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To search for inequivalent group invariant solutions of two-dimensional optimal
system, a direct and systematic approach is established, which is based on commu-
tator relations, adjoint matrix, and the invariants. The details of computing all the
invariants for two-dimensional algebra are presented, which is shown more complex
than that of one-dimensional algebra. The optimality of two-dimensional optimal
systems is shown clearly for each step of the algorithm, with no further proof.
To leave the algorithm clear, each stage is illustrated with a couple of examples:
the heat equation and the Novikov equation. Finally, two-dimensional optimal sys-
tem of the (2+1)-dimensional Navier-Stokes (NS) equation is found and used to
generate intrinsically different reduced ordinary differential equations. Some interest-
ing explicit solutions of the NS equation are provided. C 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4941990]

I. INTRODUCTION

The study of group-invariant solutions of differential equations plays an important role in
mathematics and physics. The machinery of Lie group theory provides a systematic method to
search for these special group invariant solutions. For a system of differential equations with n
variables, any of its m-dimensional (m < n) symmetry subgroup can transform it into a system
of differential equations with n − m variables, which is generally easier to solve than the original
system. By solving these reduced equations, rich group-invariant solutions are found. For two
group-invariant solutions, one may connect them with some group transformation and in this case,
one calls them equivalent. Naturally, it is a significant job to find these inequivalent branches of
group-invariant solutions, which leads to the concept of the optimal systems. For the classification
of group-invariant solutions, it is more convenient to work in the space of Lie algebra and this
problem reduces to the problem of finding an optimal system of subalgebras under the adjoint
representation.

The adjoint representation of a Lie group on its Lie algebra was known to Lie. The construc-
tion of one-dimensional optimal systems of Lie algebra was demonstrated by Ovsiannikov,1 us-
ing a global matrix for the adjoint transformation. This is also the technique used by Galas2

and Ibragimov.3 Then Olver4 used a slightly different and elegant technique for one-dimensional
optimal system, which is based on commutator table and adjoint table, and presented detailed
instructions on the KdV equation and the heat equation. For two-dimensional optimal systems,
Ovsiannikov sketched the construction by showing a simple example. Galas refined Ovsiannikov’s
method by removing equivalent subalgebras for the solvable algebra, and he also discussed the
problem of a nonsolvable algebra, which is generally harder. In Ref. 9, the details for constructing
two-dimensional optimal systems were shown for the three-dimensional, one-temperature hydro-
dynamic equations. In a fundamental series of papers, Patera et al.5–8 developed a different and
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powerful method to classify subalgebras and many optimal systems of important Lie algebras
arising in mathematical physics are obtained.

In this paper, we devote ourselves to investigating two-dimensional optimal system of invariant
solutions, which simultaneously imply two kinds of invariance of the differential systems. Using
two-dimensional optimal system of a Lie algebra, systems of differential equations with n variables
would be reduced to some inequivalent systems with n − 2 variables. Especially, for a given system
of differential equations with three variables, one-dimensional optimal system can only reduce it to
several systems of differential equations with two variables while two-dimensional optimal system
would directly lead it to ordinary differential equations which are more easily solved in principle
than those partial differential equations. Hence it is a meaningful job to consider two-dimensional
optimal systems independently. In almost all of the existing literatures, one-dimensional optimal
system is required for the calculation of two-dimensional optimal system, which takes too much
work, and one needs master rich algebraic knowledge before setting about the operation. The pur-
pose of this paper is to introduce a direct and systematic method for constructing two-dimensional
optimal system, which starts from the Lie algebra itself and only depends on fragments of the theory
of Lie algebras, without the prior one-dimensional optimal system.

For the case of one-dimensional optimal system, Olver pointed out that the Killing form of
the Lie algebra as an “invariant” for the adjoint representation is very important since it places
restrictions on how far one can expect to simplify the Lie algebra. Chou et al.10–12 introduced more
numerical invariants (which are different from common invariants such as the Casimir operator, har-
monics, and rational invariants) to demonstrate the inequivalence among different elements of the
optimal system. However, to the best of our knowledge, in spite of the importance of the common
invariants for the Lie algebra, there are few literatures to use more invariants except the Killing form
in the process of constructing optimal systems. For this, in our early paper,13 we introduced a direct
and valid method to compute all the general invariants for a given one-dimensional Lie algebra and
then made the best of them to construct one-dimensional optimal system. On the basis of all the
invariants, the new method can both guarantee the comprehensiveness and the inequivalence of the
one-dimensional optimal system. Here, we develop the ideas to two-dimensional optimal systems of
invariant solutions.

The layout of this paper is as follows. Section II provides a theoretical background on Lie
algebras and all machinery needed to develop the algorithm. In Section III, a direct and systematic
algorithm is proposed for constructing two-dimensional optimal system of a general symmetry
algebra. Since the realization of our new algorithm builds on different invariants, a valid method
for computing the invariants of two-dimensional subalgebras is also given in this section. To leave
our algorithm clear, we would illustrate each stage with two examples, i.e., the heat equation and
the Novikov equation. In Section IV, the two-dimensional optimal system of (2+1)-dimensional
Navier-Stokes equation is presented and all the corresponding reduced ordinary differential equa-
tions with some interesting exact group invariant solutions are obtained. Finally, a brief conclusion
is given in Section V.

II. THEORETICAL BACKGROUND ON LIE ALGEBRA

Consider an n-dimensional Lie algebra G of a differential system with p independent variables
{x1, x2, . . . , xp} and q dependent variables {u1,u2, . . . ,uq}, which is generated by n vector fields
{v1, v2, . . . , vn}. The corresponding n-parameter symmetry group of G is denoted as G, which is the
collections of transformations

(x̃1, . . . , x̃p, ũ1, . . . , ũq) = exp
( n
i=1

aivi

)
(x1, . . . , xp,u1, . . . ,uq) (1)

for all allowed values of the group parameters. The Lie bracket [vi, v j] = viv j − v jvi is the commu-
tator of two of the differential operators. The complete information of the group structure is
contained by
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[vi, v j] =
n

k=1

Ck
i jvk, (2)

where the Ck
i j’s are called structure constants.

The group invariant solutions are large classes of special explicit solutions which are char-
acterized by their invariance under some symmetry group of the system of partial differentials
equations. Let H ⊂ G be an s-parameter subgroup. An H-invariant solution can be transformed
into another one by the elements g ∈ G not belonging the subgroup H . That is to say, two group
invariant solutions are essentially different if it is impossible to connect them with any group trans-
formation in (1). In fact, if ψ is an H-invariant solution, ψ̃ = g · ψ is a H̃-invariant solution with
H̃ = gHg−1 = {ghg−1, g ∈ G,h ∈ H}. This group H̃ is called the conjugate subgroup to H under G.

For each g ∈ G, group conjugation Kg(h) ≡ ghg−1, h ∈ G, determines a global group action of
G on itself. Then the corresponding differential dKg determines a linear map on the Lie algebra G of
G, called the adjoint representation,

Adg(w) ≡ dKg(w) (3)

for w being any vector field form G. Furthermore, if w generates the one-parameter subgroup H =
{exp(ϵw) : ϵ ∈ R}, then Adg(w) generates the conjugate one-parameter subgroup AdgH = gHg−1.
Let the group element g be generated by the vector field v , seen g = exp(ϵv). More simply, adjoint
representation (3) can be expressed through commutators as

Adexp(ϵv)(w) = w − ϵ[v,w] + 1
2!
ϵ2[v, [v,w]] − 1

3!
ϵ3[v, [v, [v,w]]] + · · ·. (4)

The infinitesimal adjoint action of (4) is

adv(w) ≡ d
dϵ

(
Adexp(ϵv)(w)

) ����ϵ=0
= [w,v]. (5)

The Killing form is a bilinear form defined on Lie algebra G by

K(v,w) = trace(adv · adw). (6)

A real function φ defined on a Lie algebra G is called an invariant if φ(Adg(w)) = φ(w) for all w in
G and g in the Lie group G. By the definition of the Killing form, we have

K(Adg(w), Adg(w)) = K(w,w) (7)

for all w ∈ G and g ∈ G. Therefore, the function

f (w) = K(w,w) (8)

is invariant under the adjoint action. It was shown in our previous paper13 that the invariants play a
very important role in the construction of one-dimensional optimal system.

For a given Lie algebra G, a family of r-dimensional subalgebras {gα}α∈A forms an r-
parameter optimal system named as Or if (1) any r-dimensional subalgebra is equivalent to some gα
and (2) gα and gβ are inequivalent for distinct α and β. Each member gα ∈ Or is a collection of r
linear combinations of generators. In this paper, we focus on constructing two-dimensional optimal
system O2.

Let G(v,w) ≡G( n
i=1

aivi,
n
i=1

bivi) be a general two-dimensional algebra, which remains closed

under commutation. In G(v,w), two subalgebras {w1, w2} and {w ′1, w ′2} are called equivalent if one
can find some transformation g ∈ G and some constants {k1, k2, k3, k4} so that

w ′1 = k1Adg(w1) + k2Adg(w2), w ′2 = k3Adg(w1) + k4Adg(w2). (9)

Since w ′1 and w ′2 are linearly independent, it requires k1k4 − k2k3 , 0 in (9) or else w ′1 = cw ′2.
On the one hand, for the above equivalent two-dimensional subalgebras {w1, w2} and {w ′1, w ′2},

there is
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[w ′1, w ′2] = [k1Adg(w1) + k2Adg(w2), k3Adg(w1) + k4Adg(w2)]
= (k1k4 − k2k3)[Adg(w1), Adg(w2)]
= (k1k4 − k2k3)[g(w1)g−1, g(w2)g−1]
= (k1k4 − k2k3)g([w1, w2])g−1.

(10)

It is clear that [w ′1, w ′2] = 0 if and only if [w1, w2] = 0; [w ′1, w ′2] , 0 if and only if [w1, w2] , 0.
On the other hand, for any given two-dimensional subalgebra {w1, w2} with [w1, w2] = λw1 +

µw2, one can easily find an equivalent one {ŵ1, ŵ2} so that [ŵ1, ŵ2] = 0 or [ŵ1, ŵ2] = ŵ1. Hence,
to find all the inequivalent elements in the optimal system O2, without loss of generality, we
require each member {v,w} ∈ O2 satisfy [v,w] = 0 or [v,w] = v . For the latter case, we give out the
following remark.

Remark 1. If two subalgebras gα = {w1, w2} and gα′ = {w ′1, w ′2}, with [w1, w2] = w1 and [w ′1, w ′2]
= w ′1 are equivalent in the form of (9), there must be k2 = 0 and k4 = 1.

Proof. If we make [w1, w2] = w1 and [w ′1, w ′2] = w ′1, Eq. (10) become

[w ′1, w ′2] = (k1k4 − k2k3)g(w1)g−1 = (k1k4 − k2k3)Adg(w1) = w ′1 = k1Adg(w1) + k2Adg(w2). (11)

For the independence of Adg(w1) and Adg(w2), there must be k2 = 0 and k4 = 1.

III. A GENERAL ALGORITHM FOR CONSTRUCTING TWO-DIMENSIONAL
OPTIMAL SYSTEM

In this section, we will demonstrate how to construct the adjoint transformation matrix and
invariants on the refined two-dimensional algebra and apply them to present an algorithm for
two-dimensional optimal system stage by stage. Each step is illustrated by two examples, the heat
and Novikov equations.

A. Construction of the refined two-dimensional algebra

To find out all the inequivalent elements in the two-dimensional optimal system O2, which
represent the respective equivalent classes, we first require each {v,w} ∈ O2 satisfy

[v,w] = δv, where δ ≡ 0,1. (12)

Let

v =

n
i=1

aivi, w =

n
i=1

bivi. (13)

Requirement (12) will provide a set of restrictive equations for ai and bi.

1. Refined two-dimensional algebra of the heat equation

The equation for the conduction of heat in a one-dimensional road is written as

ut = uxx. (14)

The Lie algebra of infinitesimal symmetries for this equation is spanned by six vector fields

v1 = ∂x, v2 = ∂t, v3 = u∂u, v4 = x∂x + 2t∂t,

v5 = 2t∂x − xu∂u, v6 = 4t x∂x + 4t2∂t − (x2 + 2t)u∂u,
(15)

and by the infinitesimal generator of an infinity dimensional subalgebra

vh = h(x, t)∂u,
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TABLE I. Commutator table of the heat equation.

v1 v2 v3 v4 v5 v6

v1 0 0 0 v1 −v3 2v5

v2 0 0 0 2v2 2v1 4v4−2v3

v3 0 0 0 0 0 0
v4 −v1 −2v2 0 0 v5 2v6

v5 v3 −2v1 0 −v5 0 0
v6 −2v5 2v3−4v4 0 −2v6 0 0

where h(x, t) is an arbitrary solution of the heat equation. Since the infinite-dimensional subalge-
bra ⟨vh⟩ does not lead to group invariant solutions, it will not be considered in the classification
problem.

The commutator table and actions of the adjoint representation, which are taken from Ref. 13,
are given in Tables I and II, respectively.

For six-dimensional Lie algebra (15), take

w1 =

6
i=1

aivi, w2 =

6
j=1

bjv j . (16)

With the help of Table I, substituting (16) into (12) leads six restrictive equations:

a1b4 + 2a2b5 − a4b1 − 2a5b2 = δa1, 2a2b4 − 2a4b2 = δa2,

− a1b5 − 2a2b6 + a5b1 + 2a6b2 = δa3, 2a4b6 − 2a6b4 = δa6,

4a2b6 − 4a6b2 = δa4, 2a1b6 + a4b5 − a5b4 − 2a6b1 = δa5.

(17)

Later on, two inequivalent cases of Eqs. (17) with δ = 0 and δ = 1 should be considered, respectively.

2. Refined two-dimensional algebra of the Novikov equation

The Novikov equation reads

ut − ut xx + 4u2ux − 3uuxuxx − u2uxxx = 0, (18)

which was discovered by Novikov in a recent communication14 and can be considered as a type
of generalization of the known Camassa-Holm equation. In Ref. 15, the authors gave out a five-
dimensional Lie algebra of Eq. (18), which was spanned by the following basis:

v1 = ∂t, v2 = ∂x, v3 = e2x∂x + e2xu∂u,

v4 = e−2x∂x − e−2xu∂u, v5 = −2t∂t + u∂u. (19)

In our early paper,13 one-dimensional optimal system of this five-dimensional Lie algebra (19)
was constructed and used to find rich group invariant solutions of the Novikov equation. The
corresponding commutator and adjoint representation relations are shown by Tables III and IV.

TABLE II. Adjoint representation table of the heat equation.

Ad v1 v2 v3 v4 v5 v6

v1 v1 v2 v3 v4−ϵv1 v5+ϵv3 v6−2ϵv5−ϵ2v3

v2 v1 v2 v3 v4−2ϵv2 v5−2ϵv1 v6−4ϵv4+2ϵv3+4ϵ2v2

v3 v1 v2 v3 v4 v5 v6

v4 eϵv1 e2ϵv2 v3 v4 e−ϵv5 e−2ϵv6

v5 v1−ϵv3 v2+2ϵv1−ϵ2v3 v3 v4+ϵv5 v5 v6

v6 v1+2ϵv5 v2−2ϵv3+4ϵv4+4ϵ2v6 v3 v4+2ϵv6 v5 v6
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TABLE III. Commutator table of the Novikov equation.

v1 v2 v3 v4 v5

v1 0 0 0 0 −2v1

v2 0 0 2v3 −2v4 0
v3 0 −2v3 0 −4v2 0
v4 0 2v4 4v2 0 0
v5 2v1 0 0 0 0

In terms of the refined algebra for [w1, w2] = δw1, we have the restrictions,

δa5 = 0, 2(a5b1 − a1b5) = δa1, 2(a2b3 − a3b2) = δa3,

2(a4b2 − a2b4) = δa4, 4(a4b3 − a3b4) = δa2.
(20)

B. Calculation of the adjoint transformation matrix

For w1 =
n
i=1

aivi, its general adjoint transformation matrix A is the product of the matrices of

the separate adjoint actions A1, A2, . . . , An, each corresponding to Adexp(ϵvi)(w1), i = 1 · · · n.

For example, applying the adjoint action of v1 to w1 =
n
i=1

aivi and with the help of adjoint

representation table, one has

Adexp(ϵ1v1)(a1v1 + a2v2 + · · · + anvn)
= a1Adexp(ϵ1v1)v1 + a2Adexp(ϵ1v1)v2 + · · · + anAdexp(ϵ1v1)vn
= R1v1 + R2v2 + · · · + Rnvn,

(21)

with Ri ≡ Ri(a1,a2, . . . ,an, ϵ1), i = 1 . . . n. To be intuitive, formula (21) can be rewritten into the
following matrix form:

v � (a1,a2, . . . ,an)
Adexp(ϵ1v1)−−−−−−−−→ (R1,R2, . . . ,Rn) = (a1,a2, . . . ,an)A1.

Similarly, the matrices A2, A3, . . . , An of the separate adjoint actions of v2, v3, . . . , vn can be con-
structed, respectively. Then the general adjoint transformation matrix A is the product of A1, . . . , An

taken in any order

A ≡ A(ϵ1, ϵ2, . . . , ϵn) = A1A2 · · · An. (22)

Since only the existence of the element of the group is needed in our algorithm, the or-
ders of the product shown in (22) can be arbitrary. Applying the most general adjoint action
Adg = Adexp(ϵnvn) · · · Adexp(ϵ2v2)Adexp(ϵ1v1) to w1 and w2, we have

w1 � (a1,a2, . . . ,an) Ad−−→ Adg(w1) � (a1,a2, . . . ,an)A,
w2 � (b1,b2, . . . ,bn) Ad−−→ Adg(w2) � (b1,b2, . . . ,bn)A.

(23)

TABLE IV. Adjoint representation table of the Novikov equation.

Ad v1 v2 v3 v4 v5

v1 v1 v2 v3 v4 v5+2ϵv1

v2 v1 v2 e−2ϵv3 e2ϵv4 v5

v3 v1 v2+2ϵv3 v3 v4+4ϵv2+4ϵ2v3 v5

v4 v1 v2−2ϵv4 v3−4ϵv2+4ϵ2v4 v4 v5

v5 e−2ϵv1 v2 v3 v4 v5
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Hence, the equivalence between {w ′1, w ′2} and {w1, w2} shown in (9) can be rewritten as




(a′1,a′2, . . . ,a′n) = k1(a1,a2, . . . ,an)A + k2(b1,b2, . . . ,bn)A,
(b′1,b′2, . . . ,b′n) = k3(a1,a2, . . . ,an)A + k4(b1,b2, . . . ,bn)A. (k1k4 − k2k3 , 0). (24)

Remark 2. Eqs. (24) can be regarded as 2n algebraic equations with respect to ϵ1, . . . , ϵn and
k1, k2, k3, k4, which will be taken to judge the equivalence of two given two-dimensional algebras

{w1, w2} and {w ′1, w ′2}. If Eqs. (24) have the solution, it means that { n
i=1

aivi,
n
j=1

bjv j} is equivalent to

{ n
i=1

a′ivi,
n
j=1

b′jv j}.

1. Adjoint matrix of the heat equation

For the heat equation, its general adjoint transformation matrix A of (15) is the product of
the matrices of the separate adjoint actions A1, A2, . . . , A6, each corresponding to Adexp(ϵvi)(w1), i =
1 . . . 6.

First, under the adjoint action of v1 and with the help of Table II, w1 can be transformed into

Adexp(ϵ1v1)(a1v1 + a2v2 + a3v3 + a4v4 + a5v5 + a6v6)
= (a1 − a4ϵ1)v1 + a2v2 + (a3 + a5ϵ1 − a6ϵ

2
1)v3 + a4v4 + (a5 − 2ϵ1a6)v5 + a6v6.

(25)

One can rewrite above formula (25) into the following matrix form:

w1 � (a1,a2, . . . ,a6)
Adexp(ϵ1v1)−−−−−−−−→ (a1,a2, . . . ,a6)A1,

where

A1 =

*...........
,

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−ϵ1 0 0 1 0 0
0 0 ϵ1 0 1 0
0 0 ϵ2

1 0 −2ϵ1 1

+///////////
-

. (26)

Similarly, the rest matrices of the separate adjoint actions of v2, . . . , v6 are found to be

A2 =

*...........
,

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −2ϵ2 0 1 0 0
−2ϵ2 0 0 0 1 0

0 4ϵ2
2 2ϵ2 −4ϵ2 0 1

+///////////
-

, A4 =

*...........
,

eϵ4 0 0 0 0 0
0 e2ϵ4 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 e−ϵ4 0
0 0 0 0 0 e−2ϵ4

+///////////
-

, (27)

A5 =

*...........
,

1 0 −ϵ5 0 0 0
2ϵ5 1 −ϵ2

5 0 0 0
0 0 1 0 0 0
0 0 0 1 ϵ5 0
0 0 0 0 1 0
0 0 0 0 0 1

+///////////
-

, A6 =

*...........
,

1 0 0 0 2ϵ6 0
0 1 −2ϵ6 4ϵ6 0 4ϵ2

6

0 0 1 0 0 0
0 0 0 1 0 2ϵ6

0 0 0 0 1 0
0 0 0 0 0 1

+///////////
-

, (28)

with A3 = E being the identity matrix. Then the general adjoint transformation matrix A is the
product of A1, . . . , A6 which can be taken in any order,

A ≡ (ai j)6×6 = A1A2A3A4A5A6, (29)
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with

a11 = eϵ4, a12 = a16 = 0, a13 = −ϵ5eϵ4, a14 = 0, a15 = 2ϵ6eϵ4,

a21 = 2ϵ5e2ϵ4, a22 = e2ϵ4, a23 = −(ϵ2
5 + 2ϵ6)e2ϵ4, a24 = 4ϵ6e2ϵ4,

a25 = 4ϵ5ϵ6e2ϵ4, a26 = 4ϵ2
6e2ϵ4, a31 = a32 = a34 = a35 = a36 = 0,

a33 = 1, a41 = −eϵ4(ϵ1 + 4ϵ2ϵ5eϵ4), a42 = −2ϵ2e2ϵ4,

a43 = 4ϵ2ϵ6e2ϵ4 + ϵ5eϵ4(ϵ1 + 2ϵ2ϵ5eϵ4), a44 = 1 − 8ϵ2ϵ6e2ϵ4,

a45 = ϵ5 − 2ϵ6eϵ4(ϵ1 + 4ϵ2ϵ5eϵ4), a46 = 2ϵ6(1 − 4ϵ2ϵ6e2ϵ4),
a51 = −2ϵ2eϵ4, a52 = 0, a53 = ϵ1 + 2ϵ2ϵ5eϵ4, a54 = 0,

a55 = e−ϵ4(1 − 4ϵ2ϵ6e2ϵ4), a56 = 0, a61 = 4ϵ2eϵ4(ϵ1 + 2ϵ2ϵ5eϵ4),
a62 = 4ϵ2

2e2ϵ4, a63 = −(ϵ1 + 2ϵ2ϵ5eϵ4)2 + 2ϵ2(1 − 4ϵ2ϵ6e2ϵ4),
a64 = −4ϵ2(1 − 4ϵ2ϵ6e2ϵ4), a66 = e−2ϵ4(1 − 4ϵ2ϵ6e2ϵ4)2,
a65 = 8ϵ2ϵ6eϵ4(ϵ1 + 2ϵ2ϵ5eϵ4) − 4ϵ2ϵ5 − 2ϵ1e−ϵ4.

2. Adjoint matrix of the Novikov equation

For the Novikov equation, its matrices of the separate adjoint actions A1, . . . , A5 were found in
Ref. 13, which are rewritten in the follows:

A1 =

*........
,

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

2ϵ1 0 0 0 1

+////////
-

, A2 =

*........
,

1 0 0 0 0
0 1 0 0 0
0 0 e−2ϵ2 0 0
0 0 0 e2ϵ2 0
0 0 0 0 1

+////////
-

, A3 =

*........
,

1 0 0 0 0
0 1 2ϵ3 0 0
0 0 1 0 0
0 4ϵ3 4ϵ2

3 1 0
0 0 0 0 1

+////////
-

,

A4 =

*........
,

1 0 0 0 0
0 1 0 −2ϵ4 0
0 −4ϵ4 1 4ϵ2

4 0
0 0 0 1 0
0 0 0 0 1

+////////
-

, A5 =

*........
,

e−2ϵ5 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

+////////
-

.

The general matrix A is selected as

A = A1A2A3A4A5 =

*........
,

e−2ϵ5 0 0 0 0
0 1 − 8ϵ3ϵ4 2ϵ3 2ϵ4(4ϵ3ϵ4 − 1) 0
0 −4ϵ4e−2ϵ2 e−2ϵ2 4ϵ2

4e−2ϵ2 0
0 4ϵ3e2ϵ2(1 − 4ϵ3ϵ4) 4ϵ2

3e2ϵ2 e2ϵ2(1 − 4ϵ3ϵ4)2 0
2ϵ1e−2ϵ5 0 0 0 1

+////////
-

, (30)

C. Calculation of the invariants for the refined two-dimensional algebra

For a two-dimensional Lie algebraG(v,w), a real function φ is called an invariant if φ(a11Adg
(w1) + a12Adg(w2),a21Adg(w1) + a22Adg(w2)) = φ(w1, w2) for any {w1, w2} ∈ G(v,w) and all g ∈ G

with a11,a12,a21,a22 being arbitrary constants. For a general two-dimensional subalgebra { n
i=1

aivi,

n
j=1

bjv j} ∈ G(v,w), the corresponding invariant is a function of a1, . . . ,an,b1, . . . ,bn.
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Let v =
n

k=1
ckvk be a general element of G. In conjunction with the commutator table, we have

Adg(w1) = Adexp(ϵv)(w1)
= w1 − ϵ[v,w1] + 1

2!
ϵ2[v, [v,w1]] − · · ·

= (a1v1 + · · · + anvn) − ϵ[c1v1 + · · · + cnvn,a1v1 + · · · + anvn] +O(ϵ2)
= (a1v1 + · · · + anvn) − ϵ(Θa

1v1 + · · · + Θa
nvn) +O(ϵ2)

= (a1 − ϵΘa
1 )v1 + (a2 − ϵΘa

2 )v2 + · · · + (an − ϵΘa
n)vn +O(ϵ2),

(31)

where Θa
i ≡ Θ

a
i (a1, . . . ,an,c1, . . . ,cn) can be easily obtained from the commutator table. Similarly,

applying the same adjoint action v =
n

k=1
ckvk to w2, we get

Adg(w2) = Adexp(ϵv)(w2) = (b1 − ϵΘb
1 )v1 + (b2 − ϵΘb

2 )v2 + · · · + (b6 − ϵΘb
n)vn +O(ϵ2), (32)

where Θb
i ≡ Θ

b
i (b1, . . . ,bn,c1, . . . ,cn) is obtained directly by replacing ai with bi in Θa

i (i = 1 . . . n).
More intuitively, we denote

w1 � (a1,a2, . . . ,an), w2 � (b1,b2, . . . ,bn),
Adg(w1) � (a1 − ϵΘa

1 ,a2 − ϵΘa
2 , . . . ,an − ϵΘa

n) +O(ϵ2),
Adg(w2) � (b1 − ϵΘb

1 ,b2 − ϵΘb
2 , . . . ,bn − ϵΘb

n) +O(ϵ2).
(33)

For the two-dimensional subalgebra {w1, w2}, according to the definition of the invariant, we have

φ(a11Adg(w1) + a12Adg(w2),a21Adg(w1) + a22Adg(w2)) = φ(w1, w2). (34)

Further, to guarantee a11Adg(w1) + a12Adg(w2) = w1 and a21Adg(w1) + a22Adg(w2) = w2 after the
substitution of ϵ = 0, we require

a11 ≡ 1 + ϵa11, a12 ≡ ϵa12, a21 ≡ ϵa21, a22 ≡ 1 + ϵa22. (35)

Then Eq. (34) is modified as

φ(w1, w2) = φ((1 + ϵa11)Adg(w1) + ϵa12Adg(w2), ϵa21Adg(w1) + (1 + ϵa22)Adg(w2)). (36)

Remark 3. Since we just need consider the refined two-dimensional algebra, two cases in (36)
are discussed.

(a) When [w1, w2] = 0, taking the derivative of Eq. (36) with respect to ϵ and setting ϵ = 0 af-
ter the substitution of (33), extracting all the coefficients of ci,a11,a12,a21,a22, some linear
differential equations of φ are obtained. By solving these equations, all the invariants φ on
[w1, w2] = 0 can be found.

(b) When [w1, w2] = w1, according to “Remark 2,” first we should make a12 = 0 and a22 = 0 in
Eq. (36). Then one does the same procedure just as case (a) to obtain linear differential
equations of φ, which keep invariable for [w1, w2] = w1.

1. Invariant equations of the heat equation

For a general two-dimensional subalgebra {w1, w2} of the heat equation, the corresponding

invariant φ is a real function with twelve independent variables. Let v =
6

k=1
ckvk be a general

element of G, then in conjunction with the commutator Table I, we have

Adg(w1) = Adexp(ϵv)(w1)
= w1 − ϵ[v,w1] + 1

2!
ϵ2[v, [v,w1]] − · · ·

= (a1v1 + · · · + a6v6) − ϵ[c1v1 + · · · + c6v6,a1v1 + · · · + a6v6] +O(ϵ2)
= (a1v1 + · · · + a6v6) − ϵ(Θa

1v1 + · · · + Θa
6v6) +O(ϵ2)

= (a1 − ϵΘa
1 )v1 + (a2 − ϵΘa

2 )v2 + · · · + (a6 − ϵΘa
6 )v6 +O(ϵ2),

(37)
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with

Θ
a
1 = −c4a1 − 2c5a2 + c1a4 + 2c2a5, Θ

a
2 = −2c4a2 + 2c2a4,

Θ
a
3 = c5a1 + 2c6a2 − c1a5 − 2c2a6 Θ

a
4 = −4c6a2 + 4c2a6,

Θ
a
5 = −2c6a1 − c5a4 + c4a5 + 2c1a6, Θ

a
6 = −2c6a4 + 2c4a6.

(38)

Similarly, applying the same adjoint action v =
6

k=1
ckvk to w2, we get

Adg(w2) = Adexp(ϵv)(w2) = (b1 − ϵΘb
1 )v1 + (b2 − ϵΘb

2 )v2 + · · · + (b6 − ϵΘb
6 )v6 +O(ϵ2), (39)

with

Θ
b
1 = −c4b1 − 2c5b2 + c1b4 + 2c2b5, Θ

b
2 = −2c4b2 + 2c2b4,

Θ
b
3 = c5b1 + 2c6b2 − c1b5 − 2c2b6 Θ

b
4 = −4c6b2 + 4c2b6,

Θ
b
5 = −2c6b1 − c5b4 + c4b5 + 2c1b6, Θ

b
6 = −2c6b4 + 2c4b6.

(40)

Following “Remark 3,” Eq. (36) is separated into two cases.
(a) For [w1, w2] = 0, all the ci(i = 1 . . . 6),a11,a12,a21,a22 in Eq. (36) are arbitrary. Now tak-

ing the derivative of Eq. (36) with respect to ϵ and then setting ϵ = 0, extracting the coef-
ficients of all ci,a11,a12,a21,a22, one can directly obtain nine differential equations about φ =
φ(a1, . . . ,a6,b1, . . . ,b6),

a1φa1 + a2φa2 + a3φa3 + a4φa4 + a5φa5 + a6φa6 = 0,
a1φb1 + a2φb2 + a3φb3 + a4φb4 + a5φb5 + a6φb6 = 0,
b1φb1 + b2φb2 + b3φb3 + b4φb4 + b5φb5 + b6φb6 = 0,

2a2φa1 + 2b2φb1 − a1φa3 − b1φb3 + a4φa5 + b4φb5 = 0,
−a4φa1 − b4φb1 + a5φa3 + b5φb3 − 2a6φa5 − 2b6φb5 = 0,

−a5φa1 − b5φb1 − a4φa2 − b4φb2 + a6φa3 + b6φb3 − 2a6φa4 − 2b6φb4 = 0,
−a2φa3 − b2φb3 + 2a2φa4 + 2b2φb4 + a1φa5 + b1φb5 + a4φa6 + b4φb6 = 0,

(41)

and

a1φa1 + b1φb1 + 2a2φa2 + 2b2φb2 − a5φa5 − b5φb5 − 2a6φa6 − 2b6φb6 = 0,
b1φa1 + b2φa2 + b3φa3 + b4φa4 + b5φa5 + b6φa6 = 0.

(42)

Here the subscripts indicate partial derivatives.
(b) For [w1, w2] = w1, it requires a12 = a22 = 0 in Eq. (36) and seven equations about φ which

are just Eqs. (41) are obtained.

2. Invariant equations of the Novikov equation

For the Novikov equation, using the commutator Table III, we have

Adg(w1) = Adexp(ϵv)
( 5
i=1

aivi

)
= (a1 − ϵΘa

1 )v1 + · · · + a5v5 +O(ϵ2), (43)

with

Θ
a
1 = 2(a1c5 − a5c1),Θa

2 = 4(a3c4 − a4c3),Θa
3 = 2(a3c2 − a2c3),Θa

4 = 2(a2c4 − a4c2). (44)

Similarly, there is

Adg(w2) = Adexp(ϵv)
( 5
i=1

bivi

)
= (b1 − ϵΘb

1 )v1 + · · · + b5v5 +O(ϵ2). (45)

Substituting (43) and (45) into Eq. (36), two cases about the invariant φ are obtained.
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(a) For [w1, w2] = 0, nine differential equations about φ are found,

a5φa1 + b5φb1 = 0, a1φa1 + b1φb1 = 0, a2φa3 + b2φb3 + 2a4φa2 + 2b4φb2 = 0,
a2φa4 + b2φb4 + 2a3φa2 + 2b3φb2 = 0, a3φa3 + b3φb3 − a4φa4 − b4φb4 = 0,
a1φa1 + a2φa2 + a3φa3 + a4φa4 + a5φa5 = 0, a1φb1 + a2φb2 + a3φb3 + a4φb4 + a5φb5 = 0,

(46)

and

b1φb1 + b2φb2 + b3φb3 + b4φb4 + b5φb5 = 0,
b1φa1 + b2φa2 + b3φa3 + b4φa4 + b5φa5 = 0.

(47)

(b) For [w1, w2] = w1, one just needs consider seven equations (46).

D. Construction of two-dimensional optimal system

(1) First step: Present the commutator table and adjoint representation table of the generators
{vi}ni=1 for a given algebra. Then in terms of [w1, w2] = δw1 with δ ≡ 0,1, give out the restrictions
about a1,a2, . . . ,an,b1,b2, . . . ,bn.

(2) Second step: Following sections B and C, compute the adjoint transformation matrix A and
determine the general equations about the invariants φ.

(3) Third step: For two different cases [w1, w2] = 0 and [w1, w2] = w1, in terms of every restricted
condition given by step 1, compute their respective invariants and select the corresponding eligible
representative elements {w ′1, w ′2}. For ease of calculations, we rewrite Eq. (9) as




Adg(w1) = k ′1w
′
1 + k ′2w

′
2,

Adg(w2) = k ′3w
′
1 + k ′4w

′
2,

(k ′1k ′4 , k ′2k ′3), (48)

which is usually expressed by




(a1,a2, . . . ,an)A = k ′1(a′1,a′2, . . . ,a′n) + k ′2(b′1,b′2, . . . ,b′n),
(b1,b2, . . . ,bn)A = k ′3(a′1,a′2, . . . ,a′n) + k ′4(b′1,b′2, . . . ,b′n),

(k ′1k ′4 , k ′2k ′3). (49)

Following “Remark 2,” if Eqs. (49) have the solution with respect to ϵ1, . . . ϵn, k ′1, k
′
2, k
′
3, k
′
4, it

signifies that the selected representative element {w ′1, w ′2} is right; if Eqs. (49) have no solution,
another new representative element {w ′′1 , w ′′2 } should be reselected. Repeat the process until all the
cases are finished in the restrictions of step 1.

1. Two-dimensional optimal system of the heat equation

(a) The case of δ = 0 in restrictive equations (17)
Case 1: Not all a2,a4,a6,b2,b4 and b6 are zeroes.
Without loss of generality, we adopt a6 , 0. In fact, when only one of a2,a4,a6,b2,b4, and b6 is

not zero, one can choose appropriate adjoint transformation to transform it into the case ã6 , 0. By
solving Eqs. (17) with δ = 0 and a6 , 0, we have three kinds of solutions.
(i) a3,a4,a5,a6,b3, and b6 are independent with

a1 =
1
2

a4a5

a6
,a2 =

1
4

a2
4

a6
,b1 =

1
2

a4a5b6

a2
6

,b2 =
1
4

a2
4b6

a2
6

,b4 =
a4b6

a6
,b5 =

a5b6

a6
. (50)

(ii) a3,a4,a5,a6,b3,b5, and b6 are arbitrary but with

a1 =
1
2

a4a5

a6
,a2 =

1
4

a2
4

a6
,b1 =

1
2

a4b5

a6
,b2 =

1
4

a2
4b6

a2
6

,b4 =
a4b6

a6
,b5 ,

a5b6

a6
. (51)

(iii) a1,a2,a3,a4,a5,a6,b3, and b6 are arbitrary but with

a1 ,
1
2

a4a5

a6
or a2 ,

1
4

a2
4

a6
,b1 =

a1b6

a6
,b2 =

a2b6

a6
,b4 =

a4b6

a6
,b5 =

a5b6

a6
. (52)
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Substituting the above three conditions into Eqs. (41) and (42), we find that φ ≡ constant, i.e., there
is no invariant. Then for each case, select the corresponding representative element {w ′1, w ′2} and
verify whether Eqs. (49) have the solution.

For case (i), select a representative element {w ′1, w ′2} = {v6, v3}. Substituting (50) and w ′1 = v6,
w ′2 = v3 into Eqs. (49), we obtain the solution

k ′1 = a6e−2ϵ4, k ′2 =
4a3a6 + 2a4a6 + a2

5

4a6
, k ′3 = b6e−2ϵ4,

k ′4 =
4b3a2

6 + b6a2
5 + 2a4a6b6

4a2
6

, ϵ1 =
a5

2a6
, ϵ2 =

a4

4a6
.

(53)

Hence case (i) is equivalent to {v6, v3}.
For case (ii), there exist three circumstances in terms of the following expression:

Λ1 ≡ 2a6[a4(a5b6 − b5a6)2 − 2a6(a3b6 − b3a6)2 − 2a6(a5b6 − b5a6)(a3b5 − b3a5)]. (54)

(iia) When Λ1 > 0, case (ii) is equivalent to {v3 + v6, v5}. After the substitution of (51) with
w ′1 = v3 + v6, w

′
2 = v5, Eqs. (49) hold for

k ′1 =
Λ1

4a6(a5b6 − b5a6)2 , ϵ4 = ln
2|a6(a5b6 − b5a6)|√

Λ1
,

k ′2 =
a5(a5b6 − b5a6) + 2a6(a3b6 − b3a6)

2|a6|(a5b6 − b5a6)2

Λ1, ϵ1 = −

a3b6 − b3a6

a5b6 − b5a6
,

k ′3 =
b6

a6
k1, ϵ2 =

a4

4a6
, k ′4 =

b5(a5b6 − b5a6) + 2b6(a3b6 − b3a6)
2|a6|(a5b6 − b5a6)2


Λ1.

(iib) When Λ1 < 0, case (ii) is equivalent to {−v3 + v6, v5}. The solution for Eqs. (49) is

k ′1 = −
Λ1

4a6(a5b6 − b5a6)2 , k
′
2 =

a5(a5b6 − b5a6) + 2a6(a3b6 − b3a6)
2|a6|(a5b6 − b5a6)2


−Λ1,

k ′3 =
b6

a6
k1, k ′4 =

b5(a5b6 − b5a6) + 2b6(a3b6 − b3a6)
2|a6|(a5b6 − b5a6)2


−Λ1,

ϵ1 = −
a3b6 − b3a6

a5b6 − b5a6
, ϵ2 =

a4

4a6
, ϵ4 = ln

2|a6(a5b6 − b5a6)|√
−Λ1

.

(iic) When Λ1 = 0, case (ii) is equivalent to {v6, v5}. By solving Eqs. (49), we obtain

k ′1 = a6e−2ϵ4, k ′2 =
a5(a5b6 − b5a6) + 2a6(a3b6 − b3a6)

(a5b6 − b5a6)eϵ4
,

k ′3 = b6e−2ϵ4, k ′4 =
a5(a5b6 − b5a6) + 2a6(a3b6 − b3a6)

(a5b6 − b5a6)eϵ4
,

ϵ1 = −
a3b6 − b3a6

a5b6 − b5a6
, ϵ2 =

(a5b6 − b5a6)(a3b5 − a5b3) + (a3b6 − b3a6)2
2(a5b6 − b5a6)2 .

For case (iii), it can be divided into the following several types.
(iiia) 4a2a6 − a2

4 > 0. Select a representative element {v2 + v6, v3}. After substituting (52) into
Eqs. (49), we have

k ′1 = (a2 − 2a4ϵ2 + 4a6ϵ
2
2)e2ϵ4, k ′2 = a3 +

a4

2
+

a2
1a6 − a1a4a5 + a2a2

5

4a2a6 − a2
4

,

k ′3 =
b6(a2 − 2a4ϵ2 + 4a6ϵ

2
2)

a6
e2ϵ4, k ′4 = b3 +

b6

a6
(a4

2
+

a2
1a6 − a1a4a5 + a2a2

5

4a2a6 − a2
4

),

ϵ1 =
2ϵ2(2a1a6 − a4a5) + 2a2a5 − a1a4

4a2a6 − a2
4

, ϵ5 =
a4a5 − 2a1a6

(4a2a6 − a2
4)eϵ4

,

ϵ6 =
4a6ϵ2 − a4

4e2ϵ4(a2 − 2a4ϵ2 + 4a6ϵ
2
2)
, e2ϵ4 =


4a2a6 − a2

4

2|a2 − 2a4ϵ2 + 4a6ϵ
2
2|
.
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(iiib) 4a2a6 − a2
4 < 0. Choose a representative element {−v2 + v6, v3}. Now Eqs. (49) have the solution

k ′1 = −(a2 − 2a4ϵ2 + 4a6ϵ
2
2)e2ϵ4, k ′2 = a3 +

a4

2
+

a2
1a6 − a1a4a5 + a2a2

5

4a2a6 − a2
4

,

k ′3 = −
b6(a2 − 2a4ϵ2 + 4a6ϵ

2
2)

a6
e2ϵ4, ϵ1 =

2ϵ2(2a1a6 − a4a5) + 2a2a5 − a1a4

4a2a6 − a2
4

,

k ′4 = b3 +
b6

a6
(a4

2
+

a2
1a6 − a1a4a5 + a2a2

5

4a2a6 − a2
4

), ϵ5 =
a4a5 − 2a1a6

(4a2a6 − a2
4)eϵ4

,

ϵ6 =
4a6ϵ2 − a4

4e2ϵ4(a2 − 2a4ϵ2 + 4a6ϵ
2
2)
, e2ϵ4 =


−(4a2a6 − a2

4)
2|a2 − 2a4ϵ2 + 4a6ϵ

2
2|
.

(iiic) 4a2a6 − a2
4 = 0. In this case, two conditions should be considered.

When 2a1a6 − a4a5 > 0, adopt the representative element {v1 + v6, v3}. Then the solution for
Eqs. (49) is

k ′1 =
a6

Z2 , k ′2 = −
(ϵ2

6 + ϵ5)(2a1a6 − a4a5)
2a6

Z + a3 +
a4

2
+

a2
5

4a6
,

k ′3 =
b6(2a1a6 − a4a5)

2a2
6

Z, ϵ2 =
a4

4a6
, ϵ4 = ln(Z),

k ′4 =
b6

4a2
6

[−2(ϵ2
6 + ϵ5)(2a1a6 − a4a5)Z + (a2

5 + 2a4a6)] + b3,

ϵ1 =
ϵ6(2a1a6 − a4a5)

2a2
6

Z2 +
a5

2a6
. (Z = ( 2a2

6

2a1a6 − a4a5
) 1

3 )

When 2a1a6 − a4a5 < 0, adopt the representative element {−v1 + v6, v3}. By solving Eqs. (49),
we find

k ′1 =
a6

Z ′2
, k ′2 = −

(ϵ5 − ϵ2
6)(2a1a6 − a4a5)

2a6
Z ′ + a3 +

a4

2
+

a2
5

4a6
,

k ′3 = −
b6(2a1a6 − a4a5)

2a2
6

Z ′, ϵ2 =
a4

4a6
, ϵ4 = ln(Z ′),

k ′4 =
b6

4a2
6

[−2(ϵ5 − ϵ2
6)(2a1a6 − a4a5)Z ′ + (a2

5 + 2a4a6)] + b3,

ϵ1 =
ϵ6(2a1a6 − a4a5)

2a2
6

Z ′2 +
a5

2a6
. (Z ′ = (− 2a2

6

2a1a6 − a4a5
) 1

3 ).

Case 2: a2 = a4 = a6 = b2 = b4 = b6 = 0.
Now determined equations (17) become

− a1b5 + a5b1 = 0. (55)

Here we just need consider not all a1,a5,b1, and b5 are zeroes. Without loss of generality, let a5 , 0.
Similarly, if one of a1,a5,b1,b5 is not zero, one can choose appropriate adjoint transformation to
transform it into the case a5 , 0. By solving Eq. (55), we obtain

b1 =
a1b5

a5
. (56)

Adopt a representative element {v5, v3}. Then one can verify that all the {a1v1 + a3v3 + a5v5,b1v1 +

b3v3 + b5v5} with condition (56) are equivalent to {v5, v3} since the solution for Eqs. (49) is

k ′1 = a5e−ϵ4, k ′2 = a3 + a5ϵ1, k ′3 = b5e−ϵ4, k ′4 = b3 + b5ϵ1, ϵ2 =
a1

2a5
.

(b) The case of δ = 1 in restrictive equations (17)
Case 3: Not all a2,a4, and a6 are zeroes.
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Without loss of generality, we adopt a6 , 0 and it can also guarantee b6 , 0 through transfor-
mation (9). Hence, Let b6 , 0 first and it leads Eqs. (17) to

a1 = −
a6(2b4 + 1)(4b1b6 − b5 − 2b4b5)

4b2
6

, a2 =
a6(2b4 + 1)2

16b2
6

,

a3 = −4a6b2
1 +

a6(2b4 + 1)(8b1b5 − 1)
4b6

−
a6b2

5(2b4 + 1)2
4b2

6

,

a4 =
a6(2b4 + 1)

2b6
, a5 =

a6(b5 + 2b4b5 − 4b1b6)
b6

, b2 =
4b2

4 − 1
16b6

.

(57)

Substituting (57) into Eqs. (41), it yields an invariant for {w1, w2},

φ = ∆1 ≡ 16b6b2
1 − 2b4 − 16b1b4b5 − 4b3 +

b2
5(4b2

4 − 1)
b6

. (58)

In condition of (57) and ∆1 = c, choose the corresponding representative element {v6, ( 1
4 −

c
4 )v3 −

1
2 v4 + v6} and Eqs. (49) have the solution

k ′1 = a6, k ′2 = 0, k ′3 = b6 − 1, k ′4 = 1, ϵ1 =
b5 + 2b4b5 − 4b1b6

2b6
,

ϵ2 =
2b4 + 1

8b6
, ϵ5 = 8b1b6 − 4b4b5, ϵ4 = ϵ6 = 0.

For simplicity, one can take {v6, v4 + βv3}(β ∈ R) instead of {v6, ( 1
4 −

c
4 )v3 − 1

2 v4 + v6}.
Case 4: a2 = a4 = a6 = 0.
Not all a1 and a5 are zeroes, or else there must be a3 = 0 shown in Eqs. (17). Let a5 , 0, Taking

a2 = a4 = a6 = 0 with a5 , 0 into (17), we have

a3 = b1a5 − a1b5, b2 =
a1(a1b6 − a5)

a2
5

, b4 =
2a1a6 − a5

a5
. (59)

Substituting relations (59) into Eqs. (41), we obtain an invariant for {w1, w2}, i.e.,

φ = ∆2 ≡ b1b5 + b6b2
1 − b3 −

a1(b2
5 + b6 + 2b1b5b6)

a5
+

b6b2
5a2

1

a5
1

. (60)

In this case, choose a representative element {v5,−cv3 − v4)} for ∆2 = c. Then solving Eqs. (49), one
get

k ′1 = a5, k ′2 = 0, k ′3 = b5 + 2b1b6 −
2a1b5b6

a5
, k ′4 = 1,

ϵ1 = −b1 +
a1b5

a5
, ϵ2 =

a1

2a5
, ϵ6 =

b6

2
, ϵ4 = ϵ5 = 0.

In summary, we have completed the construction of the two-dimensional optimal system O2,

g1 = {v6, v3}, g2 = {v3 + v6, v5}, g2 = {−v3 + v6, v5},
g4 = {v6, v5}, g5 = {v2 + v6, v3}, g6 = {−v2 + v6, v3},
g7 = {v1 + v6, v3}, g8 = {−v1 + v6, v3}, g9 = {v5, v3},
g10 = {v6, v4 + βv3}, g11 = {v5, v4 + βv3}, (β ∈ R).

(61)

Remark 4. The process of the construction ensures that all gi(i = 1 . . . 11) are mutually inequiv-
alent since each case is closed. One can also easily find this inequivalence from the incompatibility
of Eqs. (49). In Ref. 10, Chou et al. gave a two-parameter optimal system {Mi}10

1 for the same
Lie algebra (15) of the heat equation and showed their inequivalences by sufficient numerical
invariants. One can see that {Mi}10

1 in Ref. 10 are equivalent to our {g11,g10,g6,g4,g1,g2,g3,g8,g5,g9},
respectively. Furthermore, we realize that g7 is inequivalent to any of the elements in {Mi}10

1 .
Hence, here the two-dimensional optimal system O2 given by (61) is complete and really
optimal.
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2. Two-dimensional optimal system of the Novikov equation

(a) The case of δ = 0 in restrictive equations (20)
Case 1: Not all a5 and b5 are zeroes. Let a5 , 0.
Case 1.1: Not all a2,a3,a4,b2,b3, and b4 are zeroes.
One can make a4 , 0 and it leads restrictive equations (20) to

b1 =
a1b5

a5
, b2 =

a2b4

a4
, b3 =

a3b4

a4
. (62)

Denote

Λ2 ≡ a2
2 − 4a3a4. (63)

For Λ2 = 0, select {v4 + v5, v4} and one solution for Eqs. (49) is

k ′1 = a5, k ′2 = a4 − a5, k ′3 = b5, k ′4 = b4 − b5, ϵ1 = −
a1

2a5
, ϵ2 = 0, ϵ3 = −

a2

4a4
.

For Λ2 > 0, select {v2 + v4 + v5, v5} and Eqs. (49) have the solution

k ′1 =

Λ2, k ′2 = a5 −


Λ2, k ′3 =

b4
√
Λ2

a4
, k ′4 =

a4b5 − b4
√
Λ2

a4
,

ϵ1 = −
a1

2a5
, ϵ2 = 0, ϵ3 =

√
Λ2 − a2

4a4
, ϵ4 = −

√
Λ2 − a4

2
√
Λ2

.

For Λ2 < 0, choose {v3 + v4 + v5, v5} and Eqs. (49) have the solution

k ′1 = a4e2ϵ2, k ′2 = a5 − a4e2ϵ2, k ′3 = b4e2ϵ2, k ′4 = b5 − b4e2ϵ2,

ϵ1 = −
a1

2a5
, e2ϵ2 =

1
2


−Λ2

a2
4

, ϵ3 = −
a2

4a4
e−2ϵ2, ϵ4 = 0.

Case 1.2: a2 = a3 = a4 = b2 = b3 = b4 = 0.
This case is meaningless for w2 = 0 or w2 = cw1 in terms of Eqs. (20).
Case 2: a5 = b5 = 0.
Case 2.1: Not all a1 and b1 are zeroes.
Let a1 , 0. Then not all a2,a3,a4,b2,b3, and b4 = 0 are zeros and we take a4 , 0. Restrictive

equations (20) become

b2 =
a2b4

a4
, b3 =

a3b4

a4
. (64)

In accordance with Λ2 = 0, Λ2 > 0, and Λ2 < 0, we adopt {v1 + v4, v4}, {v1 + v2 + v4, v1}, and
{v1 + v3 + v4, v1}, respectively, and the corresponding solutions of Eqs. (49) read

k ′1 = a1, k ′2 = a4 − a1, k ′3 = b1, k ′4 = b4 − b1, ϵ2 = 0, ϵ3 = −
a2

4a4
, ϵ5 = 0,

k ′1 =

Λ2, k ′2 = a1 −


Λ2, k ′3 =

b4
√
Λ2

a4
, k ′4 =

a4b1 − b4
√
Λ2

a4
,

ϵ2 = ϵ5 = 0, ϵ3 =

√
Λ2 − a2

4a4
, ϵ4 = −

√
Λ2 − a4

2
√
Λ2

,

and

k ′1 = a4e2ϵ2, k ′2 = a1 − a4e2ϵ2, k ′3 = b4e2ϵ2, k ′4 = b1 − b4e2ϵ2,

e2ϵ2 =
1
2


−Λ2

a2
4

, ϵ3 = −
a2

4a4
e−2ϵ2, ϵ4 = ϵ5 = 0.
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Case 2.2: a1 = b1 = 0.
Now not all a2,a3,a4,b2,b3, and b4 = 0 are zeros and let a4 , 0. By solving Eqs. (20), we get

b2 =
a2b4

a4
, b3 =

a3b4

a4
. (65)

We just need consider Λ2 > 0 and select {v2 + v4, v4}.
(b) The case of δ = 1 in restrictive equations (20)
Solving Eqs. (20), it first requires a5 = 0 and b5 = − 1

2 .
Case 1: a1 , 0.
Case 1.1: Not all a2,a3,a4 are zeroes and then one can make b4 , 0, which leads Eqs. (20) to

a2 =
a4(2b2 − 1)

2b4
, a3 =

a4(2b2 − 1)2
16b2

4

, b3 =
4b2

2 − 1
16b4

. (66)

For a1a4 > 0, select {v1 + v4,
1
2 v2 + v4 − 1

2 v5} and Eqs. (49) have the solution

k ′1 = a4, k ′2 = 0, k ′3 =
a4b1

a1
, k ′4 = 1, ϵ1 = ϵ2 = 0,

ϵ3 =
1 − 2b2

8b4
, ϵ4 = b4 −

a4b1

a1
− 1, ϵ5 = −

1
2

ln
( a4

a1

)
.

For a1a4 < 0, select {v1 − v4,
1
2 v2 + v4 − 1

2 v5} and Eqs. (49) have the solution

k ′1 = −a4, k ′2 = 0, k ′3 = −
a4b1

a1
, k ′4 = 1, ϵ1 = ϵ2 = 0,

ϵ3 =
1 − 2b2

8b4
, ϵ4 = b4 −

a4b1

a1
− 1, ϵ5 = −

1
2

ln
(
− a4

a1

)
.

Case 1.2: a2 = a3 = a4 = 0.
Case 1.2.1: Not all b2,b3,b4 are zeros and let b4 , 0. Now we have an invariant by solving

Eqs. (46), saying

K1 ≡ b2
2 − 4b3b4. (67)

For K1 = c, we choose {v1,
c
4 v3 − v4 − 1

2 v5} and {v1,− c
4 v3 + v4 − 1

2 v5}.
Case 1.2.2: b2 = b3 = b4 = 0.
In this case, it only remains {v1,− 1

2 v5}.
Case 2: a1 = 0.
Now not all a2,a3,a4 are zeros and this can yield b4 , 0. Solving Eqs. (20), we obtain

a2 =
a4(2b2 − 1)

2b4
, a3 =

a4(2b2 − 1)2
16b2

4

, b3 =
4b2

2 − 1
16b4

. (68)

Choose {v4,
1
2 v2 + v4 − 1

2 v5} and one solution of Eqs. (49) is

k ′1 = a4, k ′2 = 0, k ′3 = b4 − 1, k ′4 = 1, ϵ2 = ϵ4 = 0, ϵ1 = b1, ϵ3 =
1 − 2b2

8b4
.

Recapitulating, a two-dimensional optimal system O2 of the Novikov equation contains thirteen
elements,

g1 = {v5, v4}, g2 = {v2 + v4, v5}, g2 = {v3 + v4, v5}, g4 = {v1, v4},
g5 = {v2 + v4, v1}, g6 = {v3 + v4, v1}, g7 = {v2, v4}, g8 = {v1 + v4, v2 + 2v4 − v5},
g9 = {v1 − v4, v2 + 2v4 − v5}, g10 = {v1, βv3 − 2v4 − v5}, (69)
g11 = {v1, βv3 + 2v4 − v5}. g12 = {v1, v5}, g13 = {v4, v2 + 2v4 − v5}, (β ∈ R).

IV. TWO-DIMENSIONAL OPTIMAL SYSTEM AND INVARIANT SOLUTIONS
OF (2+1)-DIMENSIONAL NAVIER-STOKES EQUATION

One of the most important open problems in fluid is the existence and smoothness problem
of the Navier-Stokes (NS) equation, which has been recognized as the basic equation and the
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TABLE V. Commutator table of the NS equation.

v1 v2 v3 v4

v1 0 −v2 v3 0
v2 v2 0 v4 0
v3 −v3 −v4 0 0
v4 0 0 0 0

very starting point of all problems in fluid physics.16,17 In Ref. 18, by means of the classical Lie
symmetry method, we investigated the (2+1)-dimensional Navier-Stokes equation,

ω = ψxx + ψy y,

ωt + ψxωy − ψyωx − γ(ωxx + ωy y) = 0.
(70)

One can rewrite Eq. (70) into

ψxxt + ψy y t + ψxψxxy + ψxψy y y − ψyψxxx − ψyψxy y

− γ(ψxxxx + 2ψxxy y + ψy y y y) = 0.
(71)

The associated vector fields for the one-parameter Lie group of NS equation (71) are given by

v1 =
x
2
∂x +

y

2
∂y + t∂t, v2 = ∂t, v3 = −yt∂x + xt∂y +

x2 + y2

2
∂ψ,

v4 = −y∂x + x∂y, v5 = f (t)∂x − f ′(t)y∂ψ,
v6 = g(t)∂y + g′(t)x∂ψ, v7 = h(t)∂ψ.

(72)

Here, ignoring the discussion of the infinite dimensional subalgebra, we apply the new approach
to construct the two-dimensional optimal system and the corresponding invariant solutions for the
four-dimensional Lie algebra spanned by v1, v2, v3, v4 in (72).

The commutator table and the adjoint representation table for {v1, v2, v3, v4} are given in
Tables V and VI, respectively.

A. Adjoint transformation matrix and the invariant equations

Applying the adjoint action of v1 to w1 =
4

i=1
aivi, we have

Adexp(ϵ1v1)(a1v1 + a2v2 + a3v3 + a4v4) = a1v1 + a2eϵ1v2 + a3e−ϵ1v3 + a4v4.

Hence the corresponding adjoint transformation matrix A1 is saying

A1 =

*.....
,

1 0 0 0
0 eϵ1 0 0
0 0 e−ϵ1 0
0 0 0 1

+/////
-

. (73)

TABLE VI. Adjoint representation table of the NS equation.

Ad v1 v2 v3 v4

v1 v1 eϵv2 e−ϵv3 v4

v2 v1−ϵv2 v2 v3−ϵv4 v4

v3 v1+ϵv3 v2+ϵv4 v3 v4

v4 v1 v2 v3 v4
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Similarly, one can get

A2 =

*.....
,

1 −ϵ2 0 0
0 1 0 0
0 0 1 −ϵ2

0 0 0 1

+/////
-

, A3 =

*.....
,

1 0 ϵ3 0
0 1 0 ϵ3

0 0 1 0
0 0 0 1

+/////
-

, A4 = E.

Then the most general adjoint matrix A can be taken as

A = A1A2A3A4 =

*.....
,

1 −ϵ2 ϵ3 −ϵ2ϵ3

0 eϵ1 0 eϵ1ϵ3

0 0 e−ϵ1 −e−ϵ1ϵ2

0 0 0 1

+/////
-

. (74)

Let

w1 =

4
i=1

aivi, w2 =

4
j=1

bjv j . (75)

For the general two-dimensional subalgebra {w1, w2}, the corresponding invariant φ is a real func-

tion of a1, . . . ,a4,b1, . . . ,b4. Let v =
4

k=1
ckvk be a general element of G, then in conjunction with

Table V, we have

Adg(w1) = Adexp(ϵv)(w1)
= w1 − ϵ[v,w1] + 1

2!
ϵ2[v, [v,w1]] − · · ·

= (a1v1 + · · · + a4v4) − ϵ[c1v1 + · · · + c4v4,a1v1 + · · · + a4v4] +O(ϵ2)
= a1v1 + (a2 − ϵ(c2a1 − c1a2))v2 + (a3 − ϵ(c1a3 − c3a1))v3

+ (a4 − ϵ(c2a3 − c3a2))v4 +O(ϵ2).

(76)

Similarly, applying the same adjoint action v =
4

k=1
ckvk to w2, we get

Adg(w2) = b1v1 + (a2 − ϵ(c2b1 − c1b2))v2 + (b3 − ϵ(c1b3 − c3b1))v3

+ (b4 − ϵ(c2b3 − c3b2))v4 +O(ϵ2). (77)

Two cases are considered in the follows.
(a) When [w1, w2] = 0, the invariant function φ = φ(a1,a2,a3,a4,b1,b2,b3,b4) is determined by

seven equations,

a1φa1 + a2φa2 + a3φa3 + a4φa4 = 0, a1φb1 + a2φb2 + a3φb3 + a4φb4 = 0,
a2φa2 − a3φa3 + b2φb2 − b3φb3 = 0, a1φa2 + a3φa4 + b1φb2 + b3φb4 = 0,
a1φa3 + a2φa4 + b1φb3 + b2φb4 = 0,

(78)

and

b1φb1 + b2φb2 + b3φb3 + b4φb4 = 0, b1φa1 + b2φa2 + b3φa3 + b4φa4 = 0. (79)

(b) When [w1, w2] = w1, the invariant function φ = φ(a1,a2,a3,a4,b1,b2,b3,b4) only needs to
meet Eqs. (78) in terms of a12 = 0 and a22 = 0.

B. Construction of two-dimensional optimal system for the NS equation

Substituting (75) into [w1, w2] = δw1, the determined equations are found as follows:

δa1 = 0, a2b1 − a1b2 = δa2, a1b3 − a3b1 = δa3, a2b3 − a3b2 = δa4. (80)
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1. The case of δ = 0 in restrictive equations (80)

We consider two cases.
Case 1: Not all a1 and b1 are zeroes.
Without loss of generality, we adopt a1 , 0. Solving (80), we get

b2 =
a2b1

a1
, b3 =

a3b1

a1
, (81)

with a1,a2,a3,a4,b1, and b4 being arbitrary.
Substituting condition (81) into Eqs. (78) and (79), we find that φ = constant. Hence according

to (81), select the corresponding representative element {v1, v4}. Since Eqs. (49) have the solution

k ′1 = a1, k ′2 =
a1a4 − a2a3

a1
, k ′3 = b1,

k ′4 =
b4a2

1 − a2a3b1

a2
1

, ϵ2 =
eϵ1a2

a1
, ϵ3 = −

a3

a1eϵ1
,

case (1) is equivalent to {v1, v4}.
Case 2: a1 = b1 = 0. Now determined equations (80) become

a2b3 − a3b2 = 0. (82)

Case 2.1: Not all a2 and b2 are zeroes and we let a2 , 0.
From Eq. (82), we get b3 =

a3b2
a2

. Then by solving Eqs. (78) and (79), we find φ ≡ constant. In
this case, there exist three circumstances in terms of the sign of a2a3.

(i). When a3 = 0, choose the representative element {v2, v4} and Eqs. (49) have the solution

k ′1 = eϵ1a2, k ′2 = eϵ1ϵ3a2 + a4, k ′3 = eϵ1b2, k ′4 = eϵ1ϵ3b2 + b4.

(ii). For a2a3 > 0, we select {v2 + v3, v4} as a representative element. Eqs. (49) hold for

k ′1 =


a3

a2
a2, k ′2 =


a3

a2
(ϵ3 − ϵ2)a2 + a4,

k ′3 =


a3

a2
b2, k ′4 =


a3

a2
(ϵ3 − ϵ2)b2 + b4.

(iii). For a2a3 < 0, we select {v2 − v3, v4} as a representative element and Eqs. (49) have the solution

k ′1 =

−a3

a2
a2, k ′2 =


−a3

a2
(ϵ3 + ϵ2)a2 + a4,

k ′3 =

−a3

a2
b2, k ′4 =


a3

a2
(ϵ3 + ϵ2)b2 + b4.

Case 2.2: For a2 = b2 = 0, Eqs. (49) always stand up and the general two-dimensional Lie
algebra becomes {a3v3 + a4v4,b3v3 + b4v4}. Then if not all a3 and b3 are zeroes (and let a3 , 0), it
will equivalent to {v3, v4} since that Eqs. (49) have the solution

k ′1 = e−ϵ1a3, k ′2 = −e−ϵ1ϵ2a3 + a4, k3 = e−ϵ1b3, k ′4 = −e−ϵ1ϵ2b3 + b4.

For the case of a3 = b3 = 0, the general two-dimensional Lie algebra {a4v4,b4v4} is trivial.

2. The case of δ = 1 in restrictive equations (80)

Substituting δ = 1 into Eqs. (80), there must be a1 = 0.
Case 3: a2 , 0.
Now, Eqs. (80) require

a3 = 0, a4 = a2b3, b1 = 1. (83)

Substituting (83) into Eqs. (78), it leads to an invariant for {w1, w2},

φ = ∆3 ≡ b4 − b2b3. (84)
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In condition of (83) and ∆3 = c, choose the corresponding representative element {v2, v1 + cv4} and
Eqs. (49) have the solution

k ′1 = a2, k ′2 = 0, k ′3 = b2, k ′4 = 1, ϵ3 = −b3, ϵ1 = ϵ2 = 0. (85)

Case 4: a2 = 0.
By solving Eqs. (80), we get

b1 = −1, a4 = −a3b2. (86)

Substituting (86) with a1 = a2 = 0 into Eqs. (78), one can obtain an invariant as follows:

φ = ∆4 ≡ b4 + b2b3. (87)

In condition of (86) and ∆4 = c, select a representative element {v3,−v1 + cv4} and Eqs. (49) have
the solution

k ′1 = a3, k ′2 = 0, k ′3 = b3, k ′4 = 1, ϵ2 = −b2, ϵ1 = ϵ3 = 0.

In summary, a two-dimensional optimal system O2 for the four-dimensional Lie algebra spanned
by v1, v2, v3, v4 in (72) is shown as follows:

g
′
1 = {v1, v4}, g′2 = {v2, v4}, g′3 = {v2 + v3, v4}, g′4 = {v2 − v3, v4},
g
′
5 = {v3, v4}, g′6 = {v2, v1 + cv4}, g′7 = {v3,−v1 + cv4}, (c ∈ R). (88)

C. Two-dimensional reductions for the NS equation

Using two-dimensional optimal system (88), one can reduce the (2+1)-dimensional NS equa-
tion to some ordinary differential equations and further get rich group invariant solutions. For the
case of g′1 = {v1, v4} and g′2 = {v2, v4}, one can refer to Ref. 18. The case of g′5 leads to no group
invariant solutions. Then we just consider the rest elements in (88).

(a) g′3 = {v2 + v3, v4} and g′4 = {v2 − v3, v4}. By solving (v2 ± v3)(ψ) = 0 and v4(ψ) = 0, we have
ψ = F(x2 + y2) ± 1

2 t(x2 + y2). Substituting it into Eq. (71), one can get

8γ[ξ2F(4)(ξ) + 4ξF ′′′(ξ) + 2F ′′(ξ)] ∓ 1 = 0, (89)

with ξ = x2 + y2. By solving Eq. (89), we find g′3 and g′4 lead to the same group invariant solution

ψ = c1 + c2(x2 + y2) + c3 ln(x2 + y2) + c4(x2 + y2)[ln(x2 + y2) − 1]
+

1
32γ

(x2 + y2)2 + 1
2

t(x2 + y2).

(b) g′6 = {v2, v1 + cv4}. From v2(ψ) = 0 and (v1 + cv4)(ψ) = 0, one can get ψ = F(arctan( y
x
) −

c ln(x2 + y2)). Substituting it into Eq. (71) and integrating the reduced equation once, we have

γ[(4c2 + 1)G′′(ξ) + 8cG′(ξ) + 4G(ξ)] − G2(ξ) = 0, (G(ξ) = F ′(ξ)), (90)

with ξ = arctan( y
x
) − c ln(x2 + y2). Specially, when c = 0 in Eq. (90), there is a solution

G(ξ) = −6γsech2(ξ + c0) + 4γ. (91)

Then it leads to the solution of the NS equation

ψ = −6γ tanh(arctan( y
x
) + c0) + 4γ arctan( y

x
) + c1. (92)

(c) g′7 = {v3, v1 + cv4}. In this case, we have ψ = arctan( x
y
) + c ln(t) + F( x2+y2

t
). The reduced

equation for Eq. (71) is

4γZ2G′′(Z) + Z(Z + 8γ − 2)G′(Z) + (Z − 2)G(Z) = 0, (F ′(Z) = G(Z)), (93)

with Z = x2+y2

t
.
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In particular, for γ = 1
4 , we obtain a solution

ψ = arctan
( x
y

)
+ c ln(t) + c1 + c2 ln(Z) + c3(2 ln(Z) + 3e−Z + Ze−Z + 2Ei(1, Z) + 4

3
), (94)

for γ = 1, there is

ψ = arctan
( x
y

)
+ c ln(t) + c1 + c2 ln(Z) + c3

(√
πerf(

√
Z

2
)

−
√

Zhypergeom([1
2
,
1
2
], [3

2
,
3
2
],− Z

4
)
)
. (95)

Here, the special function “Ei” in (94) is the exponential integral, described by

Ei(1, z) =
 ∞

1

1
exzx

dx. (96)

In (95), the error function “erf” is defined by

erf(x) = 2
 x

0 e−t
2
dt

√
π

, (97)

while the “hypergeom(n,d, z)” calling sequence with n = [n1,n2, . . . ,np] and d = [d1,d2, . . . ,dq] is
the generalized hypergeometric function,

hypergeom(n,d, z) =
∞
k=0

zk
p
i=1

pochhammer(ni, k)

k!
q
j=1

pochhammer(d j, k)
, (98)

where the “pochhammer” function is defined for a positive integer k as

pochhammer(z, k) = z(z + 1)(z + 2) · · · (z + k − 1). (99)

V. SUMMARY AND DISCUSSION

Since many important equations arising from physics are of low dimensions, only the deter-
mination of small parameter optimal systems can reduce them to ODEs which often lead to in-
equivalent group invariant solutions. In this paper, we give an elementary algorithm for constructing
two-dimensional optimal system which only depends on fragments of the theory of Lie algebras.
The intrinsic idea of our method is that every element in the optimal system corresponds to different
values of invariants, the definition of which have been refined in this paper. Thanks to these invari-
ants which are often overlooked except the Killing form in the almost existing methods, all the
elements in the two-dimensional optimal system are found one by one and their inequivalences are
evident, with no further proof. Moreover, the construction of two-dimensional optimal system in
this paper starts from the algebra directly, which does not require the prior one-dimensional optimal
system as usual.

Before manipulating the given algorithm to construct two-dimensional optimal system, one
should make a refinement for the two-dimensional algebra and compute the general adjoint trans-
formation matrix with the invariants equations, which seem much complicated but in fact can all be
carried out in mechanization with the compute software “Maple.” A new method is shown to pro-
vide all the invariants for the two-dimensional subalgebras, which is based on the idea of “invariant”
under the meaning of both adjoint transformation and combination act. Applying the algorithm to
the heat equation, Novikov equation, and NS equation, we obtain their two-dimensional optimal
systems, respectively. For the heat equation, the obtained two-dimensional optimal system contains
eleven elements, which are discovered more comprehensive than that in Ref. 10 after a detailed
comparison. For the NS equation, all the reduced ordinary differential equations and some exact
group invariant solutions which come from the obtained two-dimensional optimal system are found.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  222.66.117.75

On: Fri, 19 Feb 2016 00:59:00



023518-22 Hu, Li, and Chen J. Math. Phys. 57, 023518 (2016)

The algorithm considered in this paper is elementary and practical, without too much algebraic
knowledge. Since the designed algorithm essentially starts from the algebra of the differential equa-
tions rather than the equations themselves, the method can also be applied to ODEs and systems of
differential equations. Due to the programmatic process, to give a Maple package on the computer
for two-dimensional optimal system is necessary and under our consideration. How to apply all the
invariants to construct r-parameter (r > 2) optimal systems is also an interesting job.
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