [1]|2 + |φ (3)
1 [1]|2

∣∣∣∣∣ ,
in a similar way, the validity of Eq. (38) can be also testified.

This completes the proof of Proposition 1. �
By virtue of the above formulae (37) and (38), we can obtain concrete expressions of the modules for the second-order

localized wave solutions. Here, we omit presenting the expressions since they are rather cumbersome to write down. According
to different values of the free parameters α , d1, and d2, we can also obtain three kinds of the seconde-order nonlinear localized
waves of the CCQNLS system (1).[32,33]

(I) α = 0, d1 6= 0, and d2 6= 0.
Here, the second-order semi-rational solutions degenerate to the rational ones, thus, the second-order rogue wave of the

CCQNLS equations can be obtained. When s1 = 0, the second-order rogue wave is fundamental pattern, see Fig. 6; while s1 6= 0,
the the second-order rogue wave is triangular pattern, see Fig. 7.
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Fig. 6. (color online) Evolution plot of the second-order rogue wave of fundamental pattern in the CCQNLS equations with the parameters chosen by α = 0,
ρ1 = 1/10, ρ2 = 1/20, d1 = 1, d2 =−2, m1 = 0, n1 = 0: (a) q1 component,(b) q2 component.
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Fig. 7. (color online) Evolution plot of the second-order rogue wave of triangular pattern in the CCQNLS equations with the parameters chosen by α = 0,
ρ1 = 1/10, ρ2 = 1/20, d1 = 1, d2 =−2, m1 =−100, n1 = 100: (a) q1 component,(b) q2 component.

(II) α 6= 0, d1 = 0, and d2 6= 0.
At this point, the first kind of the second-order semi-rational solutions between two dark (bright) solitons and one second-

order rogue wave can be given. Figure 8(a) shows two bright solitons together with a fundamental second-order rogue wave,
besides, figure 8(b) demonstrates two dark solitons coexisting with a fundamental second-order rogue wave.
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Fig. 8. (color online) Evolution plot of the interactional solution between the second-order rogue wave of fundamental pattern and two-soliton in the
CCQNLS equations with the parameters chosen by α = 1/200, ρ1 = 1/10, ρ2 = 1/20, d1 = 0, d2 = 1, m1 = 0, n1 = 0. (a) Two bright solitons together with
a fundamental second-order rogue wave in q1 component; (b) Two dark solitons together with a fundamental second-order rogue wave in q2 component.

In Fig. 8(a), when the two bright solitons interact with the second-order rogue wave, the second-order rogue wave in q1

component is not observed easily for the same reason as the first-order case. When setting s1 6= 0, the fundamental second-order
rogue wave can split into three first-order rogue waves, in addition, the second-order rogue wave of triangular pattern and two
solitons separate in Fig. 9. By increasing the absolute value of α , the two dark (bright) solitons merge with the second-order
rogue wave of triangular pattern, see Fig. 10.
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Fig. 9. (color online) Evolution plot of the interactional solution between the second-order rogue wave of triangular pattern and two-soliton in the CCQNLS
equations with the parameters chosen by α = 1/200, ρ1 = 1/10, ρ2 = 1/20, d1 = 0, d2 = 1, m1 = 50, n1 = −50. (a) Two bright solitons and a second-
order rogue wave of triangular pattern separate in q1 component; (b) Two dark solitons and a second-order rogue wave of triangular pattern separate in q2
component.
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Fig. 10. (color online) Evolution plot of the interactional solution between the second-order rogue wave of triangular pattern and two-soliton in the CCQNLS
equations with the parameters chosen by α = 100, ρ1 = 1/10, ρ2 = 1/20, d1 = 0, d2 = 1, m1 = 50, n1 =−50. (a) Two bright solitons merge with a second-
order rogue wave of triangular pattern in q1 component; (b) Two dark solitons merge with a second-order rogue wave of triangular pattern in q2 component.

(III) α 6= 0, d1 6= 0, and d2 6= 0.
Hence, we arrive at the second kind of the second-order semi-rational solutions between two breathers and a second-order

rogue wave in the two components q1 and q2, see Figs. 11–13. Meanwhile, setting s1 6= 0, the fundamental second-order rogue
can split into three first-order rogue waves, see Figs. 11 and 12. By decreasing the absolute value of α , it shows that the two
parallel breathers and the second-order rogue of triangular pattern separate in Fig. 12. While increasing the absolute value of α ,
it demonstrates that the two parallel breathers merge with the second-order rogue wave in Fig. 13.
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Fig. 11. (color online) Evolution plot of the interactional solution between the second-order rogue wave of fundamental pattern and two-breather in the
CCQNLS equations with the parameters chosen by α = 1/1000, ρ1 = 1/10, ρ2 = 1/20, d1 = 1, d2 = −1, m1 = 0, n1 = 0. Two parallel breathers and a
fundamental second-order rogue wave exist in the two components: (a) q1 component, (b) q2 component.
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Fig. 12. (color online) Evolution plot of the interactional solution between the second-order rogue wave of triangular pattern and two-breather in the
CCQNLS equations with the parameters chosen by α = 1/1000, ρ1 = 1/10, ρ2 = 1/20, d1 = 1, d2 =−1, m1 = 50, n1 =−50. Two parallel breathers and a
fundamental second-order rogue wave separate in the two components: (a) q1 component, (b) q2 component.
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Fig. 13. (color online) Evolution plot of the interactional solution between the second-order rogue wave of triangular pattern and two-breather in the
CCQNLS equations with the parameters chosen by α = 100, ρ1 = 1/10, ρ2 = 1/20, d1 = 1, d2 = −1, m1 = 50, n1 = −50. Two parallel breathers merge
with a fundamental second-order rogue wave in the two components: (a) q1 component, (b) q2 component.

Through discussing the different values of the free pa-
rameters d1, d2, and α in the the first-order localized wave
solutions, we can get various kinds of interactional solutions.
Instead of considering various arrangements of the two poten-
tial functions q1 and q2, we consider the same combination as
the same type solution. Hence we can get three types of the
first-order localized wave solutions using our method: 1) One
first-order rogue wave; 2) one dark or bright soliton together
with one first-order rogue wave; 3) one breather interacting
with one first-order rogue wave. However, the expressions of
the second-order localized waves are very tedious and compli-
cated, we do not give these expressions in the general form.
The three types of hybrid solutions which are similar with the
first-order case are only demonstrated. Whether the second-
order localized waves own more types or not, we cannot draw
a firm conclusion now.

4. Conclusion
In conclusion, choosing a periodic seed solution of

Eq. (1), a peculiar vector solution of the Lax pair (2) is
elaborately derived. Based on the special vector solution,
we present some interesting and appealing nonlinear local-
ized waves in the CCQNLS equations (1) through the gener-
alized DT. The multi-parametric and semi-rational solutions
of Eq. (1) are obtained, where some free parameters play
an important role in controlling the dynamic properties of
these localized nonlinear waves, such as α , d1, d2, and si

(i = 1,2, . . . ,N).[32,33] The first- and second-order hybrid solu-
tions of the CCQNLS equations are mainly discussed in three
cases: I) when α = 0, d1 6= 0, and d2 6= 0, the semi-rational
solutions degenerate to the rational ones, e.g., the first- and
second-order rogue waves; II) when α 6= 0, d1 = 0, and d2 6= 0,
the first kind of the higher-order semi-rational solutions are
presented, such as hybrid solutions between a first-order rogue
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wave and a dark or bright soliton, a second-order rogue wave
and two dark or bright solitons; III) when α 6= 0, d1 6= 0, and
d2 6= 0, the second kind of the higher-order semi-rational solu-
tions are shown, such as hybrid solutions between a first-order
rogue wave and a breather, a second-order rogue wave and two
breathers.

Baronio et al.[46] obtained the first-order semi-rational
solutions in the coupled NLS, however, the higher-order in-
teractional solutions are not constructed. We construct the
higher-order localized wave solutions of the CCQNLS sys-
tem (1) through the generalized DT. For one thing, iterat-
ing the generalized DT process, we can generate more com-
plicated localized wave solutions possessing more abundant
striking dynamics. For another thing, there were many other
interactional solutions in other nonlinear models.[31–33] The
rogue waves together with conidal periodic waves in the focus-
ing NLS equation are obtained by DT method.[25] Addition-
ally, a study about rogue waves interacting with solitons and
breathers at the same time was published. We will investigate
the above two aspects in our future work. Furthermore, we
hope that these kinds of nonlinear localized waves of the CC-
QNLS equations (1) will be verified in physical experiments
in the future.
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