Commun. Theor. Phys. 64 (2015) 372-378

Vol. 64, No. 4, October 1, 2015

Dual Hierarchies of a Multi-Component Camassa—Holm System*
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Abstract In this paper, we derive the bi-Hamiltonian structure of a multi-component Camassa—Holm system, which
associates with the multi-component AKNS hierarchy and multi-component KN hierarchy via the tri-Hamiltonian duality
method. Furthermore, the spectral problems of the dual hierarchies may be obtained.
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1 Introduction
In 1993, the Camassa-Holm (CH) equation

:Ov Ugy (1)

was derived by Camassa and Holm from an approximation
to the incompressible Eluer equations.) Like the KdV
equation, the CH equation is integrable with Lax pair and
bi-Hamiltonian structure,?! an unusual feature is that it
admits peakon solutions.>=4 It is interesting that the CH
equation is associated with the first negative flow of the
KdV hierarchy by reciprocal transformation,® and the
Hamiltonian pair for it can be constructed by rearranging
that of the KAV equation. Via this connection, the spec-
tral problem for the CH equation can be obtained from
that of the KdV equation. Motivated by the remarkable
property of the CH equation, many other CH systems have
been constructed—19 and studied.[''—19]

Recently, Xia and Qiao presented a multi-component
CH system,[16]

my + umy + 2u,m m=u—

e = oyl )7~ i)
+ (@ — ) (T + T,) ']
= gl - )
+ (T + ) (@ — @) Vi),
N=U— Uy, T=10—"7T, (2)
where @ = (u1,us,...,us), (’1}1,1}2,"' Vg), M =

(my,ma,...,mg), = (nl,ng, . 7ns) and T is the trans-
pose of a vector. They found that the system (2) possessed
a Lax pair and infinitely many conservation laws, and dis-
cussed the peakon solutions as s = 2. When s = 1, the
bi-Hamiltonian structure of the system (2) was considered

in Ref. [17]. The multi-component CH system (2) is bi-
Hamiltonian as a by-product of the results in this paper.

Olver and Rosenau constructed CH systems via the tri-
Hamiltonian duality method that rearranging the Hamil-
tonian operators of the classical soliton equations in an
algorithmic manner.l'® They called the CH systems the
dual hierarchies of the associated soliton equations. In-
deed, the method of rearranging the Hamiltonian oper-
ators appeared in the earlier work of Fuchssteiner and
Fokas.'9 And vice versa, a proper recombination of
Hamiltonian operators of the CH systems can also gener-
ate the classical soliton hierarchies. The aim of this paper
is to construct the dual hierarchies of the CH system (2).

The paper is arranged as follows: In Sec. 2, we derive
the bi-Hamiltonian structure of the 2s-component CH sys-
tem (2), and construct the dual hierarchies of it using the
tri-Hamiltonian duality method.['8! In Sec. 3, we study
the dual versions of a two-component (s = 1) CH system
and a four-component (s = 2) CH system by recombining
their Hamiltonian operators. In Appendix, we present the
detail proof of the Jacobi identity for the operator J (13)
as well as the compatibility with the Hamiltonian operator
K (12) by the trivector technique of Olver.l

2 Dual Hierarchies of the Multi-Component

Camassa—Holm System

In this section, we derive the bi-Hamiltonian struc-
ture of the multi-component CH system (2) and con-
sider its dual hierarchies using the tri-Hamiltonian duality
approach.!*® Moreover, via this connection, we recover the
spectral problems of the dual hierarchies.

In order to better understand and display, we denote

mT, 7t @7, vT by M, N, U, V respectively, i.e.,
T T
M:(mlam27~-~7ms) 5 N:(n17n27"'7n8) )
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U= (uy,uz,...,us)", V=(vi,v9,...,05)". M=U-Uy, N=V—-V,, (3)
And then the system (2) can be rewritten as follows where (,) denotes the standard inner product.
] As pointed in Ref. [16], the multi-component CH sys-
M, = WRNL V+ V(U -Uy) tem (3) arises from a zero curvature equation
s
F,—G,+[F,G]=0, 4
+ (U = U,V + V) M], t =G R0 )
1 this being the compatibility for the linear system
Ny = — NU-U,)(V+V,
! (s+1)2[< A ) vz =Fp, ¢r=Gop, (5)
_ 1 _
1 (—s )\MT> | (AT U U VAV AU = U,)T
= — s = 1 y
s+1\AN I, s+1 AUV 4 V) >\—2]S_frl(VJrV;,U)(U—UQ,;)T
s
where )\ is the spectral parameter and I is the s x s iden- | N, = l(BT ~BT) - 1 Novjy + L CN, (8)
tity matrix. A s+1 s+1
. ;o . . ., )\
In order to obtain the bi-Hamiltonian structure of the o1y = a1 ((M, BT) — (N, AT)), (9)
system (2), we rewrite the time part of the system (5) as s+1
5 A
follows C= 2 9 Y (NA—BTMT), (10)
V= 1 V11 A (6) S+ 1
~s+1\BT C)’ where - -
i i i : MT = oM BT = 95~
where v11 is a function variable and A, B are both s di- t ot T or

mension row vectors depending on vector potentials M, N

. ; . ' Substituting the equalities (9) and (10) to Egs. (7) and
and A, C is an s X s matrix depending on vector potentials

(8), we have

M, N and . M . N BT
The compatible condition yields = (k4+ 2 11
1 o 1 (N)t 5 +(s+1)2j)(AT)’ )

T—_(A+A — Moy — ——M" :
M, )\( + m)+8+1 V11 st1 C, (7) |W1th
Osxs (04 DI,
K= , 12
((8—1)15 0,rs (12)
7 MO*MT + (MO*MT)T  —MOINT — MTO~'NI, (13)
- \-NO'MT - NToO'MI, NO~'NT+(No~'NTT )~

where Q4 is the s X s zero matrix. | erators KC, J are skew-symmetric. Furthermore K is a

In the following, we show that the operators IC, J are  Hamiltonian operator. Hence, we need to prove that the
Hamiltonian operators and form a bi-Hamiltonian pair.  Jacobi identity for J and compatibility of J with K. Tak-
The Jacobi identity and compatibility conditions for the ing 61 = (011,...,015)T, 02 = (61,...,025)T as the basic
operators K, J may be checked using the multivector ap-  uni-vectors corresponding to M, N respectively, we know
proach to Hamiltonian systems in infinite dimensions, as  that the operator J is a Hamiltonian operator if
described in the work of Olver.[20]

PrV79(©7) =0, 15
Theorem 1 The multi-component CH system (3) can be 70(97) (15)
written in the bi-Hamiltonian form where 0
1 Hy 0 — ( 1)
N/, 0H, §Hy |’ and © 7 is the associated bi-vector of J.
5 SN To check whether IC and J form a bi-Hamiltonian pair,
using the operators K and J (12)—(13) and we only need to prove
Hy = ﬁ /(Um —U,,N)dz, PrViy(©7) =0. (16)
S
The proof of the theorem is rather technical and lengthy,
L= ;2 /(U ~U,,V+ V) U —-U,,N)dz. so are given in Appendix.
(s+1) In the following, we will study the dual hierarchies of

Proof The equalities (12) and (13) imply that the op- the multi-component CH system (3) by recombining the
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Hamiltonian operators K and J in Egs. (12) and (13) ac-  ring the terms 01, from the operator K to the correspond-
cordingly. ing elements of the operator J and replacing M, N by @,

The dual Hamiltonian operators of the operators L R respectively in the operator J, we get two Hamiltonian
and J are obtained by the following procedure. Transfer- | operators

g <0m I, ) j-( QI'QT +(Qo7'QT)T (8—QT8‘1R)IS—Q8‘1RT>
S\ =L 044/ - \(@—-RTO'Q)I,— RO'QT RO 'RT 4 (RO'R™)T ’

T | transformed into

where Q = (q1,q2,...,q5)%, R= (r1,79,...,75)T.
PN —5

The above Hamiltonian pair I, J is nothing but =2 QT
the bi-Hamiltonian pair for the multi-component AKNS pe=Fop, F= ( A 1 ) ) (19)
hierarchy.?"] R XI s

In the equality (11), for the Hamiltonian operators X  which, by the transformation A — —1/X, may be reformu-
and J, we make the following transformation lated as

As QT
. 20
P S)w

) ) The above spectral problem is just the one for the multi-
After the above transformation, the equality (11) becomes component AKNS hierarchy (see (1.2) in Ref. [22] for de-

Q 1~ 1 ~ (BT tails).
<R>t = (XK + s+ 1*7> (AT) ’ (18) On the other hand, if we transfer the terms —I, and

R I instead of the terms OI; from K to the corresponding
which leads to the Hamiltonian operators K and J. elements of the 7, and replace M, N by Q, R respectively
Therewith, the spatial part of the linear problem (5) is | as well, we have

IE_(OSXS afs> j—( QO'Q" +(Qo—tQ™MT (1—QT81R)IS—Q81RT>
0L, 044 )] - \-(1+RT9'Q)I,— R)'QT RO 'RT+ (RO'R")T )’

1 oz = Fop, FZ(
T — ——\x

M N . 1
M. M—Q, NoR. (1)

which are just the compatible Hamiltonian operators of | two-component CH system and four-component CH sys-
multi-component KN hierarchy. Furthermore, after the tem.

transformation
s+ 1 3.1 Dual Hierarchies of the Two-Component
r— X, M-(s+1)Q, N-— R, (21) Camassa—Holm System
Eq. (11) yields As s = 1, the multi-component CH system (3) is
1
Q ( A = 1 = BT my = —m(uv — UgUy + UV — Ugv)
- K+—=7) . 22 2
(R , \s+1 +s+1j AT/X (22)
The spectral problem of the CH system (3) becomes = —§n(uv ~ UaVa + ULy — UgV)
1 —; (S+1)QT m=u—Ugg, =0V — VUgg, (25)
po=Fp, F= s+1\ s+l R lI (23 nien appears in the bi-Hamiltonian form (14) with
A AT 0 o+1 md~tm —md in
hich, by the transformation K= , = ,
v Y ) . <6— 1 0 > J <—n81m nd~n )
Ao————-, R———R, 1
BEPES R Py Ho = 3 [ (s = wajnds,
leads to 1
A T H:f/ufuz2v+v/nd9:. 26
vV T R T L (26)
AR AL From the results in Sec. 2, we know the dual Hamiltonian

The spectral problem (24) is nothing but the one of the  pairs of the operator (26) are respectively
multi-component KN hierarchy. R < 0 1 > N ( 49 1q d—gq 811")
= = 27)
) -1 -1 >
3 Dual Hierarchies of the Two-Component -1 0 9—rd7q rOw
CH System and Four-Component Fa 0 o = g0 ¢ 1—qg0~ r (28)
Camassa—Holm System ~\9 0/’ C\—1—r07Y¢ ro v )’

In this section, we consider the dual hierarchies of the = which are the Hamiltonian pairs for the AKNS hierarchy
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and KN hierarchy respectively. The associated spectral o, =Up, U= ( A g ) (30)
problems of the dual hierarchies are respectively ! ’ Aro =2/
_ _ q
o =Up, U= (r _)\> ’ (29) | which can be deduced via the connection.
Remark 1 In Ref. [23], Ma and Zhou studied the Hamiltonian operator
a1qd~t ag + azd — a1qdr
M ( 1907 °¢q 2 +as 19 ) ’ (31)
—ag + azd — ayrdT1q arro~r

where a1, ag, ag are arbitrary constants. They gave the Hamiltonian pairs (27) and (28) for the AKNS hierarchy
and KN hierarchy starting form Hamiltonian operator (31). Indeed the Hamiltonian operator (31) can lead to another
Hamiltonian pair (26) for the two-component CH system (25).

3.2 Dwual Hierarchies of the Four-Component Camassa—Holm System

When s = 2, the multi-component CH system (3) becomes

mi = é{mlp(m — U1z) (V1 + viz) + (2 — Uz ) (V2 + v2g)] + ma(ur — u1e)(v2 + v2z)}
Moy = é{mQ[(ul — U1g) (V1 + V1g) + 2(u2 — u2y) (V2 + v2g)] + M (ug — ugs) (V1 + V1)),
nit = —%{m [2(u1 — w1a) (V1 + V1e) + (U2 — U2s) (V2 + V2g)] + N2 (ug — Us) (V1 + V12)}

1
Not = —§{n2[(u1 — U1z) (V1 + Viz) + 2(u2 — U2g) (V2 + v2z)] + 11 (U1 — Uig) (V2 + V2z) },
mip =uy — Ulgg, M2 =7U2 — U2zx, N1 =7V1 — Vige, N2 =7V2 — V2zz, (32)

which can be written as the bi-Hamiltonian form (14), using the

0 0 0+1 0 2m18_1m1 J12 Ji3 —mla_lng
. 0 0 0 J+1 T 2m0~tmy  —med g Joa
S loa-1 0 0 o |77 T =@ 'my 2m0 'y Tsa ’
0 0—1 0 0 —ny0~tmy —J5 — T3 2n20 " 1ns
1
HO = § /(ulmx - ulx)nl + (UZrz - u2x)n2dxv
1
Hy = 9 /[(Ul — U1g) (V1 + v1g) + (U2 — Uog) (V2 + Vog)][(U1 — wiz)n1 + (U2 — ugg)nolde,
where
Ji2 =m0 'mg +med tmy,  Jiz = —(2m10 'ng + mad ng),

Jou = 7(27‘@2871%2 —+ mlcf)’lnl) , T = n18*1n2 + 77,2871711 .

After applying the tri-Hamiltonian duality method to the Hamiltonian operators K and J, we get the duality Hamil-
tonian operators

0 0 1 0 20107 ¢ Ti2 Tis —q107 'y
oo 0 0 1 sl —Z1\2* 2207 'q2  —q207 'y Z2\4 7 (33)
—1 0 O —J31 —7“1(9_16]2 2r1071ry T34
0 -1 0 0 o0 g —Jas —Taa 20 'r
0 0 90 0 201071 3; 51/3 —q107 1 ry
& 00 0 & i —gg* 20207 e —q207 'y 12/4 ’ (34)
O 0 0 O —Js1 -0 gy 2r 07t T34
0 & 0 0 —re0 gy —3;* —3;* 2re0~ "ty
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where 2V a1 @
oy =Up, U=|X1 =X 0 (36)
T2 =q10 g2 + 20 "1, Arg 0 —A
31\3 =9 — (207 Vr1 + 207 1), Remark 2 The coupled nonlinear Schrodinger equa-
. . . tion!?? is a reduction of the coupled AKNS hierarchy. In
Joa =0 — (220" 12+ 10" 1), fact, it can be reduced to the coupled MKdV equation2
73\4 — 110 Y1y + 10y and the Sasa-Satsuma equation?” under the constraints
o ’ 1 =qi, T2 = q2 and 1, = qg, 79 = ¢y respectively.!?8]
T2 =010 g2 + 20 "1, Furthermore, through the Dirac reductions of the
?1; —1— (2010~ 11 + 0 1) Hamiltonian operators J and KJ 'K under the corre-

?21 =1- (Qf]za_sz + Q13_17”1) )

T —1 -1
j34:7’18 7’2+T28 1.

The K, J (33) and K, .J (34) are just the Hamiltonian
pairs of the coupled AKNS hierarchy,?4 and coupled KN

hierarchy, the spectral problems of them are respectively

sponding constraints, one can get a Hamiltonian structure
and a symplectic structure for the coupled MKdV equa-
tion and the Sasa—Satsuma equation respectively.

A natural question is what are the reduced systems of
the four-component CH system (32) and their correspond-
ing Hamiltonian structures. Besides, it is worthwhile to
investigate the reciprocal transformations between the CH
systems (3), (25), (32) and their dual hierarchies.

Appendix
2Z e First, we prove that the operator J is Hamiltonian,
e =Up, U=]m —-XA 0 ], (35)  namely to verify (15). To simplify the presentation and
re 00—\ | calculations, we introduce M;, N;(i = 1,2,...,s) as
mlail(migli —n;ba;) + miail(mleli —n;021)
5 ms0~ (mib1; — nibla;) + m0~ (msby; — nibas)
J0 = (M M, N N = B . (A1)
i1 —n107 " (mif1; — nib2;) — n; 0~ (M — n162;)
—nsafl(mz@u —niba;) — niail(migls —ngba;)
The associated bi-vector of J is
1 1 ¢
07 = §/eAjeclgc: §Z/eleMj+92jAdex
j=1
1 S
= 3 Z /91j A (mja‘l(mieli — ni92i) + mia_l(m]ﬂli - niGQj))
i,j=1
+ QQJ‘ N (—nja_l(mﬂu — ni6‘2i) — nia_l(mielj — nJHQz))d:v
1 S
= 5 Z /(mjﬁlj — leagj) A 8’1(m1011 — nzﬂgi) + (mjﬁli — n,‘92j) A\ 871(mi91j - leogi)dl‘,
i,j=1
where we have substituted the expressions of M;, N; (i = 1,2,...,s) and used the skew-symmetry of the operator 9~ 1.

By direct calculation, we have the prolongation

PI’VJ@(@J) Z /(Hlj A M]’ — 92j A NJ) A 8_1(m1—91i — nﬁgz) + (912 A\ Mj — 92]' A Nz) A 5_1(mi91j — ’I’Ljegi)dl'

ij=1
Z /[91]‘ A (mja_l(mwlk — ’I’Lkegk) + mka_l(mjﬁlk — nkegj))
i,7,k=1
+ ggj AN (njafl(mwlk — nkﬂgk) + nkafl(mwlj — nﬁgk))] A\ 871(mi01i — nZ(‘)Ql)
+ [912 A (mja_l(mkﬁlk — nkegk) + mkﬁ_l(mﬂlk — nk92j))
+ ng A (ni8_1(mk91k — nkegk) + nkﬁ_l(mkeh‘ — nzegk))] A 8‘1(mi91j — njegi)dl‘
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= Z /(mjélj + njﬁgj) A Bfl(mkelk — nkﬂzk) A\ 871(7711'9” — m@gl)
i,7,k=1
+ (mjﬂlk + nkagj) A 871(mk91j — njﬁgk) A 871(m¢01i — nzogl)
+ (mﬂli -+ nit?gj) A 871(mk91k — nkagk) A 871(mi01j — leogi)
+ m01; A 871(mj91k - nkﬂzj) A afl(mzﬂlj - anQ»L')
+ nkﬁgj A\ 8_1(mk01i — nlﬂgk) N 8_1(mi91j — anQi)dx

= Z /m;ﬂh A 8_1(mj91k - ’nkegj) AN 8_1(mi91j - nj92i)

i,5,k=1
+ nkﬂgj A\ afl(mkeu — nﬂgk) N afl(mlﬂlj — ’Ilj@gi)dlﬂ y (AQ)

where we have used integration by parts and the skew-symmetry of the operator 9~!. Afterwards, expanding the two
terms in Eq. (A2) into eight terms, we get

PI‘VJQ(@j) = Z /m;ﬂli A\ 8‘1mj91k AN 8_1m¢91j — myb1; N 6_1mj91k A 8‘1nj92i
i,7,k=1
— mygl1; A 8‘1nk92j AN 8_1mi91j + my01; A 8_1nk92j A\ 8_1nj92i
+ nkﬂgj A\ 8_1mk91i AN 8_1mi91j — nké’gj A\ 8_1mk91i A\ 3_1nj92i
— nk92j A\ 8_1ni92]€ A\ 8_1mi91j + nkﬂzj N 8_1m92k A\ 8_1nj62ida:

S
= Z /—m;ﬁu A 871mj91]¢, A 87171]'02,' — myb1; A 87171]692]' A 671777,1;01]'
ij.k=1
+ mpf1; A 8_1nk92j AN 6_1’&]‘921‘ + nkegj N 8_1mk91i A 8_1mi91j
— nkﬁgj A 671777,]691,' A 8’1nj02i — nkﬁgj N 8’1ni92k A 8717711‘01]‘ dx

S
= Z /—mkﬂu A 871mj91k A 8*1nj02i + miﬁlj A 8’1mk0u A 87171]6023‘
i,j,k=1
+ ’njegi A 8_1nk92j A 8_1mk91i - nkegj N 8_1ni92k A 6_1777,1‘(91]‘ de=0. (A3)
In the above, we have dropped the terms which only contain m; or n; using the integration by parts and the skew-
symmetry of the operator !, which are also applied to the remaining terms.
From Eq. (3), we know J is Hamiltonian.
Secondly, we will show the compatibility of K and 7, i.e., the equality (16).

Notice that 0 0
x + 2
Ko=("7 A4
(9130 - 91) ’ (A4)
we calculate
PI‘V}CQ(@j) = Z /[91j A (923'1' + 921') — 92j A (Hljw — 91]‘)} A 871(mi91i — ni92i)
ij=1

+ [917, A (92]'1 + ggj) - 02j A (91293 — 011)] A 871(mi91j — njﬂgi)dx

= Z /—Qlj A 92j A (mzﬂh — TLZQQZ) - 91i A 92]‘ A\ (mi91j — njﬁgi)dx = 0, (A5)
ij=1
which implies the operators I and J are compatible Hamiltonian operators.
Thus, we complete the proof of the theorem.
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