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Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) 
systems, which contain multi-short-wave components and single long-wave one, are presented by using 
the bilinear method. For two-dimensional system, the fundamental rational solution first describes the 
localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue 
waves can be obtained under certain parameter conditions and their behaviors are also classified to 
above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves 
are line localized waves which arise from the constant background with a line profile and then disappear 
into the constant background again. In particular, two-dimensional intermediate and dark counterparts 
of rogue wave are found with the different parameter requirements. We demonstrate that multirogue 
waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave 
patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of 
different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that 
the wave structures start from lump and then retreat back to it, and this transient wave possesses the 
patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely 
distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states 
are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional
case is derived under the parameter constraints.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Rogue wave phenomena that “appear from nowhere and disap-
pear without a trace [1]”, have recently become one of the most 
active and important research areas on both experimental obser-
vations and theoretical analysis, since it exists in various differ-
ent fields, including ocean [2], optical systems [3–5], Bose–Einstein 
condensates [6,7], superfluids [8], capillary waves [9], atmosphere 
[10], plasma [11,12] and even in finance [13]. From the mathemat-
ical description, rational solutions play a key role in the interpre-
tation of the mechanisms underlying the formation and dynamics 
of rogue waves. The first-order and most fundamental rational so-
lution for nonlinear Schrödinger (NLS) equation was discovered by 
Peregrine [14]. Such a solution has the peculiarity of being local-
ized in both space and time, and its maximum amplitude reaches 
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three times the constant background. The hierarchy of higher-order 
rational solutions has been found [15–24], in particular, in the 
framework of the integrable 1D NLS equation. These higher-order 
waves were also localized in both coordinates, and could exhibit 
higher peak amplitudes or multiple intensity peaks.

Recently, apart from the NLS equation, exact rogue wave solu-
tions have been explored in a variety of nonlinear integrable sys-
tems such as the Hirota equation [25,26], the Sasa–Satsuma equa-
tion [27,28] and the derivative NLS equation [29–31]. More impor-
tantly, the relevant studies were also extended to coupled systems 
which usually involve more than one component [7,32–47]. It was 
shown that compared with uncoupled systems, vector rogue wave 
solutions exhibit some novel structures such as dark rogue wave. 
In Refs. [32–34], analytical rational solutions for the coupled NLS 
system allowed not only general vector Peregrine soliton but also 
bright- and dark-rogue waves.

Moreover, the two-dimensional analogue of rogue wave, ex-
pressed by more complicated rational form, has been recently 
reported in the Davey–Stewartson (DS) equation [48,49] and 
Kadomtsev–Petviashvili-I equation [20,50]. In two kinds of DS sys-
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tems [48,49], the fundamental rogue waves are line rogue waves 
which arise from the constant background and then retreat back 
to the constant background again. More general rational solutions 
were divided into two categories: multi-rogue waves and higher 
order ones. Multi-rogue waves describe the interaction between 
individual fundamental rogue waves, whereas higher order rogue 
waves exhibit different dynamics such as the wavepacket rising 
from the constant background but not decaying back to it. There-
fore, a natural motivation is to investigate rational solutions in 
two-dimensional multicomponent system. Specifically, it is reason-
able to expect the appearance of a two-dimensional dark rogue 
wave counterpart, which, to the best our knowledge, was never 
reported before.

Coming back to the one-dimensional case, rogue waves were 
usually obtained from homoclinic solutions by taking certain lim-
its [25–27,29,31,37]. Indeed, most of literature devoted to the 
explicit expressions of rational solutions still resulted from the 
related homoclinic ones. The construction of higher-dimensional
rational solutions may provide an alternative method for finding 
lower-dimensional rogue wave through dimension reduction di-
rectly [48,49]. In other words, one can generate the above rational 
solutions of lower-dimensional models from higher-dimensional
ones with the parameter constraints. Application of reduction 
method to clarify the rational solution’s relation between two dif-
ferent dimensions is also the aim of the present work.

In this paper, we focus on the two-dimensional multicompo-
nent Yajima–Oikawa (YO) system, or the so-called 2D coupled 
long-wave–short-wave resonance interaction system in which it 
comprises multi short-wave components and a single long-wave 
component [51–56]. The long-wave–short-wave resonance inter-
action is a fascinating physical process in which a resonant in-
teraction takes place between a weakly dispersive long-wave and 
a short-wave packet when the phase velocity of the former ex-
actly or almost matches the group velocity of the latter. This phe-
nomenon has been predicted in plasma physics [57,58], nonlinear 
optics [59,60] and hydrodynamics [61–63]. The rogue wave solu-
tions to the 1D YO system had recently been derived by using 
Hirota bilinear method [64] and Darboux transformation [39,40]. 
A special note of importance is that the coupled dark- and bright-
field counterparts of the Peregrine soliton were demonstrated in 
[38–40].

The plan of the paper is as follows. In Section 2, we present 
exact and explicit rational solution for the two-dimensional multi-
component YO system by using the bilinear method. In Section 3, 
dynamics of two-dimensional rational solution including funda-
mental lumps and general (multi- and higher-order) rogue waves 
are discussed in detail. The one-dimensional rogue wave solution 
is derived through the further reduction and its dynamics are stud-
ied in Section 4. The conclusion is given in the last section.

2. Explicit rational solution in the determinant form

The two-dimensional multicomponent YO system:

i(S(�)
t + S(�)

y ) − S(�)
xx + L S(�) = 0, � = 1,2, · · · , M, (1a)

Lt = 2
M∑

�=1

σ�|S(�)|2x , (1b)

where σ� = ±1, S(�) and L indicate the �th short-wave and 
long-wave components, respectively. When the wave propagation 
is independent of y coordinate Eq. (1) is reduced to the one-
dimensional multicomponent YO system. By the dependent vari-
able transformation:

S(�) = G(�)
0

G(�)

, L = h − 2
∂2

2
log F , (2)
F ∂x
where G(�)
0 = ρ� exp[i(α�x + β� y + γ�t)], γ� = h − β� + α2

� and 
α�, β�, ρ� and h are real parameters for � = 1, 2, · · · , M , the two-
dimensional YO system can be cast into the bilinear form,

[i(Dt + D y − 2α�Dx) − D2
x ]G(�) · F = 0, (3a)

Dt Dx F · F − 2
M∑

�=1

σ�ρ
2
� F 2 + 2

M∑
�=1

σ�ρ
2
� G(�)G(�)∗ = 0, (3b)

where F is a real variable, G(�) are complex variables, ∗ denotes 
the complex conjugation and D is Hirota’s bilinear differential op-
erator.

Theorem 1. The two-dimensional multicomponent YO system has ratio-
nal solution (2) with F and G(�) given by N × N determinants

F = τ ′(n)

∣∣∣
n=0

, G(�) = τ ′(n(�) + 1)

∣∣∣
n=0

, (4)

where (n) ≡ (n(1), n(2), · · · , n(M)), (n(�) ± 1) ≡ (n(1), n(2), · · · , n(�) ±
1, · · · , n(M)) and n = 0 represents n(1) = n(2) = · · ·n(�) · · · = n(M) = 0, 
τ ′(n) = det≤i, j≤N

(
T ′

i, j(n)
)

and the matrix elements are defined by

T ′
i, j(n) =

M∏
�=1

(− pi − iα�

p∗
j + iα�

)n(�)Ai, j
1

pi + p∗
j

. (5)

Here the operator Ai, j = ∑ni
k=0 cik(∂pi + ξ ′

i + ∑M
�=1

n(�)

pi−iα�
)ni−k ×∑n j

l=0 c∗
jl(∂p∗

j
+ ξ ′ ∗

j − ∑M
�=1

n(�)

p∗
j +iα�

)n j−l and

ξ ′
i = −

M∑
�=1

σ�ρ
2
� (t − y)

(pi − iα�)2
+ x − 2ipi y, (6)

where pi and cik are arbitrary complex constants, and ni is an arbitrary 
positive integer.

The proof of this theorem is given in Appendix A. It is empha-
sized that these rational solutions can also be expressed in term of 
Schur polynomials as shown in [48,49]. From the appendix in [48,
49], one can know that the nonsingularity of rational solutions ex-
ists if the real parts of wave numbers pi (1 � i � N) are all positive 
or negative.

3. Rational solutions for two-dimensional YO system

In this section, we present the dynamics analysis of rational 
solutions to two-dimensional YO system in detail.

3.1. Fundamental rational solutions

As the simplest rational solution, one-rational solution of first 
order is given by taking N = 1 and n1 = 1,

F =
1∑

k=0

c1k(∂p1 + ξ ′
1)

1−k
1∑

l=0

c∗
1l(∂p∗

1
+ ξ ′ ∗

1 )1−l 1

p1 + p∗
1

= (∂p1+ξ ′
1 + c11)(∂p∗

1
+ξ ′ ∗

1 + c∗
11)

1

p1 + p∗
1

= 1

p1 + p∗
1

[(
ξ ′

1 − 1

p1 + p∗
1

+ c11

)(
ξ ′ ∗

1 − 1

p1 + p∗
1

+ c∗
11

)

+ 1

(p1 + p∗)2

]
, (7)
1
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G(�) = (− p1 − iα�

p∗
1 + iα�

)

1∑
k=0

c1k(∂p1 + ξ ′
1 + 1

p1 − iα�

)1−k

×
1∑

l=0

c∗
1l(∂p∗

1
+ ξ ′ ∗

1 − 1

p∗
1 + iα�

)1−l 1

p1 + p∗
1

= (− p1 − iα�

p∗
1 + iα�

)(∂p1 + ξ ′
1 + 1

p1 − iα�

+ c11)

× (∂p∗
1
+ ξ ′ ∗

1 − 1

p∗
1 + iα�

+ c∗
11)

1

p1 + p∗
1

= (− p1 − iα�

p∗
1 + iα�

)
1

p1 + p∗
1

[(
ξ ′

1 − 1

p1 + p∗
1

+ c11 + 1

p1 − iα�

)

×
(

ξ ′ ∗
1 − 1

p1 + p∗
1

+ c∗
11 − 1

p∗
1 + iα�

)
+ 1

(p1 + p∗
1)

2

]
,

(8)

with

ξ ′
1 = −

M∑
�=1

σ�ρ
2
� (t − y)

(p1 − iα�)2
+ x − 2ip1 y,

where (c10 = 1), p1 and c11 are arbitrary complex constants.
Without loss of generality, we assume p1 = p1R + ip1I , c11 =

c11R + ic11I and then rewrite above solution as

F = 1

p1 + p∗
1
(θ1θ

∗
1 + θ0),

G(�) = (− p1 − iα�

p∗
1 + iα�

)
1

p1 + p∗
1
[(θ1 + a1,� + ia2,�)

× (θ∗
1 − a1,� + ia2,�) + θ0],

where

θ1 = x + (b1 + ib2)y + (c1 + ic2)t + d1 + id2,

θ0 = 1

(p1 + p∗
1)

2
= 1

4p2
1R

,

a1,� = p1R

p2
1R + (p1I − α�)2

, a2,� = α� − p1I

p2
1R + (p1I − α�)2

,

c1 =
M∑

�=1

σ�ρ
2
� (a2

2,� − a2
1,�), c2 = −2

M∑
�=1

σ�ρ
2
� a1,�a2,�,

b1 = −c1 + 2p1I , b2 = −c2 − 2p1R ,

d1 = − 1

2p1R
+ c11R , d2 = c11I .

Then, the final expression of the rational solutions reads

S(�) = Ḡ(�)
0

[
1 − 2i(a1,�l2 − a2,�l1) + a2

1,� + a2
2,�

l21 + l22 + θ0

]
, (9)

L = h + 4
l21 − l22 − θ0

(l21 + l22 + θ0)2
, (10)

where Ḡ(�)
0 = −G(�)

0
p1−iα�

p∗
1+iα�

, l1 = x + b1 y + c1t + d1 and l2 = b2 y +
c2t + d2.

There are two different dynamical behaviors.
(i) Lump solution. When b2 �= 0, one can see that the short-

wave components S(�) and the long-wave component L are con-
stants along the [x(t), y(t)] trajectory where

x + b1 y + c1t = 0, b2 y + c2t = 0.
Besides, at any fixed time, (S(�), L) → (Ḡ(�)
0 , h) when (x, y) goes to 

infinity. Hence these rational solutions are permanent lumps mov-
ing on the constant backgrounds.

Without loss of generality, the different patterns of lump solu-
tion can be discussed at time t = 0 (after the shift of t). In this 
situation, when p1I �= α� , the square of the short-wave amplitude 
|S(�)|2 possesses critical points

(x1, y1) =
(

b1

b2
d2 − d1,−d2

b2

)
, (11)

(x(�)
2 , y(�)

2 ) =
(

−a2,�

a1,�

(μ�,1+d2) − b1

b2
μ�,1 − d1,

μ�,1

b2

)
, (12)

(x(�)
3 , y(�)

3 ) =
(

a1,�

a2,�

(μ�,2+d2) − b1

b2
μ�,2 − d1,

μ�,2

b2

)
, (13)

with

μ�,1 = −c11I ±
√

��,1

2��,0
,

μ�,2 = −c11I ±
√−(p1I − α�)2��,2

2p1R��,0
,

��,0 = (p1I − α�)
2 + p2

1R ,

��,1 = 3(p1I − α�)
2 − p2

1R ,

��,2 = (p1I − α�)
2 − 3p2

1R .

Note that (x(�)
3 , y(�)

3 ) are also two characteristic points. At these 
points, the second derivatives are

H1(x̃, ỹ) = ∂2|S(�)|2
∂x2

∣∣∣∣∣
(x̃, ỹ)

,

H1(x1, y1) = 192p4
1R��,3

�2
�,0

, (14)

H1(x(�)
2 , y(�)

2 ) = − 6p4
1R��,0

(p1I − α�)4
, (15)

H1(x(�)
3 , y(�)

3 ) = 6��,0, (16)

with ��,3 = (p1I − α�)
2 − p2

1R and the local quadratic forms are

H(x̃, ỹ) =
⎡
⎣∂2|S(�)|2

∂x2

∂2|S(�)|2
∂ y2

−
(

∂2|S(�)|2
∂x∂ y

)2
⎤
⎦

∣∣∣∣∣
(x̃, ỹ)

,

H(x1, y1) = 4096b2
2 p8

1R��,1��,2

�4
�,0

, (17)

H(x(�)
2 , y(�)

2 ) = 16b2
2 p8

1R�2
�,0��,1

(p1I − α�)10
, (18)

H(x(�)
3 , y(�)

3 ) = 16b2
2�

2
�,0��,1

p2
1R

. (19)

For one special case p1I = α� , there are three critical points 
(x1, y1) and (x4, y4) = (±

√
3

2p1R
+ b1

b2
d2 − d1, − d2

b2
). Furthermore, 

H1(x1, y1) = −192p2
1R , H(x1, y1) = 12288p4

1Rb2
2, H1(x4, y4) =

6p2
1R , H(x4, y4) = 48p4

1Rb2
2 and |S(�)|

∣∣∣
(x4,y4)

= 0. Thus the lump 

solutions can be classified into three patterns:
(a) Bright state. 0 � (p1I − α�)

2 � 1
3 p2

1R : one local maximum, 
two characteristic points (when the sign takes “=”, two local min-
ima located at two characteristic points);

(b) Intermediate state. 1
3 p2

1R < (p1I − α�)
2 < 3p2

1R : two local 
maximums, two characteristic points;
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Fig. 1. One-lump for two-dimensional YO system with the parameters (σ1, σ2, σ3) = (1, 1, 1), (ρ1, ρ2, ρ3) = (1, 1, 1), (α1, α2, α3) = ( 3
4 , − 1

2 , −3), c11 = 0 and p1 = 1 + 1
2 i at 

the time t = 0.

Table 1
One-rogue wave for the short-wave component S(�) .

State Condition ((p1I − α�)
2 = ϒ�) Local maximum Local minimum Zero-amplitude

Bright ϒ� = 0 L1 L4 L4

0 < ϒ� < 1
3 p2

1R L1 L(�)
3 L(�)

3

ϒ� = 1
3 p2

1R L1 = L(�)
2 L(�)

3 L(�)
3

Intermediate 1
3 p2

1R < ϒ� < p2
1R L1, L(�)

2 , |S(�)(L1)| < |S(�)(L(�)
2 )| L(�)

3 L(�)
3

ϒ� = p2
1R L(�)

2 L(�)
3 L(�)

3

Dark p2
1R < ϒ� < 3p2

1R L(�)
2 L1, L(�)

3 L(�)
3

ϒ� = 3p2
1R L(�)

2 L1 = L(�)
3 L1 = L(�)

3

ϒ� > 3p2
1R L(�)

2 L1 no
(c) Dark state. (p1I −α�)
2 � 3p2

1R : two local maximums, one lo-
cal minimum (when the sign takes “=”, the local minimum located 
at the characteristic point).

The single lump profiles for the short-wave components are 
given in Fig. 1 for M = 3. Three components represent three differ-
ent patterns of lump solution in above classification respectively.

(ii) Rogue wave solution. When b2 = 0, namely,

M∑
�=1

σ�ρ
2
� (α� − p1I )

[p2
1R + (p1I − α�)2]2

− 1 = 0, (20)

the rational solution are line waves, which are distinctly different 
from the moving line solitons. More precisely, (S(�), L) → (G(�)

0 , h)

when (x, y) goes to infinity. As t → ±∞, these line waves go to 
uniform constant backgrounds; in the intermediate times, they ap-
proach their bigger amplitudes. Beside, when p1I �= α� , the square 
of the short-wave amplitude |S(�)|2 have critical lines:

L1 : t = −d2

c2
, y = − 1

b1
(x + d1 − c1

c2
d2), (21)

L(�)
2 : t = μ�,1

c2
, y = − 1

b1
[x + d1 + c1

c2
μ�,1 + a2,�

a1,�

(μ�,1 + d2)],
(22)

L(�)
3 : t = μ�,2

c2
, y = − 1

b1
[x + d1 + c1

c2
μ�,2 − a2,�

a1,�

(μ�,2 + d2)].
(23)

Here L(�)
3 are also two characteristic lines. When p1I = α� , there 

are three critical lines L1 and

L4 : t = −d2

c2
, y = − 1

b1
(x + d1 − c1

c2
d2 ±

√
3

2p1R
), (24)

which are also two characteristic lines. Thus these line waves have 
the characteristics: appears from nowhere and disappears with no 
trace, hence they are defined as line rogue waves. Further analysis 
show that the feature of rogue wave for the short-wave component 
is classified into three patterns, which are summarized in Table 1.

Fig. 2 displays one-rogue waves for the short-waves with 
M = 3. It can be clearly seen that three short-wave components 
describe different patterns of rogue wave as listed in Table 1. The 
amplitudes of S(1) , S(2) and S(3) approach to the backgrounds 1, 
1 and 4.0043 respectively. The component S(1) exhibits one bright 
rogue wave (ϒ1 = 0), in which the amplitude attains its maximum 
3 at L1 and minimum 0 at L4. For the component S(2) , as an ex-
ample of intermediate state of rogue wave (0 < ϒ2 < 1

3 p2
1R ), its 

amplitude acquires the maximum 1.5275 at L(2)
2 , the minimum 

0 at L(2)
3 , and one local maximum 1.2857 at L1. The amplitude 

of the component S(3) features a dark rogue wave (ϒ3 > 3p2
1R ), 

which possesses the maximum 4.4770 at L(3)
2 and the minimum 

0.8009 at L1.
From the above discussion on the one-lump and rogue wave 

for the short-wave components, it is noted that the choice of the 
parameter α� determines these local waves’ patterns, more specifi-
cally, the number, the position of extrema and zero point, and fur-
ther the type of extrema of the amplitude. The same parameter’s 
introduction is also carried out in the construction of dark–dark 
solitons for the coupled NLS system [65], in which this treatment 
results in the generation of non-degenerate dark–dark solitons.

3.2. Multi-rational solutions

The multi-rational solutions can be obtained by taking N > 1, 
n1 = n2 · · · = nN = 1 in the rational solution (5). These solutions 
describe the interaction of N individual fundamental rational solu-
tions, including lump and rogue wave, which depend on whether 
or not the parameters meet the conditions

{
Im ( f (pi)) = 0

∣∣∣∣∣i = 1,2, · · · , N

}
, (25)
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Fig. 2. One-rogue wave for two-dimensional YO system with the parameters (σ1, σ2, σ3) = (1, 1, 1), (ρ1, ρ2, ρ3) = (1, 1, 10
7

√
6 + 5

14

√
2), (α1, α2, α3) = (1, 1 −

√
3

2 , 3), c12 = 0
and p1 = 1 + i.
where Im represents the imaginary part of the function, and f (pi)

is defined by

f (pi) =
M∑

�=1

σ�ρ
2
�

(pi − iα�)2
− 2ipi . (26)

For example, when N = 2, one can write down F and G(�) as

F =
∣∣∣∣∣ T 0

1,1 T 0
1,2

T 0
2,1 T 0

2,2

∣∣∣∣∣ , G(�) =
∣∣∣∣∣ T 1

1,1 T 1
1,2

T 1
2,1 T 1

2,2

∣∣∣∣∣ , (27)

with

T 0
i, j = 1

pi + p∗
j

[
ζiζ

′ ∗
j + 1

(pi + p∗
j )

2

]
,

T 1
i, j = (− pi − iα�

p∗
j + iα�

)
1

pi + p∗
j

[(
ζi + 1

pi − iα�

)

×
(

ζ ′ ∗
j − 1

p∗
j + iα�

)
+ 1

(pi + p∗
j )

2

]
,

where ζi = ξ ′
i − 1

pi+p∗
j

+ ci1, ζ ′ ∗
j = ξ ′ ∗

j − 1
pi+p∗

j
+ c∗

j1, ξ ′
i is given 

by (6), p1, p2, c11 and c21 are arbitrary complex parameters. In 
this case, the solution represent two-lump, two-rogue wave and 
the mixed solution consisting of one lump and one rogue wave by 
choosing different parameters. Here only two-rogue wave solutions 
are demonstrated in Fig. 3.

As seen in Fig. 3, the rogue wave of every short-wave compo-
nent starts from the constant background in the entire (x, y) plane 
(see the t = −2 panel). In the intermediate times, all three com-
ponents undergo nearly the same process in which two line rogue 
waves interact with each other: the regions of their intersection 
acquire higher/lower amplitudes first (see the t = −1 panel), the 
wave patterns form into two curvy wave fronts which are com-
pletely separated (see the t = 0 panel), and then these waves 
possess higher/lower amplitudes again in the regions of their in-
tersection (see the t = 1 panel). At large times, these solutions go 
back to the constant background (see the t = 2 panel).
More interestingly, three short-wave components display the 
rogue wave with bright–bright state (p1I −α1 = 0 and p2I −α1 = 0
for S(1)), dark–dark state ((p1I − α2)

2 > 3p2
1R and (p2I − α2)

2 >

3p2
1R for S(2)) and intermediate-bright state ( 1

3 p2
1R < (p1I −α3)

2 <

p2
1R and 0 < (p2I − α3)

2 < 1
3 p2

1R for S(3)). An inspection of the 
right branch of two curvy wave fronts (t = 0) in the small re-
gion (see Fig. 4) indicates that three are different features for every 
components. At the vertices of three curvy wave fronts, S(1) with 
bright–bright state has one humped hole, S(2) with dark–dark state 
has one sunken hole and S(3) with intermediate-bright state has 
one humped hole and two sunken holes. As the detailed analysis 
for the pattern of single rogue wave, such two-rogue wave struc-
tures are controlled collectively by the complex parameter pi and 
the real parameter α� .

3.3. Higher-order rational solutions

The higher order rational solutions can be obtained by taking 
N = 1 and n1 > 1 in the rational solution (5). In this situation, 
these solutions are viewed as higher-order lumps and rogue waves. 
Notice that if the parameters satisfy the following relations:{

Im

(
dk f (p1)

dpk
1

)
= 0

∣∣∣∣∣k = 0,1,2, · · · , Ñ

}
, (28)

the imaginary part of the coefficient of y will be zero. In such a 
special case, one can get the Ñ-order rogue waves solutions.

For instance, if n1 = 2, the functions F and G(�) take the form 
(c11 = 0)

F = [(∂p1+ξ ′
1)

2 + c12][(∂p∗
1
+ξ ′ ∗

1 )2 + c∗
12]

1

p1 + p∗
1
, (29)

G(�) = (− p1 − iα�

p∗
1 + iα�

)[(∂p1 + ξ ′
1 + 1

p1 − iα�

)2 + c12]

× [(∂q1 + ξ ′ ∗
1 − 1

p∗
1 + iα�

)2 + c∗
12]

1

p1 + p∗
1
, (30)

where ξ1 is defined by (6), p1 and c12 are arbitrary complex pa-
rameters. For the general choice of the parameters, this solution 
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Fig. 3. Two-rogue wave for two-dimensional YO system with the parameters (σ1, σ2, σ3) = (1, −1, −1), (ρ1, ρ2, ρ3) = (2, 6.0517, 1.3600), (α1, α2, α3) = (1, −1.6, 1 +
√

2
2 ), 

c11 = c21 = 0, p1 = 1 + i and p2 = 3
2 + i.

Fig. 4. Two-rogue wave for two-dimensional YO system with the same parameters as Fig. 3.
represent second-order lump. When these parameters meet the 
constraint conditions (28) with Ñ = 2, this rational solution re-
duces to second-order rogue wave solutions.

In Fig. 5, we illustrate the second-order rogue wave for 
two-dimensional YO system which still contains three short-wave 
components. This kind of construction for higher-order rogue wave 
leads to a new phenomenon: these higher-order rogue waves do 
not uniformly approach the constant background but feature local-
ized lumps as t → ±∞, which is different from the multirogue 
waves discussed above. As seen from Fig. 5, the solutions for 
three short-waves are localized lumps sitting on the constant back-
grounds when |t| � 1 (see the t = ±4 panels). When t → 0, these 
lumps disappear gradually and three parabola-shaped rogue waves 
rise from their backgrounds (see the t = −1, 0 panels). In addi-
tion, three short-waves exhibit three different patterns of rogue 
waves throughout the process of their shape change. The solu-
tions are second-order rogue waves with bright state for S(1)

((p1I − α2)
2 < 1 p2 ), intermediate state for S(2) ((p1I − α2)

2 =
3 1R
p2
1R ) and dark state for S(3) ((p1I − α2)

2 > 3p2
1R ). Visually, the 

components S(1) , S(2) and S(3) undergo bright, intermediate and 
dark lumps at t = ±4, and especially humped, sunken-humped 
and humped parabola fronts at t = 0 respectively.

4. Rational solutions for one-dimensional YO system

Consider the further reduction, two-dimensional multi-compo-
nent YO system becomes one-dimensional one. Therefore the ra-
tional solutions for one-dimensional multi-component YO system 
can be derived from ones of two-dimensional case. More specifi-
cally, the following theorem is summarized:

Theorem 2. The one-dimensional multicomponent YO system:

iS(�)
t − S(�)

xx + L S(�) = 0, � = 1,2, · · · , M, (31a)
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Fig. 5. Second-order rogue wave for two-dimensional YO system with the parameters (σ1, σ2, σ2) = (1, 1, 1), (ρ1, ρ2, ρ3) = (1, 
√

29
5 , 7

√
6

3 ), (α1, α2, α3) = ( 2
3 , 2, 4), c12 = 0 and 

p1 = 1 + i.
Lt = 2
M∑

�=1

σ�|S(�)|2x , (31b)

where σ� = ±1, has rational solution

S(�) = G(�)
0

G(�)

F
, L = h − 2

∂2

∂x2
log F , (32)

where G(�)
0 = ρ� exp[i(α�x + γ�t)], γ� = h + α2

� and α�, ρ� and h are 
real parameters for � = 1, 2, · · · , M. Here F and G(�) are defined by 
(4)–(6) and the parameters satisfy the constraints{

dk f (pi)

dpk
1

= 0

∣∣∣∣∣i = 1,2, · · · , N;k = 0,1,2, · · · , Ñ

}
. (33)

4.1. Fundamental rational solution

According to Theorem 2, the fundamental rational solution for 
one-dimensional multi-component YO system has same form as 
Eqs. (9)–(10) but the parameters need to meets the requirement 
(33) for N = 1 and k = 0, namely,

f (p1) = 0. (34)

As reported in [39,40], the rogue wave of the short-wave compo-
nent can be classified into bright, intermediate, and dark states. 
Here, one can find that (S(�), L) still approaches (Ḡ(�)

0 , h) as 
(x, t) → ±∞. Meanwhile, when p1I �= α� , the square of the short-
wave amplitude |S(�)|2 possesses critical points

(x1, t1) =
(

c1

c2
d2 − d1,−d2

b2

)
, (35)

(x(�)
2 , t(�)

2 ) =
(

−a2,�

a1,�

(μ�,1+d2) − c1

c2
μ�,1 − d1,

μ�,1

c2

)
, (36)

(x(�)
3 , t(�)

3 ) =
(

a1,�

a2,�

(μ�,2+d2) − c1

c2
μ�,2 − d1,

μ�,2

c2

)
, (37)

and characteristic points (x(�)
3 , t(�)

3 ). When p1I = α� , there are three 
critical points (x1, t1) and (x4, t4) = (±

√
3 + c1 d2 − d1, − d2 ) and 
2p1R c2 c2
characteristic points (x4, t4). Then the detailed calculation show 
that the domains for three states are 0 � (p1I −α�)

2 � 1
3 p2

1R (when 
the sign takes “=”, two local minima located at two characteristic 
points), 1

3 p2
1R < (p1I − α�)

2 < 3p2
1R and (p1I − α�)

2 � 3p2
1R (when 

the sign take “=”, the local minimum located at the characteristic 
point), respectively. Three different kind of rogue wave structures 
are demonstrated for every short-wave components in Fig. 6.

In Refs. [48,49], Ohta et al. have shown that the fundamen-
tal rogue waves in the DS equations are two-dimensional coun-
terparts of the fundamental (Peregrine) rogue waves in the NLS 
equation. Meanwhile, Dubard et al. have created two-dimensional 
rogue waves via the NLS–KP correspondence [20,50]. Very sim-
ilarly, for the YO system, the two-dimensional rogue waves are 
viewed as the counterparts of one-dimensional ones. From above 
discussion, one can find such a fact that by further taking the real 
parts of functions f (pi) as zero, two-dimensional rogue waves is 
reduced to one-dimensional ones, or by restricting f (pi) = 0, one-
dimensional rogue waves can be acquired from two-dimensional 
lump solutions.

4.2. Nonfundamental rogue wave

As in the two-dimensional case, here one can consider two sub-
classes of these nonfundamental rogue waves: multi- and higher 
order rogue waves. Specifically, by restricting the parameters{

f (pi) = 0

∣∣∣∣∣i = 1,2, · · · , N

}
, (38)

in Theorem 2, (32) is identified as multi-rational solution and by 
imposing the constraint conditions{

dk f (p1)

dpk
1

= 0

∣∣∣∣∣k = 0,1,2, · · · , Ñ

}
, (39)

in Theorem 2, the higher-order rational solution can be written. 
For illustrative purpose, we only present plots of second- and 
third-order rogue waves for the short-wave components in Figs. 7
and 8. It can be observed from Fig. 7 that second-order short-
wave solutions contain bright–bright, intermediate-intermediate 
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Fig. 6. One rogue wave for one-dimensional YO system with the parameters c11 = 0, (σ1, σ2, σ3) = (−1, 1, 1), (α1, α2, α3) = (1, 2, 3), (ρ1, ρ2, ρ3) = (1, 2
√

3
3 , 5

√
3

3 ) and 
p1 = 1 + i.

Fig. 7. Second-order rogue wave for one-dimensional YO system with the parameters c12 = 1, (σ1, σ2, σ3) = (1, 1, 1), (α1, α2, α3) = (0.5, −1, 3.7839), (ρ1, ρ2, ρ3) =
(3.9698, 5.2657, 13.0687) and p1 = 1.25 + 0.25i.

Fig. 8. Third-order rogue wave for one-dimensional YO system with the parameters (σ1, σ2, σ3) = (1, 1, 1), (α1, α2, α3) = (−0.4109, 0.5044, 3), (ρ1, ρ2, ρ3) =
(1.7757, 1.5887, 6.2015), c13 = 150, c11 = c12 = 0 and p1 = 1.0218 + 0.2i.
and dark–dark rogue waves. Fig. 8 depicts third-order rogue waves 
for the short-wave components, in which three components de-
scribe the nonfundamental rogue wave with different mixed states 
respectively.

5. Conclusion

In conclusion, we derive exact explicit rational solutions of 
two- and one-dimensional multicomponent Yajima–Oikawa sys-
tems consisting of multi-short-wave components and single long-
wave one. These solutions in terms of determinants are obtained 
by using the bilinear method. In two-dimensional case, the funda-
mental rational solution first describes the localized lumps, which 
have three different patterns: bright, intermediate and dark states. 
Further, by inserting certain parameter constraint conditions, rogue 
waves can be reduced from the general rational solutions. Rogue 
waves behaviors were also classified to above three patterns but 
with different description. We show that the simplest (funda-
mental) rogue waves are line localized waves which arise from 
the constant background with a line profile and then disappear 
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into the constant background again. In particular, we report two-
dimensional intermediate and dark counterparts of rogue wave by 
considering the different parameter requirements. Two subclasses 
of nonfundamental rogue waves, multi- and higher-order ones are 
discussed in detail. Multirogue waves describe the interaction of 
several fundamental rogue waves, in which interesting curvy wave 
patterns appear in the intermediate times. Meanwhile, in the inter-
action of different types fundamental rogue waves, the correspond-
ing different curvy wave patterns occur. Higher-order rogue waves 
exhibit the dynamic behaviors that the wave structure start from 
lump and then retreats back to it, and this transient wave pos-
sesses patterns such as parabolas. Furthermore, different states of 
higher-order rogue wave result in completely distinguishing lumps 
and parabolas. In addition, by considering the further reduction, 
one-dimensional rogue wave solutions with three states are con-
structed. Specifically, higher-order rogue wave in one-dimensional
case is derived under the parameter constraints. Our results, es-
pecially two-dimensional intermediate and dark counterparts of 
rogue wave, are expected to be a crucial progress in the physi-
cal understanding of higher-dimensional rogue waves in the fields 
such as oceanography and nonlinear optics.

Finally, apart from the existence of the vector rogue waves, the 
family of semirational vector solution for coupled NLS equations 
reported in Refs. [32,33] also described a kind of interaction wave 
among rogue wave and other localized waves including periodic 
breather and soliton. Therefore, one can investigate the similar 
dark–bright boomeronic solitons in the multicomponent YO sys-
tem. More importantly, the study of such solutions can be extend 
to the higher-dimensional multicomponent coupled systems. The 
corresponding semirational solution may provide evidence of an 
interesting interaction between the dark–bright boomeronic soli-
tons and the rogue wave in higher-dimensional situation. The KP 
hierarchy reduction method, which has used to derive the two-
dimensional counterparts of rogue wave by Ohta and Yang [48,49], 
can be applied to attain the general semirational solution for the 
two-dimensional YO equation and other higher-dimensional cou-
pled integrable systems. We will report the relevant results else-
where.
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Appendix A

In this appendix, we will prove Theorem 1 in Section 2 by using 
the bilinear method. First we present the following lemma:

Lemma 1. The bilinear equations in the KP hierarchy:

(Dx2 − D2
x1

− 2a�Dx1)τ (n(�)+1) · τ (n) = 0, (A.1a)

(
1

2
Dx1 Dr� − 1)τ (n) · τ (n) = −τ (n(�)+1)τ (n(�)−1), (A.1b)

for � = 1, 2, · · · , M, where (n) ≡ (n(1), n(2), · · · , n(M)), (n(�) ± 1) ≡
(n(1), n(2), · · · , n(�) ± 1, · · · , n(M)), al are complex constants, and n(�)

are integers, have the Gram determinant solutions
τ (n) = det
1≤i, j≤N

(
Tij(n)

)
=

∣∣∣Tij(n)

∣∣∣
1≤i, j≤N

, (A.2a)

with the matrix element

Ti j(n) = 1

pi + q j
eξi+η j

M∏
�=1

(− pi − a�

q j + a�

)n(�)

, (A.2b)

ξi =
M∑

�=1

1

pi − a�

r� + pi x1 + p2
i x2 + ξi0, (A.2c)

η j =
M∑

�=1

1

qi + a�

r� + q jx1 − q2
j x2 + η j0, (A.2d)

where pi, q j, ξi0 and η j0 are complex constants.

In order to get rational solutions, by introducing the differential 
operators:

Ai =
ni∑

k=0

cik∂
ni−k
pi

, B j =
n j∑

l=0

d jl∂
n j−l
qi

, (A.3)

where cik, d jl are arbitrary complex constants, and acting the ma-
trix element Tij(n) in (A.2), the solutions

τ ′(n) = det
1≤i, j≤N

(
T ′

i j(n)
)
, T ′

i j(n) = Ai B j Ti j(n), (A.4)

still satisfy the bilinear equations (A.1).
By using the operator relations

(∂pi )

M∏
�=1

(pi − a�)
n(�)

eξi

=
M∏

�=1

(pi − a�)
n(�)

eξi [∂pi + ξ ′
i +

M∑
�=1

n(�)

pi − a�

], (A.5a)

(∂q j )

M∏
�=1

(−q j − a�)
−n(�)

eη j

=
M∏

�=1

(−q j − a�)
−n(�)

eη j [∂q j + η′
j −

M∑
�=1

n(�)

q j + a�

], (A.5b)

where

ξ ′
i = −

M∑
�=1

r�

(pi − a�)2
+ x1 + 2pix2, (A.5c)

η′
j = −

M∑
�=1

r�

(qi + a�)2
+ x1 − 2q jx2, (A.5d)

the matrix element T ′
i, j(n) in (A.2) becomes the following form

T ′
i, j(n) =

M∏
�=1

(− pi − a�

q j + a�

)n(�)

eξi+η j Āi, j
1

pi + q j
, (A.6)

where the operator Āi, j = ∑ni
k=0 cik(∂pi + ξ ′

i + ∑M
�=1

n(�)

pi−a�
)ni−k ×∑n j

l=0 d jl(∂q j + η′
j − ∑M

�=1
n(�)

q j+a�
)n j−l .

Further, taking parameter constraints

a� = iα�, pi = q∗
i , d jl = c∗

jl, ξi0 = η∗
i0 (A.7)

and assuming r�, x1 are real, x2 are pure imaginary, we have

η j = ξ∗, T ′ ∗(n) = T ′ (−n), τ ′ ∗(n) = τ ′(−n). (A.8)
j j,i i, j
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Let

F = τ ′(n)

∣∣∣
n(1)=n(2)=···n(�)···=n(M)=0

,

G(�) = τ ′(n(�) + 1)

∣∣∣
n(1)=n(2)=···n(�)···=n(M)=0

,

G(�)∗ = τ ′(n(�) − 1)

∣∣∣
n(1)=n(2)=···n(�)···=n(M)=0

,

Eqs. (A.1) become

(Dx2 − 2iα�Dx1 − D2
x1

)G(�) · F = 0, (A.9a)

(
1

2
Dx1 Dr� − 1)F · F = −G(�)G(�)∗, (A.9b)

for � = 1, 2, · · · , M , and meanwhile the element of τ function is 
expressed by

T ′
i, j(n) =

M∏
�=1

(− pi − iα�

p∗
j + iα�

)n(�)

eξi+ξ∗
j ¯̄Ai, j

1

pi + p∗
j

, (A.10)

where the operator ¯̄Ai, j = ∑ni
k=0 cik(∂pi + ξ ′

i + ∑M
�=1

n(�)

pi−iα�
)ni−k ×∑n j

l=0 c∗
jl(∂p∗

j
+ ξ ′ ∗

j − ∑M
�=1

n(�)

p∗
j +iα�

)n j−l and

ξi =
M∑

�=1

r�

pi − iα�

+ pix1 + p2
i x2 + ξi0,

ξ∗
j =

M∑
�=1

r�

p∗
j + iα�

+ p∗
j x1 − p∗2

j x2 + ξ∗
j0,

ξ ′
i = −

M∑
�=1

r�

(pi − iα�)2
+ x1 + 2pi x2,

ξ ′ ∗
j = −

M∑
�=1

r�

(p∗
j + iα�)2

+ x1 − 2p∗
j x2.

Applying the change of independent variables

x1 = x, x2 = −iy, r� = σ�ρ
2
� (t − y), (A.11a)

i.e.,

∂x = ∂x1 , ∂y = −i∂x2 −
M∑

�=1

σ�ρ
2
� ∂r� , ∂t =

M∑
�=1

σ�ρ
2
� ∂r� , (A.11b)

Eqs. (A.9) are reduced to the bilinear equation (3) of two-
dimensional YO system. Finally, due to the gauge freedom of τ
function, we have the rational solutions to the multicomponent YO 
system (1) in Theorem 1.
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