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Nonlocal symmetry and exact solutions of the (2+1)-dimensional
modified Bogoyavlenskii–Schiff equation∗
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In this paper, the truncated Painlevé analysis, nonlocal symmetry, Bäcklund transformation of the (2+1)-dimensional
modified Bogoyavlenskii–Schiff equation are presented. Then the nonlocal symmetry is localized to the corresponding
nonlocal group by the prolonged system. In addition, the (2+1)-dimensional modified Bogoyavlenskii–Schiff is proved
consistent Riccati expansion (CRE) solvable. As a result, the soliton–cnoidal wave interaction solutions of the equation
are explicitly given, which are difficult to find by other traditional methods. Moreover figures are given out to show the
properties of the explicit analytic interaction solutions.
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1. Introduction
Soliton equations connect rich histories of exactly solv-

able systems constructed in mathematics, fluid physics, micro-
physics, cosmology, field theory, etc. To explain some phys-
ical phenomenon further, it becomes more and more impor-
tant to seek exact solutions and interactions among solutions
of nonlinear wave solutions. It is well known that there are
many ways to obtain exact solutions of soliton equations, such
as the Inverse Scattering transformation (IST),[1] Bäcklund
transformation (BT),[2] Darboux transformation (DT),[3,4] Hi-
rota bilinear method,[5] Painlevé method,[6,7] Lie symmetry
method,[8–10] and so on. For a given nonlinear system, the
Lie symmetry method proposed by Sophus Lie[11,12] during
the nineteenth century is a standard method to find the corre-
sponding Lie point symmetry algebras and groups.

The nonlocal symmetries are connected with integrable
models and they enlarge the class of symmetries, therefore,
to search for nonlocal symmetries of the nonlinear systems
is an interesting work. Akhatov and Gazizov[13] provided
a method for constructing nonlocal symmetries of differen-
tial equations based on the Lie–Bäcklund theory. Galas[14]

obtained the nonlocal Lie–Bäcklund symmetries by introduc-
ing the pesudo-potentials as an auxiliary system. Guthrie[15]

got nonlocal symmetries with the help of a recursion opera-
tor. Bluman[16] introduced the concept of potential symme-
try for a differential system by writing the given system in a
conserved form. Lou et al.[17–19] have made some efforts to

obtain infinitely many nonlocal symmetries by inverse recur-
sion operators, the conformal–invariant form (Schwartz form),
and Darboux transformation. More recently, Lou, Hu, and
Chen[20–22] obtained nonlocal symmetries that were related to
the Darboux transformation with the Lax pair and Bäcklund
transformation. Xin and Chen[23] gave a systemic method to
find the nonlocal symmetry of nonlinear evolution equation
and improved previous methods to avoid missing some im-
portant results such as integral terms or high-order derivative
terms of nonlocal variables in the symmetries. In recent years,
it was found that Painlevé analysis can be used to obtain nonlo-
cal symmetries. The type of nonlocal symmetry related to the
truncated Painlevé expansion is just the residual of the expan-
sion with respect to singular manifold, and is also called resid-
ual symmetry.[24–28] The localization of this type of residual
symmetry seems more easily performed than that coming from
DT and BT. In order to develop some types of relatively sim-
ple and understandable methods to construct exact solutions,
Lou proposed a consistent Riccati expansion (CRE) method to
identify CRE solvable systems in Ref. [29]. A system is de-
fined to be CRE solvable if it has a CRE. It has been revealed
that many similar interaction solutions between a soliton and
a cnoidal wave were found in various CRE solvable systems.
By this method, recent studies[30–38] have found a lot of inter-
action solutions in many nonlinear equations.

In the present paper, we focus on investigating the non-
local symmetry, prolonged system, Bäcklund transformation,
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CRE solvability, and the exact interaction solutions of the
following (2+1)-dimensional modified Bogoyavlenskii–Schiff
(mBS) equation[39–43]

ut +uxxy−4u2uy−2ux∂
−1
x (u2)y = 0, (1)

where subscript means a partial derivative such as ut = ∂u/∂ t,
uxy = ∂ 2u/∂x∂y, and

∂
−1u =

∫ x

−∞

u(x,y, t)dx.

This equation can be derived by the following CD-type (2+1)-
dimensional breaking soliton equation[44–46]

uxt +uxxxy−4uxuxy−2uxxuy = 0, (2)

with a Miura transformation,

u =−vx− v2. (3)

It is obvious that if y = x the equation becomes an mKdV
equation,

ut +6u2ux +uxxx = 0, (4)

which is widely researched by several authors. In order to
treat the integral appearing in the equation, equation (1) is then
rewritten as {

ut +uxxy−4u2uy−2uxv = 0,
vx−2uuy = 0.

(5)

As equation (2) is a typical breaking soliton equation to
describe the (2+1)-dimensional interaction of a Riemann wave
propagating along the y axis with a long wave along the x
axis and equation (4) may present the wave propagation of the
bound particle, sound wave, and thermal pulse, equation (1)
must have abundant physical phenomena. But little attention
has been paid to this equation, except Refs. [39]–[43], where
the Lax pair and soliton solutions are presented. Therefore,
finding more types of solutions of Eq. (1) is of interest to un-
derstand the equation fully.

This paper is arranged as follows. In Section 2, the non-
auto Bäcklund transformation and nonlocal symmetry of the
(2+1)-dimensional modified mBS equation are obtained by
making use of the truncated Painlevé expansion approach,
then the nonlocal symmetry is localized by introducing an-
other three dependent variables and the corresponding non-
local transformation group is found. In Section 3, the (2+1)-
dimensional modified mBS equation is verified to be consis-
tent Riccati expansion solvable and the soliton–cnoidal wave
solutions are constructed. The last section contains a summary
and discussion.

2. The nonlocal symmetry from the truncated
Painlevé expansion
For the (2+1)-dimensional mBS equation (5), there exists

a truncated Painlevé expansion

u =
u0

φ
+u1, v =

v0

φ 2 +
v1

φ
+ v2, (6)

with u0,u1,v0,v1,v2,φ being the functions of x, y, and t, the
function φ(x,y, t) = 0 is the equation of singularity manifold.

Substituting Eq. (6) into Eq. (5) and balancing all the co-
efficients of different powers of φ , we can get

u0 = φx, v0 = φxφy, u1 =−
φxx

2φx
,

v1 =−φxy, v2 =
1
2

(
φt

φx
+(

φxx

φx
)y

)
, (7)

and the (2+1)-dimensional mBS equation (5) is successfully
satisfying the following Schwarzian form

Px +Sy = 0. (8)

Here, we denote

P =
φt

φx
, S =

φxxx

φx
− 3

2

(
φxx

φx

)2
, (9)

where P is the usual Schwarzian variables, S is the Schwarzian
derivative and both invariants under the Möbious transforma-
tion, i.e.,

φ → a+bφ

c+dφ
(ad 6= bc). (10)

If we take a special case a = 0,b = c = 1,d = ε , then
equation (10) can be rewritten as

φ → φ − εφ
2 +o(ε2),

which means equation (8) possesses the point symmetry[24]

σ
φ =−φ

2. (11)

From the standard truncated Painlevé expansion (6), we
have the following non-auto-Bäcklund transformation theo-
rem of Eq. (5).

Theorem 1 (non-auto-BT theorem) If the function φ

satisfies Eq. (8), then,

u =
φx

φ
− φxx

2φx
,

v =
φxφy

φ 2 −
φxy

φ
+

1
2

(
φt

φx
+
(

φxx

φx

)
y

)
, (12)

is a non-auto BT between φ and the solution u,v of the (2+1)-
dimensional mBS equation (5).

One knows that the symmetry equations for Eq. (5) read

σ
u
t +σ

u
xxy−8σ

uuuy−4u2
σ

u
y −2σ

u
x v−2uxσ

v = 0,

σ
v
x −2σ

uuy−2uσ
u
y = 0, (13)
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where σu and σ v denote the symmetries of u and v, respec-
tively. From the truncated Painlevé expansion (6) and the The-
orem 1, a new nonlocal symmetry of Eq. (5) is presented and
studied as follows.

Theorem 2 The equation (5) has the nonlocal symme-
try given by (

σu

σ v

)
=

(
φx
−φxy

)
, (14)

where u,v and φ satisfy the non-auto BT (12).
Proof The nonlocal symmetries (14) are residual of the

singularity manifold φ . The nonlocal symmetries (14) will
also be obtained with substituting the Möbious transformation
symmetry σφ into the linearized equation (7).

To find out the group of the nonlocal symmetry (14)(
u
v

)
→
(

ū(ε)
v̄(ε)

)
=

(
u
v

)
+ ε

(
σu

σ v

)
,

we have to solve the following initial value problem

dū(ε)
dε

= φ̄x,
dv̄(ε)

dε
=−φ̄xy,

ū(ε) |ε=0= u, v̄(ε) |ε=0= v, (15)

with ε being the infinitesimal parameter.
However, since it is difficult to solve Eqs. (15) for ū(ε)

and v̄(ε) due to the intrusion of the function φ̄(ε) and its differ-
entiations, we introduce new variables to eliminate the space
derivatives of φ̄(ε)

f = φx, g = φy, h = fy. (16)

Now the nonlocal symmetry (14) of the original equa-
tion (5) becomes a Lie point symmetry of the prolonged sys-
tem (5), (12), and (16), saying

σu

σ v

σφ

σ f

σg

σh

=


f
−h
−φ 2

−2φ f
−2φg

−2 f g−2φh

 . (17)

The result (17) indicates that the nonlocal symmetries (14) are
localized in the properly prolonged systems (5), (12), and (16)
with the Lie point symmetry vector

V = f ∂u +h∂v−φ
2
∂φ −2φ f ∂ f −2φg∂g−2( f g+φh)∂h.

(18)
In other words, the symmetries related to the truncated
Painlevé expansion are just a special Lie point symmetry of
the prolonged system.

Now we have obtained the localized nonlocal symmetries,
an interesting question is what kind of finite transformation

would correspond to the Lie point symmetry (18). We have
the following theorem.

Theorem 3 If {u,v,φ , f ,g,h} is a solution of the pro-
longed systems (5), (12), and (16), then {ū, v̄, φ̄ , f̄ , ḡ, h̄} is
given by

ū = u+
ε f

εφ +1
,

v̄ = v− εh
εφ +1

+
ε2 f g

(εφ +1)2 ,

φ̄ =
φ

εφ +1
,

f̄ =
f

(εφ +1)2 ,

ḡ =
g

(εφ +1)2 ,

h̄ =− h
(εφ +1)2 −

2ε f g
(εφ +1)3

with arbitrary group parameter ε .
Proof Using Lie’s first theorem on vector (18) with the

corresponding initial condition

dū(ε)
dε

= f̄ (ε), ū(0) = u,

dv̄(ε)
dε

=−h̄(ε), v̄(0) = v,

dφ̄(ε)

dε
=−φ̄

2(ε), φ̄(0) = φ ,

d f̄ (ε)
dε

=−2φ̄(ε) f̄ (ε), f̄ (0) = f ,

dḡ(ε)
dε

=−2φ̄(ε)ḡ(ε), ḡ(0) = g,

dh̄(ε)
dε

=−2( f̄ (ε)ḡ(ε)+ φ̄(ε)h̄(ε)), h̄(0) = h.

One can easily obtain the solutions of the above equations
given in Theorem 3, thus the theorem is proved.

Actually, the above group transformation is equivalent to
the truncated Painlevé expansion (6) since the singularity man-
ifold equations (5), (12), and (16) are form-invariant under the
transformation

1+ εφ → φ

with ε f → φx, εg→ φy, εh→ φxy.
Next let us study Lie point symmetries of the prolonged

systems instead of the single Eq. (5). According to the classi-
cal Lie point symmetry method, the Lie point symmetries for
the whole prolonged systems possess the form

σ
u = Xux +Yuy +Tut −U,

σ
v = Xvx +Y vy +T vt −V,

σ
φ = Xφx +Y φy +T φt −Φ ,
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σ
f = X fx +Y fy +T ft −F,

σ
g = Xgx +Y gy +T gt −G,

σ
h = Xhx +Y hy +T ht −H, (19)

where X ,Y,T,U,V,Φ ,F,G,H are functions of x, y, t, u, v, φ ,
f , g, h, which means that the prolonged systems (5), (12), and
(16) are invariant under the transformations

u→ u+ εσ
u, v→ v+ εσ

v,

φ → φ + εσ
φ , f → f + εσ

f ,

g→ g+ εσ
g, h→ h+ εσ

h, (20)

with the infinitesimal parameter ε .
The symmetries σ k (k = u,v,φ , f ,g,h) are defined as

the solution of the linearized equations of the prolonged sys-
tems (5), (12), and (16).

σ
u
t +σ

u
xxy−8σ

uuuy−4u2
σ

u
y −2σ

u
x v−2uxσ

v = 0,

σ
v
x −2σ

uuy−2uσ
u
y = 0,

(σφ
xxxy +σ

φ

xt)φ
3
x − (3σ

φ
xxyφxx +σ

φ

t φxx +3σ
φ
xxφxxy

+ σ
φ
xxφt +σ

φ
xxxφxy +σ

φ
xyφxxx)φ

2
x +(3σ

φ
xyφ

2
xx +3σ

φ
x φxxφxxy

+ σ
φ
x φtφxx +6σ

φ
xxφxxφxy +σ

φ
x φxxxφxy)φx

− 6σ
φ
x φ

2
xxφxy = 0,

σ
f −σ

φ
x = 0,

σ
g−σ

φ
y = 0,

σ
h−σ

f
y = 0. (21)

We substitute the expressions (19) into the symmetry equa-
tions (21) and collect the coefficients of the independent par-
tial derivatives of dependent variables u, v, φ , f , g, h. Then
we obtain a system of overdetermined linear equations for the
infinitesimals X ,Y , T,U , V,Φ , F,G, H, which can be easily
given by solving the determining equations

X = c1x+ f1, Y = c2y+ c3,

T = (2c1 + c2)t + c4,

U =−c1u− 1
2

f2 f ,

V =−(c1 + c2)v−
1
2
( f1t + f2h),

Φ =
1
2

f2φ
2 + f3φ + f4,

F = f2φ f + f3 f ,

G =
1
2

f2yφ
2 + f2φg+ f3yφ + f3g+ f4y,

H = f2yφ f + f2g f + f2φh+ f3y f + f3h, (22)

where f1 ≡ f1(t) is an arbitrary function of t,

f2 ≡ f2(y), f3 ≡ f3(y), and f4 ≡ f4(y)

are arbitrary functions of y and c1, c2, c3, and c4 are arbitrary
constants. When

c1 = c2 = c3 = c4 = f1 = f3 = f4 = 0

and f2 = −2, the obtained symmetry is just Eq. (17), and
when f2 = 0, the related symmetry is only the general Lie
point symmetry of the original equation (5). To obtain more
group invariant solutions, we would like to solve the sym-
metry constraint condition σ k = 0 defined by Eq. (19) with
Eq. (22), which is equivalent to solving the following charac-
teristic equations

dx
X

=
dy
Y

=
dt
T

=
du
U

=
dv
V

=
dφ

Φ
=

d f
F

=
dg
G

=
dh
H

. (23)

To solve the characteristic equations, one special case is listed
in the following.

Without loss of generality, we assume c1 = c2 = c3 = 0,
c4 = 1, f1 = 1/c5, f2 = c6, f3 = c7, and f4 = c8. For simplicity,
we introduce ∆ 2 = c2

7−2c6c8. We find the similarity solutions
after solving out the characteristic equations (23)

φ =−c7

c6
− ∆

c6
tanh

[1
2

c5∆(F1 + x)
]
,

f =−F2 sech2
[1

2
c5∆(F1 + x)

]
,

g =−F3 sech2
[1

2
c5∆(F1 + x)

]
,

h = F4 sech2
[1

2
c5∆(F1 + x)

]
− 2c6

∆
F2F3 sech2

[1
2

c5∆(F1 + x)
]

tanh
[1

2
c5∆(F1 + x)

]
,

u = F5 +
c6

∆
F2 tanh

[1
2

c5∆(F1 + x)
]
,

v = F6 +
[(c6

∆

)2
F2F3−

c6

∆
F4

]
tanh

[1
2

c5∆(F1 + x)
]
, (24)

where

F1 = F1(ξ ,η), F2 = F2(ξ ,η),

F3 = F3(ξ ,η), F4 = F4(ξ ,η),

F5 = F5(ξ ,η), F6 = F6(ξ ,η)

are the group-invariant functions while ξ = y and η = t− c5x
are the similarity variables. Substituting Eqs. (24) into the pro-
longed systems (5), (12), and (16), the invariant functions F1,
F2, F3, F4, F5, and F6 satisfy the reduction systems

F2 =−
c5∆ 2

2c6
(c5F1η),

F3 =−
c5∆ 2

2c6
F1ξ ,

F4 =
c5∆ 2

2c6
F1ξ η ,
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F5 =
c5F1ηη

2(F1η − c5)
,

F6 =
2

(c5F1η −1)2 ((F1ξ η F1ηη −F1ξ ηη F1η)c3
5

+ F1ξ ηη c2
5−F2

1η c5 +F1η), (25)

in the above equations, F1 satisfies the following reduction
equation

∆
2F1ξ η F4

1η c6
5−4∆

2F1ξ η F3
1η c5

5 +(6∆
2F1ξ η F2

1η +F1η F1ξ η F1ηηη −3F1ξ η F2
1ηη +3F1η F1ηη F1ξ ηη −F1ξ ηηη F2

1η)c
4
5

+(2F1η F1ξ ηηη −4∆
2F1η F1ξ η −F1ξ η F1ηηη −3F1ηη F1ξ ηη)c

3
5 +(∆ 2F1ξ η −F1ξ ηηη)c

2
5 +F1η F1ηη c5−F1ηη = 0. (26)

It is obvious that once the solutions F1 are solved out with
Eq. (26), the solutions for F2, F3, F4, F5, and F6 can be solved
out directly from Eq. (25). So the explicit solutions for the
(2+1)-dimensional modified mBS equation (5) are immedi-
ately obtained by substituting F1, F2, F3, F4, F5, and F6 into
Eq. (24).

3. CRE solvable and soliton–cnoidal waves solu-
tion

3.1. CRE solvable

For the (2+1)-dimensional mBS equation (5), we aim to
look for its truncated Painlevé expansion solution in the fol-
lowing possible form

u = u0 +u1R(w),

v = v0 + v1R(w)+ v2R(w)2, (w = w(x,y, t)), (27)

where R(w) is a solution of the Riccati equation

Rw = b0 +b1R+b2R2, (28)

with b0,b1,b2 being arbitrary constants. By vanishing all the
coefficients of the power of R(w) after substituting Eq. (28)
with Eq. (27) into Eq. (5), we have nine over-determined equa-
tions for only six undetermined functions u0, u1, v0, v1, v2, and
w, it is fortunate that the overdetermined system may be con-
sistent, thus we obtain

u1 = b2wx, u0 =
1
2
(b1wx +

wxx

wx
),

v2 = b2
2wxwy, v1 = b2

(
b1wxwy +wxy

)
,

v0 = b0b2wxwy +
1
2

b1wxy +
wt

2wx
+
( wxy

2w2
x

)
x
, (29)

and the function w must satisfy

δwx(C1wx)x +P1x +S1y = 0,

(δ = 4b0b2−b2
1), (30)

where

P1 =
wt

wx
,

S1 =
wxxx

wx
− 3

2

(wxx

wx

)2
. (31)

From above discussion, it is shown that equation (5) re-
ally has the truncated Painlevé expansion solution related to
the Riccati equation (28). At this point, we call the expan-
sion (27) a consistent Riccati expansion (CRE) and the (2+1)-
dimensional mBS equation is CRE solvable.[29]

In summary, we have the following theorem:
Theorem 4 If w is a solution of

δwx(C1wx)x +P1x +S1y = 0, (32)

then,

u =
1
2

(
b1wx +

wxx

wx

)
+b2wxR,

v = v0 + v1R+ v2R2, (33)

is a solution of Eq. (5), with R≡ R(w) being a solution of the
Riccati equation (28).

3.2. Soliton–cnoidal wave interaction solutions

Obviously, the Riccati equation (28) has a special solu-
tion R(w) = tanh(w), while the truncated Painlevé expansion
solution (27) becomes

u = u0 +u1 tanh(w),

v = v0 + v1 tanh(w)+ v2 tanh2(w), (34)

where u0, u1, v0, v1, v2, and w are determined by Eqs. (28),
(29), and (30).

We know the solution (34) is just consistent with Theo-
rem 4. As consistent tanh-function expansion (CTE) (34) is a
special case of CRE, it is quite clear that a CRE solvable sys-
tem must be CTE solvable, and vice versa. If a system is CTE
solvable, some important interaction solitary wave solutions
can be constructed directly. In order to say the relation clearly,
we give out the following Bäcklund transformation.

Theorem 5 (BT) If w is a solution of Eq. (30) with
δ = 4, then

u = u0−wx tanh(w),

v = v0−wxy tanh(w)+wxwy tanh2(w), (35)
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is a solution of Eq. (5), where {u0,v0} is determined by
Eq. (29) with b0 = 1, b1 = 0, b2 =−1, δ = 4.

In order to obtain the solution of Eq. (5), we consider w
in the form

w = k1x+ l1y+d1t +g, (36)

where g is a function of x,y and t. It will lead to the inter-
action solutions between a soliton and other waves. By means
of Theorem 5, some nontrivial solutions of (2+1)-dimensional
mBS equation can be obtained from some quite trivial solu-
tions of Eq. (23), which are listed as follows.

Case 1 In Eq. (30), we take a trivial solution for w, say-
ing

w = kx+ ly+dt + c, (37)

with k, l, d, and c being arbitrary constants. Then substitut-
ing Eq. (36) into Theorem 5 yields the following kink soliton
and ring soliton solution of the (2+1)-dimensional mBS equa-
tion (5)

u =−k tanh(kx+ ly+dt + c),

v =−d + l
2k
− kl sech2(kx+ ly+dt + c). (38)

Case 2 To find out the interaction solutions between soli-
ton and cnoidal periodic wave, let

w = k1x+ l1y+d1t +W (X),

(X ≡ k2x+ l2y+d2t), (39)

where W1 ≡W1(X) =WX satisfies

W 2
1X = a0 +a1W1 +a2W 2

1 +a3W 3
1 +a4W 4

1 , (40)

with a0, a1, a2, a3, and a4 being constants. Substituting
Eq. (39) with Eq. (40) into Theorem 4, we have the follow-
ing relations

a0 = a1
k1

k2
−a2

(k1

k2

)2
+a3

(k1

k2

)3
−4
(k1

k2

)4
,

a4 = 4,

d2 =−a1l2
k3

2
k1

+2a2k2
2l2−3a3k1k2l2

+ 16k2
1l2 +

d1k2

k1
, (41)

which leads to the following explicit solutions of Eq. (5) in the
form of

u =
1
2

k2
2W1X

k1 + k2W1
− (k1 + k2W1) tanh(k1x+ l1y+d1t +W ),

v =−(k1 + k2W1)(l1 + l2W1)+
1
2

d1 +d2W1 + k2
2l2W1XX

k1 + k2W1
− 1

2
k3

2l2W 2
1X

(k1 + k2W1)2 +d1t +W )2. (42)

It is known that an equation by the definition of the el-
liptic functions can be written out in terms of Jacobi elliptic
functions. The formula (42) exhibits the interactions between
soliton and abundant cnoidal periodic waves. To show these
soliton–cnoidal waves more intuitively, we just take a simple
solution of Eq. (40) as

W1 = µ0 +µ1 sn(mX ,n), (43)

where sn(mX ,n) is the usual Jacobi elliptic sine function. The
modulus n of the Jacobi elliptic function satisfies: 0 ≤ n ≤ 1.
When n→ 1, sn(ξ ) degenerate as hyperbolic function tanh(ξ ),
when n→ 0, sn(ξ ) degenerates as a trigonometric function
sin(ξ ). Substituting Eq. (43) with Eq. (41) into Eq. (40) and
setting the coefficients of cn(ξ ), dn(ξ ), sn(ξ ) equal zero,
yields

a1 = (1−n2)m3− (2n2−10)m2 k1

k2
+24m

(k1

k2

)2

+16
(k1

k2

)3
,

a3 = 8m+16
k1

k2
,

a2 = (5−n2)m2 +24m
k1

k2
+24

(k1

k2

)2
,

µ0 =−
1
2

m− k1

k2
,

µ1 =
1
2

mn. (44)

Hence, one kind of soliton–cnoidal wave solution is ob-
tained by taking Eq. (43) and

W = µ0X +µ1

∫ X

X0

sn(mY,n)dY, (45)

with the parameter requirement (44) into the general solu-
tion (42).

The solution given in Eq. (42) with Eq. (41) denotes
the analytic interaction solution between the soliton and the
cnoidal periodic wave. In Fig. 1, we plot the interaction so-
lution of the potential u when the value of the Jacobi elliptic
function modulus n 6= 1. In Fig .2, we plot the interaction so-
lution of the potential v when the value of the Jacobi elliptic
function modulus n 6= 1. This kind of solution can be easily
applicable to the analysis of interesting physical phenomenon.
In fact, there are plentiful solitary waves and cnoidal periodic
waves in the real physics world.
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Fig. 1. (color online) The first type of soliton–cnoidal wave interaction solution for u with the parameters m = 1, n = 1/2, k2 = 1, µ0 = 1, and µ1 = 1/4: (a)
one-dimensional image at x = 0, t = 2; (b) one-dimensional image at x = 0, y = 2; (c) the three-dimensional plot; (d) overhead view for u at t = 0.
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Fig. 2. (color online) The first type of soliton–cnoidal wave interaction solution for v with the parameters m = 1, n = 1/2, k2 = 1, µ0 = 1, and µ1 = 1/4: (a)
one-dimensional image at x = 0, t = 2; (b) one-dimensional image at x = 0, y = 2; (c) the three-dimensional plot; (d) overhead view for v at t = 0.
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4. Summary and discussion
In summary, the (2+1)-dimensional mBS equation is in-

vestigated by using the truncated Painlevé analysis. The non-
local symmetries, Bäcklund transformations and CRE solv-
able of the equation are found. Then by means of the CRE
method, the soliton–cnoidal wave solutions of the (2+1)-
dimensional mBS equation are obtained. By a special form
of CRE, i.e., the consistent tanh-function expansion (CTE),
kink soliton+cnoidal periodic wave solution and ring soli-
ton+cnoidal periodic wave solution are explicitly expressed by
the Jacobi elliptic functions and the corresponding elliptic in-
tegral. The interactions between solitons and cnoidal periodic
waves display some interesting and physical phenomena. The
CRE method used here can be developed to find other kinds of
solutions and integrable models. It can also be used to find in-
teraction solutions among different kinds of nonlinear waves.
The CRE method did provide us with the result which is quite
nontrivial and difficult to be obtained by other traditional ap-
proaches.

In addition, the generalized mKdV equation has been in-
vestigated in many aspects, but numerical methods relevant to
the (2+1)-dimensional mBS equation have been reported little
in the current articles. So uncovering more integrable prop-
erties of the equation, such as the Darboux transformation,
Hamiltonian structure and the conservation, are interesting and
meaningful work. The details on the CRE method and other
methods to solve interaction solutions among different kinds
of nonlinear waves and the investigation of other integrabil-
ity properties such as Hamiltonian structure and generalized
nonlocal symmetry of the (2+1)-dimensional mBS equation
deserves further study.
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