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Abstract
An integrable semi-discrete analogue of the one-dimensional coupled Yajima—
Oikawa system, which is comprised of multicomponent short waves and one
component long wave, is proposed by using a bilinear technique. Based on the
reductions of the Bécklund transformations of the semi-discrete BKP hier-
archy, both the bright and dark soliton solutions in terms of pfaffians are
constructed.

Keywords: integrable semi-discretization, coupled Yajima—Oikawa system,
BKP hierarchy reductions, bright and dark soliton

1. Introduction

It is well known that there are two typical mathematical models in nonlinear waves: one is a
long wave (LW) model such as the Korteweg—de Vries equation and the other is a short wave
(SW) model such as the nonlinear Schrodinger (NLS) equation. A resonant interaction
between LW and SW occurs when the phase speed of the LW is equal to the group velocity of
the SW [1]. The Yajima—Oikawa (YO) system, which is also known as the long wave—short
wave resonance interaction system

1S, — S, — LS =0, ()
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L, = 2(ISP)x, @)

is a fundamental model describing resonant interaction of LWs and SWs [2-8]. The YO
system has been derived as a model equation for the interaction of a Langmuir wave with an
ion-sound wave in a plasma [2], for the interaction of a long gravity wave and a capillary-
gravity wave [3], for the interaction of a long internal wave and a short internal wave [4], for
the interaction of a long internal wave and a short surface wave in a two layer fluid [5], and
for the interaction of a LW and a SW in nonlinear negative refractive index media [6]. From
the mathematical point of view, it is known that the NLS equation and the YO system can be
derived from the so-called k-constrained KP hierarchy [9]. Specifically, the NLS equation
corresponds to the k-constrained KP hierarchy with k = 1, while the YO system is associated
with the case of kK = 2 [10]. Multi-dimensional and multi-component generalizations of the
YO system have been investigated and their various interesting solutions have been found
[11-20]. Very recently, the rogue wave solutions to the YO system and the two-component
YO system have been presented [21-24], and it has attracted much attention of physicists in
recent years.
A discrete NLS equation

iqn,t = qn+1 - 2qn + qnfl +o an|2qn (3)

appears in many physical applications including nonlinear optics [25], molecular biology [26]
and condensed matter physics [27]. The discrete NLS equation (3) is not integrable although
its continuous limit goes to the integrable NLS equation [28-30]. The discrete NLS
equation (3) admits discrete solitary waves (discrete solitons), and they have been observed
experimentally in a nonlinear optical array [31, 32]. Understanding properties of discrete
solitons in the discrete NLS equation is very important for physical applications, but it is hard
to gain a thorough understanding because of the lack of integrability of the discrete NLS
equation (3).
The integrable space-discretization of the NLS equation

ig,, = (1 + o lg,) G, + g, @)

was originally derived by Ablowitz and Ladik [33, 34], and it is often called the Ablowitz—
Ladik (AL) lattice. After the discovery of an integrable space-discretization of the NLS
equation, many mathematical properties of the AL lattice have been investigated. Similar to
the continuous case, the AL lattice admits bright soliton solution for the focusing case (o = 1)
[35, 36], dark soliton solution for the defocusing case (¢ = —1) [37] and rogue wave
solutions [38, 39]. It should be noted that mathematical studies of the AL lattice provide
useful insights into the studies of discrete solitons in the non-integrable discrete NLS
equation.
The semi-discrete coupled NLS equation

iq") = (1 + 011g"P + 02 1gPP) @, + ¢V, ®)

iqg® =1+ 0 1g"P + 02 1g®P)@®, + 4. ©)

where 0; = £1(i = 1, 2), is of importance both mathematically and physically. It can be
solved by the inverse scattering transform [28, 40—42]. The general multi-soliton solution in
terms of pfaffians was found recently in [43], which is of bright type for the focusing-focusing
case (01 = 0, = 1), is of dark type for the defocusing-defocusing case (07 = 0, = —1), and
could be of mixed type for the focusing-defocusing case (o; = 1, 0, = —1).
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In contrast with the studies of the NLS equation, the studies of discrete analogues of the
YO system are missing although resonant interactions of LWs and SWs in discrete settings
are possible to be realized physically. For instance, the discrete YO system is expected to
model the resonant interaction of solitary waves (LW) and discrete breathers (SWs) in lattice
models such as the Fermi—Pasta—Ulam lattice. On the other hand, it is important to construct
an integrable semi-discrete analogue of the YO system from both mathematical and physical
point of view. In this paper, we consider an integrable semi-discrete analogue of the one-
dimensional (1D) coupled YO system:

iS00 — 840 — LS =0, p=1,2,-,M, @
M

L =23 ¢ (SWP),, ®)
pn=1

where ¢ are arbitrary real constants, S and L indicate the uth SW and LW components,
respectively.

The goal of the present paper is to construct an integrable semi-discrete analogue of the
coupled YO system via a bilinear approach, and derive both the bright and dark soliton (for
the SW components) solutions by using a pfaffian technique and a reduction method. The
remainder of this paper is organized as follows. In section 2, we present an integrable semi-
discrete version of the coupled YO system. In sections 3 and 4, the bright and dark soliton
solutions in terms of pfaffians of the semi-discrete coupled YO system are constructed based
on two types of Bécklund transformation of the BKP hierarchy. Section 5 is concluded by
some comments and discussions.

2. Integrable semi-discrete coupled YO system

Through the dependent variable transformation

G

S(H):Ts Lzz(lnF)xx’ /'L: 1’ 2""’M, (9)
the 1D coupled YO system (7) and (8) can be cast into the bilinear form
(iD,—sz)G(“)-FZO, pw=1,2--M, (10)
M -
D.D,F - F — 2cF - F =2 c¢WGWG™, (11)

n=1

where ¢ is an integral constant and - means complex conjugate. The Hirota’s D-operator is
defined by

. 8  aY(o )
Dth (a . b) = (a — W) (E — W) a(x, t)b(x/, I/)

x=x',1=t'

By discretizing the spacial part of the above bilinear equations

DIGW - F — L (GW\E | — 2GPE, + GY\F ), (12)
(3

F— Y., - B, (13)
e
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one can obtain

iD,G" . F, (G,glen, 2GWF, 4+ G EL ) =0, p=1,2,- (14)
1 M B
—DiFi1 - Fy = cFy - B = S MGG (15)
p=1

Furthermore, we require that the discretized bilinear forms are invariant under the gauge
transformation

F, — F,exp(gyn), G¥ — G{"exp(gyn),

then one gets the gauge invariant semi-discrete bilinear YO system

iD,G" - F, (G%Fn, — 2GF,+ G Fi) =0, p=1,2,-,M, (16)
1 Ly AW L 0 50
;DanH'Fn—CEzH'El: > — 5 (GG, + GMG!). (17)

pn=1
Letting
G(ll) F..F_ 2
SW =L, = %(—"“2” L _ 1), L,=2InF, (18)
n € Fn

the bilinear equations (16) and (17) are transformed into

dSY 1 ) ) w (1)

! dt _E(Snil—’—snl_l_zsnﬂ) L (Sl —'_Sl])_O /”L_l 2 (19)
1z 2 M _
~ (L = Lo = 26 = 330G + SPSI. (20)

pn=1

By using the relation %(Ij,,+ \—2L,+ L,_) = ln(l + 5;L,,), we propose the following
discrete system

dSlgll) L L L 1 1 1
i— (S,ifgl S = 2500 = SLa S+ S0 =0, p =1, 2,00 M, @1
=2
In{1 4+ =L M
d ( 2 ”) C(”) s a(u ) o L
2o = SIS - S0+ S S - S, 22)

p=1
which converges to the coupled YO system (7) and (8) when ¢ — 0.

For simplicity, by taking e =1 and applying the gauge transformation
S — exp(2ir)S\", one can obtain the semi-discrete YO system

dS“) ) 1

= S+ SE\ L+ L) p= 1.2, (23)
R R M —
Loy — Loy — 2¢ = 300 (89S0 + sWISH), (24)

n=1
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L, 1 2 2 2
Inf1+ 5 )= E(LnJrl — 2L, + L,-v), (25)
or
ds® 1
i—2— = (S, + s (1 + —Ln), =1,2,- 26
a =( w1l T D > n = (26)
d n RS Wy s () \ ) (1) (u)
a1n L+ =22 = =D WIS, — SIS + SH (S, (27)
pn=1
By setting U, = ln(l + %), the semi-discrete YO system leads to
ds(/f)
= SW, + S expUy), p=1,2,- (28)
1 Y o W &
;_Ezoqu SPNS 4+ 8 (S — ST (29)

In the subsequent two sections, we will consider general bright and dark soliton solutions
for the semi-discrete coupled YO system (26) and (27) in details. For brevity, we call soliton
solutions with bright or dark solitons for the SW components and solitons for the LW
component by bright or dark soliton solutions.

3. Bright soliton solution for the semi-discrete coupled YO system

In this section, we construct bright soliton solutions for the semi-discrete coupled YO system
(26) and (27). First, we briefly recall Béacklund transformations of the semi-discrete BKP
hierarchy by the following Lemma [43].

Lemma 3.1.

for up=1,---,

The following bilinear equations

Dtglfu) fn — (u)fn L= ()

n+1/n— n—1/n+1°
(1) — 5w
Dlhnu ]31 - hn+l n—1 "~ hn Un+1>

— o) () (1) 7, (1)
Dywfypy - Ju = 80" — &yl

M are satisfied by the pfaffians

Sy = pl(ay, -+, asn, con, -+, 1),

g = pf(dy, ay, -+, axy, con. -+, W),

(30)

€2y

(32)

(33)

(34)
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hrE'u) = pf(d07 aip, -, AdanN, CoN, 5 C, ﬂ(“))a (35)
where the pfaffian elements are defined by

p;
pf(a;, ap) = —(Pjpk)" exp(§; + &
ka N

pf(dh a]) - exp(f) pf(a]7 Ck) -
pf(d, ¢;) = pf(dz, o) = pf(d, ﬂ(“)) = pf(aj, o) = pf(a;, ™) = 0,
M eXp(C(”) 4 77(/1))
2 K N4 1<j<2N, 1<k<N,
pi(cj c) = 9= o + P

0, otherwise,

(e, ) = {exp @), 1<j <N,
0, N+ 1<j<2N,

1<j<N,
pf(c;, AW = {exp(C(“)) N+1<j<2N,

with

1
§= [”f - ;]t’ ¢ = Iy ¢ 0 = PPy ol
J

Here p, Qj(»”), Pj(“), ¢ %) and 77%) are arbitrary constants.

Proof. From the definition of the functions f,, g ) and h(”) we can derive the following
pfaffian’s rules:

fop1 = Pido, di, *), f,_; = pf(do, d_1, ), Oif, = pf(d_y, dy, *),
0 wof, = pf(e, aw, gy 9 syt = pf(do, dy, *, ), Buny,
;Eljr)l — pf(d] ., a(u)) g(u) — pf(d_ e Oz(“)) ag(u) — Pf(do» d_y, dy, e, a(u))
) = pfd,, », B®), A = pf(d_y, s, B®@), Oh\ = pf(dy, d_1, dy, +, BW),
where
pf(do, di) = pf(do, d_1) = 1, pf(d_,, di) = pf(a', §¥) =0,
and (*) = (aj, -+, aan, Cons "5 C1)-
Now the algebraic identities of pfaffian
pf(do, d_1, d,, *, a')pf(e) = pf(do, d_i, *)pf(dy, *, W)
— pf(do, di, )pf(d_,, *, @) + pf(do, *, *)pf(d_y, dy, *),
pf(do, d_,, dj, +, B9)pf(*) = pf(do, d_y, *)pf(d, *, 31)
— pf(do, di, )pf(d_,, *, 1) + pf(do, *, B)pf(d_y, d), *),
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and
pf(dO’ dl’ ° a(u), /B(H))pf(.) = pf(d()’ dl’ .)pf(.’ a(ﬂ)’ 5(#))
- pf(do’ °, a(#))pf(dl’ °, 5('“)) + pf(dl’ °, Oé(ﬂ))Pf(dO, °, /B(U))’

together with the above pfaffian expressions of T-functions give the bilinear equations (30)—
(32). ]

Here we assume ¢ = 0 in equation (24), which yields the bright-type soliton solution for
the semi-discrete coupled YO system as shown below. Through the dependent variable
transformation

(1) (1) N
SW = ingﬂ_, S‘,i#) = (—i)ngn , L,=2 JC"LJ}” — 1|, L =2Inf, (36)
fu fu 1
equations (23)—(25) are cast into
Dig) - fy = 8 = 8 (37)
D’grgﬂ) = g,f’fl n—1 -rsli)l n+1° (38)
N s g
D’fnJrl f;, = ZIT(gn+lgn - gn+1)’ (39
pn=1

forpu=1,---,M.
In order to carry out the reduction, we define

b P

ppe — 1

pEd;, a)) = pi*!. pt(a). ¢f) = b,

PE(d. ¢f) = pf(d;, a®) = pf(d;, §9) = pf(a], o) = pf(al, G = 0,
M oexp(¢Y” + n” + & + &)

pf(cj{, C,ﬁ) il Q](»”’) + P}Eu)

0, otherwise,

(1) ;
pf(c], alv) = {eXp(”f +&), 1<j<N,

pf(aj{v a]é) = (l)jpk )ns

s N+ 1<j<2N, 1 <k<N,

0, N+ 1<j<2N,
! 3 ' LeJsH

f, H =

pf(cj, 5) exp(C¥ + &), N+1<j<2N.

Then, the pfaffians f,, g’f“) and 2% in equations (33)—(35) have alternative expressions in
pfaffians

.f;«l = pf(a]/’ “'aaZ/N7 CZ/N’ "'ac]/)’ (40)
grgﬂ) = pf(d05 a],’ "'3a2/N’ CZIN’ ""c]l’ a(u))’ (41)
hrgu) = pf(d()? al/’ ""a2/N’ clea "'561,9 ﬂ(ﬂ)) (42)
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Therefore, under the reduction conditions

1 l 1 1 .
e N IS 2 A L A RV e B A ¢
sH p; sl p;

the following relation holds

M
(£ 8 ") = S 50w (f,, g, B, (44)
pn=1
and thus one can get
M
thn+1 f, = Zs(u) (grgi)lhé#) _ gliu)héi)l)' (45)
pn=1

Lastly, by imposing the complex conjugate conditions

(1)

.C
— 5 ()

5 P =B Con

s(#) — 1
Pon+1-j0

=7, for 1<j <N, (46)

and requiring y*) being pure imaginary, one can realize 1" = g‘rg“). Thus equations (30),
(31) and (45) become equations (37)—(39).
In summary, we arrive at the following theorem:

Theorem 3.1. The bilinear equations (37)—(39) are satisfied by the pfaffians

Jo = pf(ay, - agy, coy =), “n
g'g;l,) — pf(dOs 611,, '“’a2/N’ C2/N’ ...’Cll’ a(ﬂ))’ (48)
g,?l) — pf(dy, a]’,"'7a2/N’ Cle’ ...’Cll, Uy, 49)

where the pfaffian elements are defined by

p;
pt(al, a) = —(p,pk ",
PiPx —

pf(d, aj) = Hl, pf(aj, ¢) = 6j
pi(ds, ¢) = pf(d;, a®) = pf(dy, B%) = pf(al, a®) = pf(al, f®) = 0,
voexp (¢ + 1l + & + &)
pf(c ) = Qj(_ll) + ¥
0 otherwise,

exp n(ﬂ) 1 < N

, N+ 1<j<2N, 1<k<N,

1<j<N,
pf(cj. B exp(<<m+§) N+1<j<2N.
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with
P = —i=|p - L for 1< <N,
C(/’) p]

o = _ii[p l] for N+ 1<j<2N,
b

1
gj = [P/' — p.] C(#) C(#)’ 77(;1) — 7](];18,
J

() — pw

and p;, C(j“) = C% and n(j”') = n(f’g are constants satisfying pyy.,_; = p» C3 N0 = T

Js
forl <j<N.

In what follows, we illustrate one and two bright soliton solutions for M = 2.
One-soliton solution: By taking N = 1 in (47)—(49), we get the T-functions for the one-
soliton solution
i (cVAA + c®BB)p,p, p, —

P, _
"t ! +&). (50
i 2 (i — 1)? P + P (PiP1)" exp(&y + &) (30)

@ = Bip" exp(&)), (51)

where & = (p1 - ;)t A = expln{)] and By = exp[n{})].

i(cMAA + c(2)b’|l’3’])(pl > 0 need
2(py+pp)

to be satisfied. Further, the above 7-functions lead to the one- sohton solution as
follows

g =Ap/exp(&), g

In order to avoid the singularity, the condition

A .
Si = Elexp (i&}; — Oo)sech (&, + o), (52)
B .
Si = 5 exp(ig], — fo)sech(§)y + 0o), (53)
1
Ln (‘Dﬂi)se h2 (glR + 90) (54)
2p\p,

(L( JAA + ¢PBiB)p,p, p, — P
where ¢ = i€/ = nlnd and exp(26) = - PP ZP The
51 14 glR + 6” (pl) + 51 p( 0) (PP — 1)? P+ P

quantities ~— exp( —0y) and l— exp(—6y) represent the amphtudes of the bright solitons in

(p‘p‘i__ denotes the

the SW components s and S(z) respectively. The real quantity i
amplitude of soliton in the LW component. As an example, we illustrate one-soliton in
figure 1 for the nonlinearity coefficients (c¢(V, ¢®®) = (1, —1). The parameters are chosen as
A1:1,31:1—|—iandpl :1+1

Two-soliton solution: By taking N = 2 in (47)—(49), we get the 7-functions for the two-
soliton solution

f, =14 CiEE| + CaE\Ey + CyELEy + CiEyE,
+ [P (P11P2 C13Cat — Pi3Pa1CiiCos)EEo E Es, (55)
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with

Figure 1. The profiles of evolutions of one-soliton solution (bright soliton for SW

components).

g = AlE| + A E, + Piy(A Pi1Cot — A PriCi)E B E
+ P2 (A1 P13Cos — A Py Cio)ELE> By,

g® = BiE| + BE; + Pip(BiPyiCot — ByPyiCi)ELE> By
+ Pi2(B1P13C3 — By Py Cio) E\Es By,

PP P~ P
Pp=—"—2 Pr=—"1—",
pp, — 1 pp — 1
i DAA + C(Z)ngk)pjﬁk P —

E; = plexp(§), Cig= = - —,
T 72 (pp, — 17 P+ b

(56)

(57)

where §; = (pj - é)t, Aj = exp [17%] and B; = exp [77%] for j = 1, 2. Figure 2 shows two-

soliton interaction with the parameters as (¢(V, ¢®) = (1, —1), A, =2, A, = 5, B, = 3,
32:4,p1:1+iandp2:—%+§i.
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Is¥

Figure 2. The profiles of evolutions of two-soliton solution (bright soliton for SW
components).

4. Dark soliton solution for the semi-discrete coupled YO system
In this section, we consider dark soliton solutions for the semi-discrete coupled YO system

(26) and (27). To this end, we need to introduce another set of Bécklund transformations of
the semi-discrete BKP hierarchy by the following lemma [43].

Lemma 4.1. The following bilinear equations

1 1
() _ (D] (k)
(Dz +aw — (u)) W.f =aWg Wt — a(mgn’jl 1 (58)
1
(Dz + W a(‘t))h(m f = rgi)lf}"t I a(ﬂ)hrgﬁ)lfnﬂ’ (59)
D w L 1 e 4 L w 60
Y = + W fn = —« gn+l n + a(u) gn n+1° ( )

for = 1,---,M are satisfied by the pfaffians

0---0 0..1..0 0..-1..0
f=1", glfﬂ) =T, , B =70 , (61)
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. ..o ... J01)
where the T-function T\ " is the pfaffian 7\""" = pf(a, as,---,asy), whose elements

are defined by

P — Py
pf(a;, ar) = cix + J—lpf(do, a;)pf(do, ar),

PP —
M p. — aW 1
P a) = pi*' [T | —a| ().
p=1 \1 = a¥p

5= [pf - _]t+ Z[ j - Yt G

J
P e 1 — oz(")pj p - a

Proof. From the definition of the 7-functions, we have the following formulae of pfaffians:

7_211-»1(”4) = pf(dy, d,, *), 7_5341-»1@4) = pf(dy, d_i, *),

1.0

Oyl = pEd_y, i, 9. Dot 1 = pEY), d, .

(ay(m — o + )Tln(:'i'l(w = pf(dy, di, dyi), dl(u)’ °),

a(/L)

AR (VDTS ey (00}
Th M = Pf(do, d](lu)9 ‘),

QWY = iy, df, #),

1 LSO (VOIS By (¢0))
Tnfl * = pf(dfh d](lu)7 .)9
a

1 W 00 ] 1O

(8x+a<“’ - W)Tfl W = pf(dy, d oy, dyy P, 9),
ARy (VD ey 100}
n

= pf(do, d, »),

1 SOy (VI ey 10)]
a(/l) Tn+1 = pf(dl’ d&%l .)9

where
pf(do, d\) = pf(dp, d_1) = 1, pf(d_y, d)) =0,
pf(d", d\”y = 0, pf(do, d™) = pf(doy, d) = 1,

1
p(di, d"”) = ), pi(d, d') = pfd-, di") = —.
o\ m NI
D « Db «a
f(dP, a)) = p| L— | exp©.
pf(d, /) p; [1 _ 04(“')1?,' Vl;[l 1 - oz(”)pj pE)

and (*) = (ay, -, aw).
Now the algebraic identity of pfaffians together with the previous rules for 7-functions in
pfaffians

pf(d(), d—ls dla dl(u)a .)pf(.) = pf(d(Js d—l» .)pf(dls d](u)s .)
— pf(do, di, *)pf(d_y, d", *) + pf(do, d", )pf(d_,, dy, *),
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gives the bilinear equations (58) and (59) while the algebraic identities of pfaffians

pf(do, dy, d}, d”, *)pf(*) = pf(dy, dy, )pf(d"), d", *)
— pf(do, d%), )pf(dy, d{”, *) + pf(do, A", *)pf(dy, d), ),

leads to the bilinear equation (60). O

Next, we consider ¢ = 0 in (24), which implies the dark soliton solution of the semi-
discrete YO system. By applying the dependent variable transformation

g(;,,) _ gw)
SW = ({amy exp[ (@ — at)] 21—, S,E"') = (—iaW)rexp[(a — aW)r] 22—,
n n
L= 2| Bl | f g
1 !
" (62)

with |a”| = 1, equations (23) and (25) are cast into

(D + i —aW)gl - f = oW f | —aWeghf . (63)
D, + am — a(ll))gr(l#) fn — @(/l)glgi)]f;l_l _ a(#)g}il_&)lﬁl_‘_l , (64)
) W 50 _ A1) () 50
fonJrl ‘fl; - Cn+1 f;‘l = ZIT(a(lL)gnil‘gn# - a(#)gn; gnil)’ (65)
p=1
forp=1,---,M.

Now we carry out the reductions to obtain bilinear equations (63)-(65) from
equations (58)—(60) in lemma 4.1. First, by taking

Cik = Oans1-jik J <k, (66)
the 7-functions Ti:l)ml(M) can be rewritten as
ON
11 = p(af, as, a0 ] pt(do, @) (67)
j=1
where
1 Dy — D

pf(a), aj) = vk . J <k (68)

+
pfdo, appf(do, an1-))  pp — 1

Thus, if p; satisfies the constraint condition:

M — oW — oW — oW BN ()
L e 1 —a¥p i Ponyr1—j =@ I —a¥pyyyi_;
n=1 1 - a(“)pj b= at 1 - a(u)pZNJrl*j Ponyi1—j — a
1 1
=P — — T Pw+1-j — , (69)
p; PaNt1-j
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i.e.

M
Zs(u) a® — 1 1
a

— ] 1
=l 1 - a(l)pj)(l - WP2N+lj)
1
+ 1
— oW -
(1 —a¥ P2N+1j)(1 a(n)%)
1 1
P Pany1j
then we have
[...q0n M W) 1. 00
atTn = ZS H 8},(,1)7'}1 . (71)

p=1

Applying the above relation (71) to equation (60), we have

M M
1 1
— ] (1) g, (1) () g, (1)
|:Dt B st) (OC(N) B Oé(#) )}/n+l 'ﬁ1 - _ZS(“) (a(u)gnilh"“ - a(,u) gnu hnil)' (72)
p=1

p=1
Furthermore, imposing the complex conjugate conditions

. C(H)

) _ _ 5w —gw T ;
s = —j 5 Ponyi1-j = P> gp;NJrl—j,(] = fj,O + 12 , for 1 <j<N, (73)
and requiring y*) being pure imaginary, || = 1, one can realize h{*) = ",E“).

Consequently, equations (58), (59) and (72) become equations (63)—(65). In summary,
the following theorem holds:

Theorem 4.1. The bilinear equations (63)—(65) with |a'| = 1 are satisfied by
" I
f;l _ 7_2..»0’ g]fﬂ) _ 7_2..,1...0’ h,gll) _ 7_24..71...0, (74)

. D... M), (D... M)
where the T-function Ti, s the pfaffian T; 1 = pf(ai, ay,---,asn), whose elements

are defined by

P — Pr
pf(aj, ax) = ans1-jx + ————pf(do, a)pf(do, ar).
ppe — 1

M p — W 1
pfd;, aj) = P}Hl 11 17(“) exp(§)),
p=1 \1 = a¥p

1
fj = [pj — ;][ + 5}',0‘

J
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Here p; §j0 are constants satisfying the following constraints:

_Zl (a(u) _ a(u)) = (a(u), P Poviij ) = l + 1 , (75)

p=1 D Ponti—j

with
1
1 - a(ﬂ)pj)(l — @(H)I’ZNH—]‘)

E(aW, P> Pony1—j) =

1
(1 — a(“)p2N+17.)(1 — @(u)pj)’

() . .
and pyyy1-j = Py £2N+1710 §o Tigforl <j<N.

In the following, we will illustrate one and two dark soliton solutions for M = 2.
One-soliton solution: By taking N = 1 in (74), we get the T-functions for the one-soliton
solution:

£=1+ iP5 yrexp(E, + ), (76)
PPy — 1

-p (pp— aM(p, — o)
P1P] -101 - a(l)P a — (1)17)

gV =1+iL (pp)"exp(§ + &) (77

. — b (p— O‘(z))(]’ — a®)
ppy — 10— aPp)(1 — a®py)

where § = (pl — pil)t + & and p; is a complex constant satisfying

g =1+i (pp) exp(& + &), (78)

2, e 1 1
— Zi (a™ — aw) — + - -
e 2 1 - a(#)pl)(l — a(u)pl) (1 - oz(“)pl)(l — a(#)pl)
1 1
=— 4 —. (79)
P P
In order to avoid the singularity, the condition i-2-—"- T > 0 need to be satisfied. Further,

132
the above 7-functions lead to the one-soliton solutlon as follows

S,E]) _ %ei(llipl+%ﬂ+218in$1)[] 4+ o2y — a-— ezi‘bl)tanh(S;R + 601, (80)
Sr(l2) — %ei(ngaﬁ%ﬂﬁ»hsing@z)[l + e2id, _ (1 — 62i¢2)tanh(€;R + 6ol (81)

(p1p_1 - 1)2S
Zplﬁl
where & = &, + i€, = nln(ip) + §, exp(ip) = oV, exp(ip,) = a?, exp(26p)=

2 P1 _ (p—aM)(p —ah) _ (pl —a?)(p, — a?)
lp 1 SXpQig) = (1 —aWp)(1 —aDp)’ exp(2ig,) = —a®p)(1 - a®py)
p1is determmed by equation (79). For the dark sohton in the SW components S'" and S¢ @,

their intensities approach 1 as n — £o0, and the intensities of the center of the solitons read
cos ¢, and cos ¢,. The real quantity (lepi) denotes the amplitude of the soliton in the LW
component. We illustrate single dark soliton for the choice of the nonlinearity coefficients

L,= ech?(&, + 6o), (82)

and the parameter

15
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Figure 3. The profiles of evolutions of one-soliton solution (dark soliton for SW
components).

(M, @)= (1, —=2) in figure 3. The parameters are chosen as a(l):%—i—gi,

a® =14 By p =1 - 07796 and &, = 0.
Two-soliton solution: By taking N = 2 in (74), we get the 7-functions for the two-soliton
solution:

(Pl - Pz)(Pl - 172)

hi=1+E+E+ —
(ppy — D(ppy — 1

2
‘ E\Ey, (83)

(Pl - Pz)(Pl - P_z)
(ppy — D(ppy — D

2
gV =14 AE + AE, + AAEE, (84

(Pl - Pz)(Pl - 172)
(ppy — D(ppy — D

2

where
n—b _
Ej = i——=(pp)exp(& + &),
pp — 1 '
(p; — aM)(p; — o) (p; — a@)(p; — a?)

A' = s i = s
T —aWp)d —aWp) T (1= a®p)(d - a®p)
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|Sm
n

Figure 4. The profiles of evolutions of two-soliton solution (dark soliton for SW
components).

and §; = (pj — pi)t + ;o and p; are complex constants satisfying
J

LIA(D)
— Zicl (a — g 1
e’ 2 a1 - a(#)pj)(l — @(u)ﬁj)

1 1 1
+ — — = —+ -, (86)
a5 —avp) | p B

for j =1, 2. Figure 4 exhibits such a two-soliton interaction with the parameters as
11 V2o, V2. 1 3. :

eV, (@) = (5, —g), ol =2 4 2 0@ =1 D p =1 - 06714i, p, = 0.5~

1.5356i and & , = &, = 0.

5. Conclusion and discussions

In the present paper, we have constructed an integrable semi-discrete analogue of the coupled
YO system by using a bilinear approach. Moreover, both the bright and dark soliton solutions
in terms of pfaffians have been derived based on the Bicklund transformations of the semi-
discrete BKP hierarchy. As far as we know, it is the first time to propose an integrable semi-
discrete 1D YO system. It should be pointed out that fully discrete NLS and YO systems were
constructed most recently [44], however, their semi-discrete limits cannot converge to known

17
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integrable models such as the AL lattice. We also remark that a (241)-dimensional differ-
ential-difference system in [45] can be reduced to our semi-discrete single-component YO
system. It is expected that the proposed integrable semi-discrete YO system provides useful
insights for the study of resonant interactions of LWs and SWs in discrete systems. Mixed-
type soliton solutions with both bright and dark solitons and rogue wave solutions for the
coupled semi-discrete YO system will be addressed in forthcoming articles.
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