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Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation *
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By means of the modified Clarkson and Kruskal (CK) direct method and the variable separation approach, we
investigate the (2+1)-dimensional Ito equation which was constructed by Ito in 1980. The full symmetry group
with the Kac–Moody–Virasoro algebra structure and the variable separation solutions are obtained. By selecting
appropriate arbitrary functions, some special soliton excitations are shown graphically. The results presented
here would be beneficial for understanding the (2+1)-dimensional Ito equation better.

PACS: 02.20.−a, 04.20.Jb, 02.30.Jr DOI: 10.1088/0256-307X/32/7/070201

At present, there are many powerful and efficient
methods to investigate kinds of integrability, such as
the inverse scattering method,[1] Darboux transfor-
mation (DT),[2] the Bäcklund transformation method
(BT),[3] the Hirota bilinear method,[4] the tanh-
expansion method,[5] the Lie symmetry method,[6] the
algebra-geometrical approach,[7] and the variable sep-
aration approach.[8] Among these methods, the sym-
metry method and the variable separation approach
have been applied to solve a wide range of prob-
lems and to explore many physically interesting so-
lutions of nonlinear phenomena. By virtue of the
symmetry group, on the one hand, one can arrive at
new solutions from old ones; on the other hand, one
can construct a special type of exact solutions called
group invariant solutions which are invariant under
some transformations. For (2+1)-dimensional differ-
ential equations, the variable separation approach es-
tablished by Lou et al.[8] is another powerful method
to provide some exact physically significant coherent
solitons solutions, such as multiple solitoffs, dromions,
lumps, ring solitons, breathers and instantons.

In 1980, in view of keeping the 𝑁 -soliton solution,
Ito[9] generalized the bilinear KdV equation

𝐷𝑥(𝐷𝑡 +𝐷3
𝑥)𝑓 · 𝑓 = 0

to a (2+1)-dimensional bilinear model

[𝐷2
𝑡 +𝐷𝑡𝐷

3
𝑥 + 𝜇𝐷𝑡𝐷𝑦 + 𝜈𝐷𝑡𝐷𝑥]𝑓 · 𝑓 = 0, (1)

where 𝜇 and 𝜈 are arbitrary constants. By the trans-
formation 𝑢 = 2(ln 𝑓)𝑥𝑥, one can rewrite Eq. (1) as

𝑢𝑡𝑡 + 𝑢𝑥𝑥𝑥𝑡 + 3(2𝑢𝑥𝑢𝑡 + 𝑢𝑢𝑥𝑡)

+ 3𝑢𝑥𝑥

∫︁ 𝑥

−∞
𝑢𝑡𝑑𝑥

′ + 𝜇𝑢𝑦𝑡 + 𝜈𝑢𝑥𝑡 = 0, (2)

which is called the (2+1)-dimensional Ito equation.
For 𝜇 = 0 and 𝜈 = 0, Eq. (2) is reduced to the well-
known (1+1)-dimensional Ito equation.[9−13] Com-
pared with the (1+1)-dimensional Ito equation, slight
attention is paid to the (2+1)-dimensional Ito equa-
tion. Recently, Li et al.[14] studied its soliton solutions,
doubly-periodic wave solutions and periodic solitary
wave solutions using the extended homoclinic test
technique and the bilinear method, Wazwaz[15] stud-
ied its soliton solutions using the tanh-coth method
and the Hirota bilinear method, and Zhao et al.[16]

used the extend three-wave method to construct its
multi-wave solutions. With the help of the Bell poly-
nomials method, the bilinear forms, bilinear Bäklund
transformations and Lax pairs of Eq. (2) were reob-
tained by Wang,[17] respectively.

In this Letter, we focus on the full symmetry group
and localized solutions of the (2+1)-dimensional Ito
equation, which have not been revealed up to now.
For simplicity, introducing the potential transforma-
tion

𝑢 = 𝑤𝑥, (3)

Eq. (2) is converted into

𝑤𝑥𝑡𝑡 + 𝑤𝑥𝑥𝑥𝑥𝑡 + 6𝑤𝑥𝑥𝑤𝑥𝑡 + 3𝑤𝑥𝑤𝑥𝑥𝑡

+ 3𝑤𝑥𝑥𝑥𝑤𝑡 + 𝜇𝑤𝑥𝑦𝑡 + 𝜈𝑤𝑥𝑥𝑡 = 0. (4)

In Ref. [18], Clarkson and Kruskal (CK) introduced
a direct method to derive symmetry reductions of
a nonlinear system without using any group theory.
Then Lou et al.[19] were inspired to modify the CK di-
rect method to find the full symmetry group for both
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integral and non-integral nonlinear DEs. Here we take
this modified CK direct method to investigate Eq. (4).

For Eq. (4), one can take the simplified symmetry
transformation ansatz as

𝑤 = 𝛼+ 𝛽𝑊 (𝜉, 𝜂, 𝜏), (5)

where 𝛼, 𝛽, 𝜉, 𝜂 and 𝜏 are functions of {𝑥, 𝑦, 𝑡}. It is re-
quired that 𝑊 ≡ 𝑊 (𝜉, 𝜂, 𝜏) also satisfies Eq. (4) with
the new independent variables 𝜉, 𝜂 and 𝜏 .

Substituting Eq. (5) into Eq. (4), eliminating
𝑊𝜉𝜉𝜉𝜉𝜏 and their higher-order derivatives, then set-
ting the coefficients of the polynomials of 𝑊 and their
derivatives to be zero, by solving these equations we
can obtain

𝛼 = − 1

18

𝜇𝜂0𝑦𝑦𝑥
2

𝜂0𝑦
+

1

3𝛿𝜂
4/3
0𝑦

(𝜈𝜂20𝑦

− 𝛿𝜈𝜂
4/3
0𝑦 − 𝜇𝜂0𝑦𝜉0𝑦)𝑥+ 𝛼0,

𝛽 = 𝛿𝜂
1/3
0𝑦 , 𝜉 = 𝛿𝜂

1/3
0𝑦 𝑥+ 𝜉0,

𝜂 = 𝜂0, 𝜏 =
𝜂0
𝜇

+ 𝜏0, (6)

where 𝜉0 ≡ 𝜉0(𝑦), 𝜂0 ≡ 𝜂0(𝑦), and 𝛼0 ≡ 𝛼0(𝑦) are
arbitrary functions of 𝑦, and 𝜏0 ≡ 𝜏0(𝑡− 𝑦

𝜇 ) is an arbi-
trary function of (𝑡− 𝑦

𝜇 ). Here the constant 𝛿 possesses
three discrete values determined by

𝛿 = 1, − 1

2
(1 + 𝑖

√
3), − 1

2
(1− 𝑖

√
3), (7)

with 𝑖2 = 1.
Here we give the following final transformation group
theorem of Eq. (4).

If 𝑊 (𝑥, 𝑦, 𝑡) is a solution to Eq. (4), then it is
𝑤(𝑥, 𝑦, 𝑡) with

𝑤 = − 1

18

𝜇𝜂0𝑦𝑦𝑥
2

𝜂0𝑦
+

1

3𝛿𝜂
4/3
0𝑦

(𝜈𝜂20𝑦 − 𝛿𝜈𝜂
4/3
0𝑦

− 𝜇𝜂0𝑦𝜉0𝑦)𝑥+ 𝛼0 + 𝛿𝜂
1/3
0𝑦 𝑊 (𝜉, 𝜂, 𝜏), (8)

where 𝜉, 𝜂, 𝜏 are given by Eq. (6) and the discrete val-
ues of 𝛿 are given by Eq. (7).

Hence starting from the equation itself, one can
directly obtain the Lie symmetry group without the
prior Lie algebra. From the above symmetry group
theorem, one can also see that the full symmetry group
𝒢Ito of Eq. (4) is divided into three sectors which cor-
respond to

𝛿 = 1, − 1 + 𝑖
√
3

2
, − 1− 𝑖

√
3

2
,

of the theorem respectively. That is, the full sym-
metry group 𝒢Ito, expressed by the theorem for the
complex (2+1)-dimensional Ito equation is the prod-
uct of the usual Lie point symmetry group 𝒮 (theorem
with 𝛿=1) and the discrete group 𝒟,

𝒢𝐼𝑡𝑜 = 𝒟 ⊗ 𝒮, 𝒟 = {𝐼,𝑅1, 𝑅2}, (9)

where 𝐼 is the identity transformation, and

𝑅1 : 𝑤(𝑥, 𝑦, 𝑡) → −1 + 𝑖
√
3

2
𝑤

·
(︁
− 1 + 𝑖

√
3

2
𝑥,−1 + 𝑖

√
3

2
𝑦, 𝑡

)︁
,

𝑅2 : 𝑤(𝑥, 𝑦, 𝑡) → −1− 𝑖
√
3

2
𝑤

·
(︁
− 1− 𝑖

√
3

2
𝑥,−1− 𝑖

√
3

2
𝑦, 𝑡

)︁
.

Furthermore, via the full transformation group
Eq. (8), the Lie point symmetries and the related Lie
algebra can be recovered straightforwardly by a more
simple limiting procedure. In fact, if we set

𝛼0 = 𝜖𝑔(𝑦), 𝜂0(𝑦) = 𝑦 + 𝜖𝑘(𝑦),

𝜉0(𝑦) = 𝜖𝑙(𝑦), 𝜏0 = 𝑡− 𝑦

𝜇
+ 𝜖𝑠

(︁
𝑡− 𝑦

𝜇

)︁
with an infinitesimal parameter 𝜖, then the group
Eq. (8) can be written as

𝑤 =𝑤 + 𝜖𝜎(𝑊 )

𝜎(𝑊 ) =
(︁1
3
𝑘̇𝑥+ 𝑙

)︁
𝑤𝑥 + 𝑘𝑤𝑦 +

(︁𝑘
𝜇
+ 𝑠

)︁
𝑤𝑡

− 1

18
𝜇𝑘𝑥2 −

(︁1
3
𝜇𝑙 − 2

9
𝜈𝑘̇

)︁
𝑥− 𝑔 +

1

3
𝑘̇𝑤.

That is, the Lie point symmetries of Eq. (4) have the
forms

𝜎 ≡𝜎1(𝑘) + 𝜎2(𝑙) + 𝜎3(𝑔) + 𝜎4(𝑠)

≡
[︁1
3
𝑘̇
(︁
𝑥𝑤𝑥 +

2

3
𝜈𝑥+ 𝑤

)︁
+ 𝑘

(︁
𝑤𝑦 +

1

𝜇
𝑤𝑡

)︁
− 1

18
𝜇𝑘𝑥2

]︁
+

(︁
𝑙𝑤𝑥 − 1

3
𝜇𝑙
)︁
+ (−𝑔) + (𝑠𝑤𝑡). (10)

The nonzero commutators among 𝜎1(𝑘), 𝜎2(𝑙), 𝜎3(𝑔)
and 𝜎4(𝑠) are

[𝜎1(𝑘1), 𝜎1(𝑘2)] =𝜎1(𝑘1𝑘2 − 𝑘1𝑘2),

[𝜎2(𝑙1), 𝜎2(𝑙2)] =𝜎3(
1

3
𝜇(𝑙1𝑙2 − 𝑙1𝑙2)),

[𝜎4(𝑠1), 𝜎4(𝑠2)] =𝜎4(𝑠1𝑠2 − 𝑠1𝑠2),

[𝜎1(𝑘), 𝜎2(𝑙)] =𝜎2(𝑘𝑙 −
1

3
𝑘̇𝑙) +

2

9
𝜈𝑘̇𝑙

𝜕

𝜕𝑤
,

[𝜎1(𝑘), 𝜎3(𝑔)] =𝜎3(𝑘𝑔̇ +
1

3
𝑘̇𝑔).

Hence, when 𝜈 = 0, {𝜎1(𝑘), 𝜎2(𝑙), 𝜎3(𝑔), 𝜎4(𝑠)} con-
stitutes an infinite-dimensional closed Kac–Moody–
Virasoro type Lie algebra.

To seek exact solutions to Eq. (2) which may have
some arbitrary functions, we take the variable separa-
tion approach. According to the standard procedure
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of the ‘separation variable’, make the following Bäck-
lund transformation

𝑤 = 2(ln𝑓)𝑥 + 𝑤0, (11)

where 𝑓 ≡ 𝑓(𝑥, 𝑦, 𝑡) is a function of the indicated vari-
ables and 𝑤0 = 𝑤0(𝑥, 𝑦) is a known seed solution to
the model Eq. (4). Substituting the BT Eq. (11) into
Eq. (4) leads to the bilinear form

[𝐷2
𝑡 +𝐷𝑡𝐷

3
𝑥 + 𝜇𝐷𝑡𝐷𝑦

+ (𝜈 + 3𝑤0𝑥)𝐷𝑡𝐷𝑥 + ℎ]𝑓 · 𝑓 = 0, (12)

where ℎ = ℎ(𝑦, 𝑡) is the integration function and the
bilinear differential operators 𝐷𝑥, 𝐷𝑦, and 𝐷𝑡 are de-
fined by

𝐷𝑚
𝑥 𝐷𝑛

𝑦𝐷
𝑘
𝑡 𝑓 · 𝑔 = (𝜕𝑥 − 𝜕′

𝑥)
𝑚(𝜕𝑦 − 𝜕′

𝑦)
𝑛(𝜕𝑡 − 𝜕′

𝑡)
𝑘

· 𝑓(𝑥, 𝑦, 𝑡)𝑔(𝑥′, 𝑦′, 𝑡′)|𝑥′=𝑥,𝑦′=𝑦,𝑡′=𝑡.

To find out some special solutions to Eq. (12), we
look for the solutions in the form of

𝑓 = 𝑎0 + 𝑎1𝑝+ 𝑎2𝑞 + 𝑎3𝑝𝑞, (13)

with 𝑎𝑖 ≡ 𝑎𝑖(𝑦)(𝑖 = 0, 1, 2, 3), 𝑝 ≡ 𝑝(𝑥, 𝑦) and
𝑞 ≡ 𝑞(𝑡, 𝑦) being functions of the indicated arguments.
Since 𝑝 is 𝑡-independent and 𝑞 is 𝑥-independent, sub-
stituting Eq. (13) into Eq. (11) leads to

(𝑎0𝑎3 − 𝑎1𝑎2)(𝑝𝑥𝑥𝑥 + 𝜇𝑝𝑦 + 3𝑤0𝑥𝑝𝑥 + 𝜈𝑝𝑥)

+ 𝜇(𝑎1𝑎3𝑦 − 𝑎1𝑦𝑎3)𝑝
2 + 𝜇(𝑎0𝑎2𝑦 − 𝑎0𝑦𝑎2)

+ 𝜇(𝑎0𝑎3𝑦 + 𝑎1𝑎2𝑦 − 𝑎3𝑎0𝑦 − 𝑎2𝑎1𝑦)𝑝

=(𝑎0𝑎3 − 𝑎1𝑎2)
2(𝑐0 + 𝑐1𝑝+ 𝑐2𝑝

2), (14)
𝜇𝑞𝑦 = (𝑎20𝑐2 + 𝑎21𝑐0 − 𝑎0𝑎1𝑐1 +𝐺0𝐹2)

− [(𝑎0𝑎3 + 𝑎1𝑎2)𝑐1 − 2𝑎0𝑎2𝑐2 − 2𝑎1𝑎3𝑐0 +𝐺0]𝑞

+ (𝑎23𝑐0 − 𝑎2𝑎3𝑐1 + 𝑎22𝑐2)𝑞
2, (15)

ℎ = −2(𝑎23𝑐0 − 𝑎2𝑎3𝑐1 + 𝑎22𝑐2)𝑞𝑡, (16)

where 𝑐0 ≡ 𝑐0(𝑦), 𝑐1 ≡ 𝑐1(𝑦), 𝑐2 ≡ 𝑐2(𝑦) are all arbi-
trary functions of 𝑦, and 𝐺0 is an arbitrary constant.

On the one hand, due to Eq. (16), 𝑤0𝑥 can be de-
termined as

𝑤0𝑥 =3−1(𝑎0𝑎3 − 𝑎1𝑎2)𝑝
−1
𝑥 [(𝑎0𝑎3 − 𝑎1𝑎2)

2

· (𝑐0 + 𝑐1𝑝+ 𝑐2𝑝
2)− (𝑎0𝑎3 − 𝑎1𝑎2)

· (𝑝𝑥𝑥𝑥 + 𝜇𝑝𝑦 + 𝜈𝑝𝑥) + 𝜇(𝑎3𝑎1𝑦 − 𝑎3𝑦𝑎1)𝑝
2

+ 𝜇(𝑎1𝑦𝑎2 − 𝑎0𝑎3𝑦 − 𝑎1𝑎2𝑦 + 𝑎3𝑎0𝑦)𝑝

+ 𝜇(𝑎2𝑎0𝑦 − 𝑎2𝑦𝑎0)]. (17)

On the other hand, we consider the solution to the
Riccati Eq. (17) in the form of

𝑞 = 𝐹1 exp(𝐺0𝑡) + 𝐹2, (18)

where 𝐹1 ≡ 𝐹1(𝑦) and 𝐹2 ≡ 𝐹2(𝑦) can both be treated
as arbitrary functions of 𝑦, while 𝑐0, 𝑐1 and 𝑐2 are re-
lated to 𝐹1 and 𝐹2 by

𝑐0 =
1

(𝑎0𝑎3 − 𝑎1𝑎2)2𝐹1
[−𝜇(𝑎0 + 𝑎2𝐹2)𝑎2𝐹1𝑦

+ 𝜇𝑎22𝐹1𝐹2𝑦 − (𝑎0 + 𝑎2𝐹2)𝑎2𝐹1𝐺0],
(19)

𝑐1 =
1

(𝑎0𝑎3 − 𝑎1𝑎2)2𝐹1
[−𝜇(𝑎0𝑎3 + 𝑎1𝑎2

+ 2𝑎2𝑎3𝐹2)𝐹1𝑦 + 2𝜇𝑎2𝑎3𝐹1𝐹2𝑦

− (𝑎0𝑎3 + 𝑎1𝑎2 + 2𝑎2𝑎3𝐹2)𝐹1𝐺0], (20)

𝑐2 =
1

(𝑎0𝑎3 − 𝑎1𝑎2)2𝐹1
[−𝜇(𝑎1 + 𝑎3𝐹2)𝑎3𝐹1𝑦

+ 𝜇𝑎23𝐹1𝐹2𝑦 − (𝑎1 + 𝑎3𝐹2)𝑎3𝐹1𝐺0].
(21)

Finally, substituting Eq. (15) into Eqs. (13) and (3)
yields the solutions to Eq. (2),

𝑢 =𝑤𝑥 = − 2(𝑎1 + 𝑎3𝑞)
2𝑝2𝑥

(𝑎0 + 𝑎1𝑝+ 𝑎2𝑞 + 𝑎3𝑝𝑞)2

+
2(𝑎1 + 𝑎3𝑞)𝑝𝑥𝑥

𝑎0 + 𝑎1𝑝+ 𝑎2𝑞 + 𝑎3𝑝𝑞
+ 𝑤0𝑥, (22)

where 𝑤0𝑥 and 𝑞 are determined by Eqs. (19) and (20).
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Fig. 1. Plots of different localized solutions expressed
by Eqs. (22) and (23) at time 𝑡 = 0, (a) 𝑝 = exp(𝑥) +

exp

(︂
1
3
𝑥

)︂
; 𝐹1 = exp(−𝑦)+ 1

3
exp

(︂
1
3
𝑦

)︂
; (b) 𝑝 = exp(−𝑥);

𝐹1 = sech2(𝑦); (c) 𝑝 = cosh(𝑥); 𝐹1 = cosh(𝑦); (d) 𝑝 = 1
𝑥2 ;

𝐹1 = 2
1+𝑦2 ; (e) 𝑝 = 2 + cosh(𝑥); 𝐹1 = tanh(𝑦), and (f)

𝑝 = exp(2𝑥); 𝐹1 = sech2(𝑦) + 2.

One can see that since solution (22) has six ar-
bitrary functions 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝐹1 and 𝐹2 of 𝑦,
one arbitrary function 𝑝 of {𝑥, 𝑡} and one arbitrary
constant 𝐺0, it gives quite abundant localized coher-
ent structures of the (2+1)-dimensional Ito equation.
To leave these interacted behaviors between solitary

070201-3

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 32, No. 7 (2015) 070201

waves clear, some special localized excitations are il-
lustrated in the following figure by selecting appropri-
ate arbitrary functions. The parameters in the figure
are chosen as

𝑎0 = 𝑎3 = 𝐹2 = 0, 𝑎1 = 𝑎2 = 𝐹3 = 1, 𝜇 = 2, 𝜈 = 1.

In summary, the symmetry study and the vari-
able separation approaches are two useful methods in
the study of nonlinear science, which are very valid
for offering group invariant solutions and localized
solutions. The Lie point symmetries of the (2+1)-
dimensional Ito equation are clear in this work, while
the nonlocal symmetries and corresponding nonlocal
solutions are still unknown. Moreover, how to select
appropriate arbitrary functions in variable separation
solutions for obtaining abundant soliton structures,
and more applications of localized solutions in physics
and nature, need further study.

References
[1] Ablowitz M J and Clarkson P A 1991 Soliton, Nonlin-

ear Evolution Equations and Inverse Scattering (New York:

Cambridge University Press)
[2] Matveev V B and Salle M A 1991 Darboux Transformation

and Solitons (Berlin: Springer)
[3] Miurs M R 1978 Bäcklund Transformation (Berlin:

Springer)
[4] Hirota R 2004 The Direct Method in Soliton Theory, (Cam-

bridge: Cambridge University Press)
[5] Malfliet W and Hereman W 1996 Phys. Scr. 54 563
[6] Bluman G W and Kumei S 1989 Symmetries and Differen-

tial Equations (Berlin: Springer-Verlag)
[7] Belokolos E, Bobenko A, Enol’skij V, Its A and Matveev

V 1994 Algebro-Geometrical Approach to Nonlinear Inte-
grable Equations (Berlin: Springer-Verlag)

[8] Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66
046601

[9] Ito M 1980 J. Phys. Soc. Jpn. 49 771
[10] Jimbo M and Miwa T 1983 Publ. RIMS Kyoto Univ. 19

943
[11] Drinfeld V G and Sokolov V V 1985 J. Sov. Math. 30 1975
[12] Gurses M, Karasu A and Sokolov S S 1999 J. Math. Phys.

40 6473
[13] Liu Q P 2000 Phys. Lett. A 277 31
[14] Li D L and Zhao J X 2009 Appl. Math. Comput. 215 1968
[15] Wazwaz A M 2008 Appl. Math. Comput. 202 840
[16] Zhao Z H, Dai Z D and Wang C J 2010 Appl. Math. Com-

put. 217 2295
[17] Wang Y H 2014 Math. Meth. Appl. Sci.
[18] Clarkson P A and Kruskal M 1989 J. Math. Phys. 30 2201
[19] Lou S Y and Ma H C 2005 J. Phys. A: Math. Gen. 38 L129

070201-4

http://cpl.iphy.ac.cn
http://dx.doi.org/10.1088/0031-8949/54/6/003
http://dx.doi.org/10.1103/PhysRevE.66.046601
http://dx.doi.org/10.1143/JPSJ.49.771
http://dx.doi.org/10.2977/prims/1195182017
http://dx.doi.org/10.1007/BF02105860
http://dx.doi.org/10.1063/1.533102
http://dx.doi.org/10.1016/S0375-9601(00)00684-8
http://dx.doi.org/10.1016/j.amc.2009.07.058
http://dx.doi.org/10.1016/j.amc.2008.03.029
http://dx.doi.org/10.1016/j.amc.2010.06.059
http://dx.doi.org/10.1002/mma.3056
http://dx.doi.org/10.1063/1.528613
http://dx.doi.org/10.1088/0305-4470/38/7/L04

	Title
	Eq. (1)
	Eq. (2)
	Eq. (3)
	Eq. (4)
	Eq. (5)
	Eq. (6)
	Eq. (7)
	Eq. (8)
	Eq. (9)
	Eq. (10)
	Eq. (11)
	Eq. (12)
	Eq. (13)
	Eq. (14)
	Eq. (15)
	Eq. (16)
	Eq. (17)
	Eq. (18)
	Eq. (19)
	Eq. (20)
	Eq. (21)
	Eq. (22)
	Fig. 1
	References

