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Nonlocal symmetries, consistent Riccati expansion integrability, and
their applications of the (2+1)-dimensional

Broer–Kaup–Kupershmidt system∗
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For the (2+1)-dimensional Broer–Kaup–Kupershmidt (BKK) system, the nonlocal symmetries related to the
Schwarzian variable and the corresponding transformation group are found. Moreover, the integrability of the BKK system
in the sense of having a consistent Riccati expansion (CRE) is investigated. The interaction solutions between soliton and
cnoidal periodic wave are explicitly studied.
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1. Introduction
One knows that Painlevé analysis[1–3] is effective for of-

fering Bäcklund transformation (BT), Lax pair, Schwarzian
forms, and exact solutions, etc. Furthermore, it is found that
Painlevé analysis can also be used to obtain nonlocal symme-
tries. This type of nonlocal symmetries stems from the residue
with respect to the singular manifold of the truncated Painlevé
expansion and is also called residual symmetry.[4–7] Since
the residual symmetries are closely related to the Schwarzian
form of the original differential system, one may localize them
more easily than those coming from Darboux transformation
(DT)[8–12] and BT.[13,14] Recently, by developing the truncated
Painlevé expansion, Lou defined a new integrability in the
sense of possessing a consistent Riccati expansion (CRE).[15]

It has been revealed that many more integrable systems[15–21]

are CRE solvable. The CRE method is greatly valid for con-
structing both possible new integrable systems and various
interaction solutions between different types of excitations.
Some interesting exact solutions of nonlinear models are also
shown in the recent literature.[22–24]

In this paper, we concentrate on investigating the residual
symmetries and CRE integrability of the (2+1)-dimensional
Broer–Kaup–Kupershmidt (BKK) system, which have not yet
been discovered. The BKK system reads

uty−uxxy +2(uux)y +2vxx = 0,

vt + vxx +2(uv)x = 0, (1)

which may be derived from the inner parameter depen-
dent symmetry constraint of the Kadomtsev–Petviashvili (KP)

equation.[25] The Painlevé integrability and infinitely many
symmetries of the system (1) were presented by Ruan and
Chen.[26] Via the variable separation approach, Li[27] obtained
rich continuous localized solutions and Lou[28] discussed its
(2+1)-dimensional compact on solutions with and without
completely elastic interaction properties.

This paper is organized as follows. In Section 2, from
the truncated Painlevé expansion, the residual symmetry of
the BKK system is obtained, based on which infinitely many
nonlocal symmetries are also given. The nonlocal symmetry
group is found by the localization process. In Section 3, the
BKK system is verified CRE solvable and the soliton-cnoidal
wave solutions are constructed. The last section contains dis-
cussion and a summary.

2. Nonlocal symmetries and symmetry group
from the truncated Painlevé expansion

2.1. Nonlocal symmetries from the truncated Painlevé ex-
pansion

For the BKK system, we take a truncated Painlevé expan-
sion

u = u0 +
u1

φ
, v = v0 +

v1

φ
+

v2

φ 2 , (2)

with u0,u1,v0,v1,v2,φ being the functions of x, y, and t.
Substituting Eq. (2) into Eq. (1) and vanishing all the co-

efficients of different powers of 1/φ , we have

u1 = φx, u0 =−
1
2

φxx +φt

φx
, v2 =−φxφy,
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v1 = φxy, v0 =
(φt +φxx)φxy

2φ 2
x

−
φyt +φxxy

2φx
, (3)

and the BKK system (1) is successfully reduced to its
Schwarzian form

Sx +Ct +2Cxx−CCx +λ = 0, (4)

where λ is an arbitrary parameter. Here, we denote

C ≡ φt

φx
, S≡ φxxx

φx
− 3

2

(
φxx

φx

)2

, (5)

and they keep the Möbious (conformal) invariance property

φ → a+bφ

c+dφ
, (ad 6= bc). (6)

Due to above Möbious invariance, a well-known fact is that φ

possesses the following Lie point symmetry:

σφ = κ0 +κ1φ +κ2φ
2, (7)

where κ0, κ1, and κ2 are arbitrary constants.
From the above standard truncated Painlevé expansion

Eq. (1), we have the following BT theorem and nonlocal sym-
metry theorem of Eq. (1).

Theorem 1 (non-auto-BT theorem) If the function φ

satisfies Eq. (4), then

u =−1
2

φxx +φt

φx
, v =

(φt +φxx)φxy

2φ 2
x

−
φyt +φxxy

2φx
, (8)

is just the solution of the (2+1)-dimensional BKK system (1).
Proof By direct verification.
Theorem 2 (nonlocal symmetry theorem) The BKK

system (1) has the residual symmetry given by

σ
u = φx, σ

v = φxy, (9)

where u, v, and φ satisfy the non-auto BT Eq. (8).
Proof The symmetry equations of Eq. (1) read

σ
u
ty−σ

u
xxy +2uxσ

u
y +2uyσ

u
x +2uσ

u
xy +2uxyσ

u +2σ
v
xx = 0,

σ
v
t +σ

v
xx +2uσ

v
x +2vσ

u
x = 0. (10)

Substituting Eq. (9) into Eq. (10) and with the help of Eqs. (4)
and (8), one finds that the symmetry equations (10) hold.

Actually, thanks to the arbitrary parameter λ in Eq. (4),
we can present infinitely many nonlocal symmetries in two
ways. One set of nonlocal symmetries for u and v is

σ
u,n =

n

∑
i=1

ciφix, σ
v,n =

n

∑
i=1

diφixy, (n = 1,2, . . .), (11)

where every φi satisfies Eq. (4) with λ = λi and ci,di are all
arbitrary constants. Another set of nonlocal symmetries for u
and v reads

σ
u,n =

1
n!

dn

dλ n φx(λ ),

σ
v,n =

1
n!

dn

dλ n φxy(λ ), (n = 0,1,2, . . .), (12)

where φ(λ ) is the solution of Eq. (4).

2.2. Localization and nonlocal symmetry group

To find out the symmetry group of the residual symmetry
(9), i.e.,

{u,v} −→ {ū(ε), v̄(ε)}= {u,v}+ ε{σu,σ v},

one can solve the following initial value problem:

dū(ε)
dε

= φ̄x(ε),
dv̄(ε)

dε
= φ̄xy(ε),

ū(ε)|ε=0 = u, v̄(ε)|ε=0 = v, (13)

with ε being the infinitesimal parameter.
However, because of the intrusion of the function φ̄(ε)

and its differentiations, it is difficult to solve Eq. (13) directly.
Hence, we introduce

φx = g1, φy = h1, g1y = g2. (14)

Now the nonlocal symmetry (9) of the original system (1)
becomes a Lie point symmetry of the prolonged system in-
cluding Eqs. (1), (8), and (14), saying

σ
u = g1, σ

v = g2, σ
φ =−φ

2, σ
g1 =−2φg1,

σ
h1 =−2φh1, σ

g2 =−2(g1h1 +φg2). (15)

Correspondingly, the initial value problem (13) becomes

dū(ε)
dε

= ḡ1(ε),
dv̄(ε)

dε
= ḡ2(ε),

dφ̄(ε)

dε
=−φ̄(ε)2,

dḡ1(ε)

dε
=−2φ̄(ε)ḡ1(ε),

dh̄1(ε)

dε
=−2φ̄(ε)h̄1(ε),

dḡ2(ε)

dε
=−2(ḡ1(ε)h̄1(ε)+ φ̄(ε)ḡ2(ε)), ū(ε)|ε=0 = u,

v̄(ε)|ε=0 = v, φ̄(ε)|ε=0 = φ , ḡ1(ε)|ε=0 = g1,

h̄1(ε)|ε=0 = h1, ḡ2(ε)|ε=0 = g2. (16)

Then the solution of the initial value problem (16) leads to the
following group theorem for the enlarged system.

Theorem 3 (group) If {u,v,φ ,g1,g2,h1} is a solution
of the prolonged system Eqs. (1), (8), and (14), so it is
{ū(ε), v̄(ε), φ̄(ε), ḡ1(ε), ḡ2(ε), h̄1(ε)} with

ū(ε) = u+
εg1

1+ εφ
, v̄(ε) = v+

εg2

1+ εφ
− ε2g1h1

(1+ εφ)2 ,

φ̄(ε) =
φ

1+ εφ
,

ḡ1(ε) =
g1

(1+ εφ)2 ḡ2(ε) =
g2

(1+ εφ)2 −
2g1h1ε

(1+ εφ)3 ,

090203-2
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h̄1(ε) =
h1

(1+ εφ)2 . (17)

Theorem 3 shows that the residual symmetry (9) coming
from the truncated Painlevé expansion is just the infinitesimal
form of the group (17). Actually, the above group transforma-
tion is equivalent to the truncated Painlevé expansion (2) with
Eq. (3) since the singularity manifold Eqs. (1), (8), and (14)
are form invariant under the transformation

1+ εφ −→ φ , (with εg1 −→ φx,

εh1 −→ φy, εg2 −→ φxy).

3. CRE solvable and soliton-cnoidal waves solu-
tions

3.1. CRE solvable

For the BKK system, we focus on its possible truncated
Painlevé expansion solution in the form of

u = u0 +u1R(w), v = v0 + v1R(w)+ v2R(w)2,

(w≡ w(x,y, t)), (18)

where R(w) is a solution of the Riccati equation

Rw = b0 +b1R+b2R2, (19)

with b0, b1, b2 being arbitrary constants. By vanishing all
the coefficients of the like powers of R(w) after substituting
Eq. (18) with Eq. (19) into Eq. (1), we obtain

u1 =−b2wx, u0 =−
1
2

[
b1wx +

wt +wxx

wx

]
,

v2 =−b2
2wxwy, v1 =−b2(wxy +b1wxwy),

v0 =−b0b2wxwy−
1
2

b1wxy +
wxy(wt +wxx)

2w2
x

−
wty +wyxx

2wx
,

(20)

and the function w only needs to satisfy

S1x +C1t +2C1xx−C1C1x−δφxφxx = 0,

(δ ≡ b2
1−4b0b2), (21)

with

C1 ≡
wt

wx
, S1 ≡

wxxx

wx
− 3

2

(
wxx

wx

)2

. (22)

From above, it shows that the (2+1)-dimensional BKK
system really has the truncated Painlevé expansion solution re-
lated to the Riccati equation (19). At this point, we call BKK
system CRE solvable.[15]

3.2. Consistent tanh-function expansion solvable and
soliton-cnoidal wave solutions

In particular, the Riccati equation (19) has one solution
R(w) = tanh(w), which converts the truncated expansion solu-
tion (18) into

u = u0 +u1tanh(w),

v = v0 + v1 tanh(w)+ v2 tanh(w)2. (23)

Due to the above consistent tanh-function expansion
(CTE) (23), the BKK system is called CTE solvable. It is
quite clear that a CRE solvable system must be CTE solvable,
and vice versa. If a system is CTE solvable, some important
explicit solutions, especially the interactions between soliton
and other nonlinear waves, may be directly constructed. To
leave this clear, we firstly give out the following non-auto BT.

Theorem 4 (BT) If w is a solution of Eq. (21) with δ = 4,
then

u = u0 +wxtanh(w),

v = v0 +wxy tanh(w)−wxwy tanh2(w), (24)

is a solution of the system (1), where {u0,v0} is determined by
Eq. (20) with b0 = 1, b1 = 0, and b2 =−1.

Some nontrivial solutions of BKK system can be obtained
from some quite trivial solutions of Eq. (21) by means of The-
orem 4, which are listed as follows.

Example 1: Soliton solutions In Eq. (21), we take a
quite trivial straight-line solution for w, saying

w = kx+ ly+ dt +d0, (25)

with k, l, d, d0 being arbitrary constants. Then substituting
Eq. (25) into Theorem 4 yields the following kink soliton and
ring soliton solution of the BKK system:

u = k tanh(kx+ ly+ dt +d0)−
d
2k

,

v = klsech2(kx+ ly+ dt +d0). (26)

Example 2: Soliton-cnoidal waves To find out the in-
teraction solutions between soliton and cnoidal periodic wave,
let

w = k1x+ l1y+d1t +W (X), (X ≡ k2x+ l2y+d2t), (27)

where W1 ≡W1(X) =WX satisfies

W 2
1X = a0 +a1W1 +a2W 2

1 +a3W 3
1 +a4W 4

1 , (28)

with a0, a1, a2, a3, a4 being constants. Substituting Eq. (27)
with Eq. (28) into Theorem 4, we have the relations

a0 = 12
(

k1

k2

)4

−2a3

(
k1

k2

)3

+a2

(
k1

k2

)2

090203-3
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− d2
1

3k4
2
+

2k1d1d2

3k5
2
− k2

1d2
2

3k6
2
,

a1 = 16
(

k1

k2

)3

−3a3

(
k1

k2

)2

+2a2
k1

k2
,

a4 = 4, d1 = d2
k1

k2
, (29)

which lead to the following explicit solutions of Eq. (1) in the
form of

u = (k1 + k2W1) tanh
(

k1x+ l1y+
d2k1

k2
t +W

)
− 1

2
k2

2W1X

k1 + k2W1
− d2

2k2
,

v = −(k1 + k2W1)(l1 + l2W1) tanh2
(

k1x+ l1y+
d2k1

k2
t +W

)
+k2l2W1X tanh

(
k1x+ l1y+

k1d2

k2
t +W

)
−(k1 + k2W1)

(
l2W1− l1−2

k1l2
k2

+
1
4

l2a3

)
,

(X = k2x+ l2y+d2t). (30)

Since W1 in Eq. (28) can be expressed as different types
of Jacobi elliptic functions, the formula (30) exhibits the inter-
actions between soliton and abundant cnoidal periodic waves.
To show these soliton-cnoidal waves more intuitively, we just
take a simple solution of Eq. (28) as

W1 = µ0 +µ1sn(mX ,n). (31)

Substituting Eq. (31) into Eq. (28) with Eq. (29) yields

a2 = 16µ
2
0 −16

k1µ0

k2
−8
(

k1

k2

)2

,

a3 =−16µ0, µ1 =−
√

2(k1 +µ0k2)n

k2
√

1+n2
,

m =
4(k1 +µ0k2)

k2
√

2(1+n2)
,

d1 =
2
√

3(n2−1)(k1 + k2µ0)
2

n2 +1
+

k1d2

k2
. (32)

Hence, one kind of soliton-cnoidal wave solutions is ob-
tained by taking Eq. (31) and

W = µ0X +µ1

∫ X

X0

sn(mY,n)dY, (33)

with the parameter requirement (32) into the general solution
(30). Figure 1 displays this kind of soliton-cnoidal wave solu-
tions, including the interaction of the kink soliton+cnoidal pe-
riodic wave for u and the ring soliton+cnoidal periodic wave
for v at t = 0 respectively. The parameters used in the figure
are selected as

{k1,k2, l1, l2,d2,µ0,n,X0}

=

{
0,

1
2
,−1,

1
2
,1,

5√
10

,
1
2
,0
}
. (34)

-.
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u u
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(c)(b)
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v v
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-8 -4 0 4 8 -8 -4 0 4 8

-8 -4 0 4 8 -10 0 10 20

Fig. 1. The kink soliton+cnoidal periodic wave solutions for u: (a) at y = 0; (b) at x = 0; (c) the two-dimensional image of u; the ring
soliton+cnoidal periodic wave solution for v: (d) at y = 0; (e) at x = 0; (f) the two-dimensional image of v.

4. Discussion and summary

By developing the truncated Painlevé analysis, we investi-
gate nonlocal symmetries and CRE integrability of the (2+1)-

dimensional BKK system. The residual symmetry is found

and thanks to the arbitrary parameter in the Schwartzian form

of the BKK system, infinitely many nonlocal symmetries are
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also obtained. The nonlocal symmetry group is revealed by
enlarging the original system to a larger one. Furthermore,
the BKK system is proved CRE integrable. In particular, by
means of the CTE, the general soliton-cnoidal wave solutions
which may be explicitly expressed by the Jacobi elliptic func-
tions and the corresponding elliptic integral are constructed.
To leave it clear, we give out one type of kink soliton+cnoidal
periodic wave solution and ring soliton+cnoidal periodic wave
solution in graphical way. More types of these soliton-cnoidal
wave solutions need our further study.
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