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Abstract In this paper, we derive the bi-Hamiltonian structure of a multi-component Camassa–Holm system, which
associates with the multi-component AKNS hierarchy and multi-component KN hierarchy via the tri-Hamiltonian duality
method. Furthermore, the spectral problems of the dual hierarchies may be obtained.
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1 Introduction
In 1993, the Camassa–Holm (CH) equation

mt + umx + 2uxm = 0 , m = u− uxx , (1)

was derived by Camassa and Holm from an approximation
to the incompressible Eluer equations.[1] Like the KdV
equation, the CH equation is integrable with Lax pair and
bi-Hamiltonian structure,[2] an unusual feature is that it
admits peakon solutions.[3−4] It is interesting that the CH
equation is associated with the first negative flow of the
KdV hierarchy by reciprocal transformation,[5] and the
Hamiltonian pair for it can be constructed by rearranging
that of the KdV equation. Via this connection, the spec-
tral problem for the CH equation can be obtained from
that of the KdV equation. Motivated by the remarkable
property of the CH equation, many other CH systems have
been constructed[6−10] and studied.[11−15]

Recently, Xia and Qiao presented a multi-component
CH system,[16]

~mt =
1

(s + 1)2
[~m(~v + ~vx)T(~u− ~ux)

+ (~u− ~ux)(~v + ~vx)T ~m] ,

~nt = − 1
(s + 1)2

[~n(~u− ~ux)T(~v + ~vx)

+ (~v + ~vx)(~u− ~ux)T~n] ,

~m = ~u− ~uxx, ~n = ~v − ~vxx , (2)

where ~u = (u1, u2, . . . , us), ~v = (v1, v2, · · · , vs), ~m =
(m1,m2, . . . , ms), ~n = (n1, n2, . . . , ns) and T is the trans-
pose of a vector. They found that the system (2) possessed
a Lax pair and infinitely many conservation laws, and dis-
cussed the peakon solutions as s = 2. When s = 1, the
bi-Hamiltonian structure of the system (2) was considered

in Ref. [17]. The multi-component CH system (2) is bi-
Hamiltonian as a by-product of the results in this paper.

Olver and Rosenau constructed CH systems via the tri-
Hamiltonian duality method that rearranging the Hamil-
tonian operators of the classical soliton equations in an
algorithmic manner.[18] They called the CH systems the
dual hierarchies of the associated soliton equations. In-
deed, the method of rearranging the Hamiltonian oper-
ators appeared in the earlier work of Fuchssteiner and
Fokas.[19] And vice versa, a proper recombination of
Hamiltonian operators of the CH systems can also gener-
ate the classical soliton hierarchies. The aim of this paper
is to construct the dual hierarchies of the CH system (2).

The paper is arranged as follows: In Sec. 2, we derive
the bi-Hamiltonian structure of the 2s-component CH sys-
tem (2), and construct the dual hierarchies of it using the
tri-Hamiltonian duality method.[18] In Sec. 3, we study
the dual versions of a two-component (s = 1) CH system
and a four-component (s = 2) CH system by recombining
their Hamiltonian operators. In Appendix, we present the
detail proof of the Jacobi identity for the operator J (13)
as well as the compatibility with the Hamiltonian operator
K (12) by the trivector technique of Olver.[20]

2 Dual Hierarchies of the Multi-Component
Camassa–Holm System
In this section, we derive the bi-Hamiltonian struc-

ture of the multi-component CH system (2) and con-
sider its dual hierarchies using the tri-Hamiltonian duality
approach.[18] Moreover, via this connection, we recover the
spectral problems of the dual hierarchies.

In order to better understand and display, we denote
~mT, ~nT, ~uT, ~v T by M , N , U , V respectively, i.e.,

M = (m1,m2, . . . , ms)T , N = (n1, n2, . . . , ns)T ,
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U = (u1, u2, . . . , us)T , V = (v1, v2, . . . , vs)T .

And then the system (2) can be rewritten as follows

Mt =
1

(s + 1)2
[〈M, V + Vx〉(U − Ux)

+ 〈U − Ux, V + Vx〉M ] ,

Nt = − 1
(s + 1)2

[〈N, U − Ux〉(V + Vx)

+ 〈V + Vx, U − Ux〉N ] ,

M = U − Uxx , N = V − Vxx , (3)

where 〈, 〉 denotes the standard inner product.
As pointed in Ref. [16], the multi-component CH sys-

tem (3) arises from a zero curvature equation

Ft −Gx + [F, G] = 0 , (4)

this being the compatibility for the linear system

ϕx = Fϕ , ϕt = Gϕ , (5)

with

F =
1

s + 1

( −s λMT

λN Is

)
, G =

1
s + 1



−λ−2s +

1
s + 1

〈U − Ux, V + Vx〉 λ−1(U − Ux)T

λ−1(V + Vx) λ−2Is − 1
s + 1

(V + Vx)(U − Ux)T


 ,

where λ is the spectral parameter and Is is the s× s iden-
tity matrix.

In order to obtain the bi-Hamiltonian structure of the
system (2), we rewrite the time part of the system (5) as
follows

V =
1

s + 1

(
v11 A

BT C

)
, (6)

where v11 is a function variable and A,B are both s di-
mension row vectors depending on vector potentials M , N

and λ, C is an s×s matrix depending on vector potentials
M , N and λ.

The compatible condition yields

MT
t =

1
λ

(A + Ax) +
1

s + 1
MTv11 − 1

s + 1
MTC , (7)

Nt =
1
λ

(BT
x −BT)− 1

s + 1
Nv11 +

1
s + 1

CN , (8)

v11 =
λ

s + 1
∂−1(〈M, BT〉 − 〈N, AT〉) , (9)

C =
λ

s + 1
∂−1(NA−BTMT) , (10)

where

MT
t =

∂MT

∂t
, BT

x =
∂BT

∂x
.

Substituting the equalities (9) and (10) to Eqs. (7) and
(8), we have

(
M

N

)

t

=
( 1

λ
K +

λ

(s + 1)2
J

) (
BT

AT

)
, (11)

with

K =
(

0s×s (∂ + 1)Is

(∂ − 1)Is 0s×s

)
, (12)

J =
(

M∂−1MT + (M∂−1MT)T −M∂−1NT −MT∂−1NIs

−N∂−1MT −NT∂−1MIs N∂−1NT + (N∂−1NT)T

)
, (13)

where 0s×s is the s× s zero matrix.
In the following, we show that the operators K, J are

Hamiltonian operators and form a bi-Hamiltonian pair.
The Jacobi identity and compatibility conditions for the
operators K, J may be checked using the multivector ap-
proach to Hamiltonian systems in infinite dimensions, as
described in the work of Olver.[20]

Theorem 1 The multi-component CH system (3) can be
written in the bi-Hamiltonian form

(
M

N

)

t

= K



δH1

δM
δH1

δN


 = J




δH0

δM
δH0

δN


 , (14)

using the operators K and J (12)–(13) and

H0 =
1

(s + 1)2

∫
〈Uxx − Ux, N〉dx ,

H1 =
1

(s + 1)2

∫
〈U − Ux, V + Vx〉〈U − Ux, N〉dx .

Proof The equalities (12) and (13) imply that the op-

erators K, J are skew-symmetric. Furthermore K is a
Hamiltonian operator. Hence, we need to prove that the
Jacobi identity for J and compatibility of J with K. Tak-
ing θ1 = (θ11, . . . , θ1s)T, θ2 = (θ21, . . . , θ2s)T as the basic
uni-vectors corresponding to M , N respectively, we know
that the operator J is a Hamiltonian operator if

PrVJ θ(ΘJ ) = 0 , (15)

where

θ =
(

θ1

θ2

)

and ΘJ is the associated bi-vector of J .
To check whether K and J form a bi-Hamiltonian pair,

we only need to prove

PrVKθ(ΘJ ) = 0 . (16)

The proof of the theorem is rather technical and lengthy,
so are given in Appendix.

In the following, we will study the dual hierarchies of
the multi-component CH system (3) by recombining the
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Hamiltonian operators K and J in Eqs. (12) and (13) ac-
cordingly.

The dual Hamiltonian operators of the operators K
and J are obtained by the following procedure. Transfer-

ring the terms ∂Is from the operator K to the correspond-
ing elements of the operator J and replacing M , N by Q,
R respectively in the operator J , we get two Hamiltonian
operators

K̂ =
(

0s×s Is

−Is 0s×s

)
, Ĵ =

(
Q∂−1QT + (Q∂−1QT)T (∂ −QT∂−1R)Is −Q∂−1RT

(∂ −RT∂−1Q)Is −R∂−1QT R∂−1RT + (R∂−1RT)T

)
,

where Q = (q1, q2, . . . , qs)T, R = (r1, r2, . . . , rs)T.
The above Hamiltonian pair K̂, Ĵ is nothing but

the bi-Hamiltonian pair for the multi-component AKNS
hierarchy.[21]

In the equality (11), for the Hamiltonian operators K
and J , we make the following transformation

x → 1
s + 1

λx , M → Q , N → R . (17)

After the above transformation, the equality (11) becomes
(

Q

R

)

t

=
( 1

λ
K̂ +

1
s + 1

Ĵ
) (

BT

AT

)
, (18)

which leads to the Hamiltonian operators K̂ and Ĵ .
Therewith, the spatial part of the linear problem (5) is

transformed into

ϕx = Fϕ , F =

( −s

λ
QT

R
1
λ

Is

)
, (19)

which, by the transformation λ → −1/λ, may be reformu-
lated as

ϕx = Fϕ , F =
(

λs QT

R −λIs

)
. (20)

The above spectral problem is just the one for the multi-
component AKNS hierarchy (see (1.2) in Ref. [22] for de-
tails).

On the other hand, if we transfer the terms −Is and
Is instead of the terms ∂Is from K to the corresponding
elements of the J , and replace M , N by Q, R respectively
as well, we have

K̃ =
(

0s×s ∂Is

∂Is 0s×s

)
, J̃ =

(
Q∂−1QT + (Q∂−1QT)T (1−QT∂−1R)Is −Q∂−1RT

−(1 + RT∂−1Q)Is −R∂−1QT R∂−1RT + (R∂−1RT)T

)
,

which are just the compatible Hamiltonian operators of
multi-component KN hierarchy. Furthermore, after the
transformation

x → λx , M → (s + 1)Q , N → s + 1
λ

R , (21)

Eq. (11) yields
(

Q

R

)

t

=
( λ

s + 1
K̃ +

1
s + 1

J̃
) (

BT

AT/λ

)
. (22)

The spectral problem of the CH system (3) becomes

ϕx = Fϕ , F =
1

s + 1

( − s

λ
(s + 1)QT

s + 1
λ

R
1
λ

Is

)
, (23)

which, by the transformation

λ → − 1
λ(s + 1)

, R → − 1
(s + 1)

R ,

leads to

ϕx = Fϕ , F =
(

λs QT

λR −λIs

)
. (24)

The spectral problem (24) is nothing but the one of the
multi-component KN hierarchy.

3 Dual Hierarchies of the Two-Component
CH System and Four-Component
Camassa–Holm System
In this section, we consider the dual hierarchies of the

two-component CH system and four-component CH sys-
tem.

3.1 Dual Hierarchies of the Two-Component

Camassa–Holm System

As s = 1, the multi-component CH system (3) is

mt =
1
2
m(uv − uxvx + uvx − uxv) ,

nt = −1
2
n(uv − uxvx + uvx − uxv) ,

m = u− uxx, n = v − vxx , (25)

which appears in the bi-Hamiltonian form (14) with

K =
(

0 ∂ + 1
∂ − 1 0

)
, J =

(
m∂−1m −m∂−1n

−n∂−1m n∂−1n

)
,

H0 =
1
2

∫
(uxx − ux)ndx ,

H1 =
1
4

∫
(u− ux)2(v + vx)ndx . (26)

From the results in Sec. 2, we know the dual Hamiltonian
pairs of the operator (26) are respectively

K̂ =
(

0 1
−1 0

)
, Ĵ =

(
q∂−1q ∂ − q∂−1r

∂ − r∂−1q r∂−1r

)
, (27)

K̃ =
(

0 ∂

∂ 0

)
, J̃ =

(
q∂−1q 1− q∂−1r

−1− r∂−1q r∂−1r

)
, (28)

which are the Hamiltonian pairs for the AKNS hierarchy
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and KN hierarchy respectively. The associated spectral
problems of the dual hierarchies are respectively

ϕx = Uϕ , U =
(

λ q

r −λ

)
, (29)

ϕx = Uϕ , U =
(

λ q

λr −λ

)
, (30)

which can be deduced via the connection.

Remark 1 In Ref. [23], Ma and Zhou studied the Hamiltonian operator

M =
(

α1q∂
−1q α2 + α3∂ − α1q∂

−1r

−α2 + α3∂ − α1r∂
−1q α1r∂

−1r

)
, (31)

where α1, α2, α3 are arbitrary constants. They gave the Hamiltonian pairs (27) and (28) for the AKNS hierarchy
and KN hierarchy starting form Hamiltonian operator (31). Indeed the Hamiltonian operator (31) can lead to another
Hamiltonian pair (26) for the two-component CH system (25).

3.2 Dual Hierarchies of the Four-Component Camassa–Holm System

When s = 2, the multi-component CH system (3) becomes

m1t =
1
9
{m1[2(u1 − u1x)(v1 + v1x) + (u2 − u2x)(v2 + v2x)] + m2(u1 − u1x)(v2 + v2x)} ,

m2t =
1
9
{m2[(u1 − u1x)(v1 + v1x) + 2(u2 − u2x)(v2 + v2x)] + m1(u2 − u2x)(v1 + v1x)} ,

n1t = −1
9
{n1[2(u1 − u1x)(v1 + v1x) + (u2 − u2x)(v2 + v2x)] + n2(u2 − u2x)(v1 + v1x)} ,

n2t = −1
9
{n2[(u1 − u1x)(v1 + v1x) + 2(u2 − u2x)(v2 + v2x)] + n1(u1 − u1x)(v2 + v2x)} ,

m1 = u1 − u1xx , m2 = u2 − u2xx , n1 = v1 − v1xx , n2 = v2 − v2xx , (32)

which can be written as the bi-Hamiltonian form (14), using the

K =




0 0 ∂ + 1 0

0 0 0 ∂ + 1

∂ − 1 0 0 0

0 ∂ − 1 0 0




, J =




2m1∂
−1m1 J12 J13 −m1∂

−1n2

−J ∗12 2m2∂
−1m2 −m2∂

−1n1 J24

−J ∗13 −n1∂
−1m2 2n1∂

−1n1 J34

−n2∂
−1m1 −J ∗24 −J ∗34 2n2∂

−1n2




,

H0 =
1
9

∫
(u1xx − u1x)n1 + (u2xx − u2x)n2dx ,

H1 =
1
9

∫
[(u1 − u1x)(v1 + v1x) + (u2 − u2x)(v2 + v2x)][(u1 − u1x)n1 + (u2 − u2x)n2]dx ,

where

J12 = m1∂
−1m2 + m2∂

−1m1 , J13 = −(2m1∂
−1n1 + m2∂

−1n2) ,

J24 = −(2m2∂
−1n2 + m1∂

−1n1) , J34 = n1∂
−1n2 + n2∂

−1n1 .

After applying the tri-Hamiltonian duality method to the Hamiltonian operators K and J , we get the duality Hamil-
tonian operators

K̂ =




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




, Ĵ =




2q1∂
−1q1 Ĵ12 Ĵ13 −q1∂

−1r2

−Ĵ12

∗
2q2∂

−1q2 −q2∂
−1r1 Ĵ24

−Ĵ31

∗ −r1∂
−1q2 2r1∂

−1r1 Ĵ34

−r2∂
−1q1 −Ĵ24

∗ −Ĵ34

∗
2r2∂

−1r2




, (33)

K̃ =




0 0 ∂ 0

0 0 0 ∂

∂ 0 0 0

0 ∂ 0 0




, J̃ =




2q1∂
−1q1 J̃12 J̃13 −q1∂

−1r2

−J̃12

∗
2q2∂

−1q2 −q2∂
−1r1 J̃24

−J̃31

∗ −r1∂
−1q2 2r1∂

−1r1 J̃34

−r2∂
−1q1 −J̃24

∗ −J̃34

∗
2r2∂

−1r2




, (34)
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where

Ĵ12 = q1∂
−1q2 + q2∂

−1q1 ,

Ĵ13 = ∂ − (2q1∂
−1r1 + q2∂

−1r2) ,

Ĵ24 = ∂ − (2q2∂
−1r2 + q1∂

−1r1) ,

Ĵ34 = r1∂
−1r2 + r2∂

−1r1 ,

J̃12 = q1∂
−1q2 + q2∂

−1q1 ,

J̃13 = 1− (2q1∂
−1r1 + q2∂

−1r2) ,

J̃24 = 1− (2q2∂
−1r2 + q1∂

−1r1) ,

J̃34 = r1∂
−1r2 + r2∂

−1r1 .

The K̂, Ĵ (33) and K̃, J̃ (34) are just the Hamiltonian

pairs of the coupled AKNS hierarchy,[24] and coupled KN

hierarchy, the spectral problems of them are respectively

ϕx = Uϕ, U =




2λ q1 q2

r1 −λ 0

r2 0 −λ


 , (35)

ϕx = Uϕ, U =




2λ q1 q2

λr1 −λ 0

λr2 0 −λ


 . (36)

Remark 2 The coupled nonlinear Schrödinger equa-
tion[25] is a reduction of the coupled AKNS hierarchy. In
fact, it can be reduced to the coupled MKdV equation[26]

and the Sasa–Satsuma equation[27] under the constraints
r1 = q1, r2 = q2 and r1 = q2, r2 = q1 respectively.[28]

Furthermore, through the Dirac reductions of the
Hamiltonian operators J and KJ−1K under the corre-
sponding constraints, one can get a Hamiltonian structure
and a symplectic structure for the coupled MKdV equa-
tion and the Sasa–Satsuma equation respectively.

A natural question is what are the reduced systems of
the four-component CH system (32) and their correspond-
ing Hamiltonian structures. Besides, it is worthwhile to
investigate the reciprocal transformations between the CH
systems (3), (25), (32) and their dual hierarchies.

Appendix
First, we prove that the operator J is Hamiltonian,

namely to verify (15). To simplify the presentation and
calculations, we introduce Mi, Ni(i = 1, 2, . . . , s) as

J θ =
(
M1 · · · Ms N1 · · · Ns

)T =
s∑

i=1




m1∂
−1(miθ1i − niθ2i) + mi∂

−1(m1θ1i − niθ21)
···

ms∂
−1(miθ1i − niθ2i) + mi∂

−1(msθ1i − niθ2s)

−n1∂
−1(miθ1i − niθ2i)− ni∂

−1(miθ11 − n1θ2i)
···

−ns∂
−1(miθ1i − niθ2i)− ni∂

−1(miθ1s − nsθ2i)




. (A1)

The associated bi-vector of J is

ΘJ =
1
2

∫
θ ∧ J θdx =

1
2

s∑

j=1

∫
θ1j ∧Mj + θ2j ∧Nj dx

=
1
2

s∑

i,j=1

∫
θ1j ∧ (mj∂

−1(miθ1i − niθ2i) + mi∂
−1(mjθ1i − niθ2j))

+ θ2j ∧ (−nj∂
−1(miθ1i − niθ2i)− ni∂

−1(miθ1j − njθ2i))dx

=
1
2

s∑

i,j=1

∫
(mjθ1j − njθ2j) ∧ ∂−1(miθ1i − niθ2i) + (mjθ1i − niθ2j) ∧ ∂−1(miθ1j − njθ2i)dx ,

where we have substituted the expressions of Mi, Ni (i = 1, 2, . . . , s) and used the skew-symmetry of the operator ∂−1.
By direct calculation, we have the prolongation

PrVJ θ(ΘJ ) =
s∑

i,j=1

∫
(θ1j ∧Mj − θ2j ∧Nj) ∧ ∂−1(miθ1i − niθ2i) + (θ1i ∧Mj − θ2j ∧Ni) ∧ ∂−1(miθ1j − njθ2i)dx

=
s∑

i,j,k=1

∫
[θ1j ∧ (mj∂

−1(mkθ1k − nkθ2k) + mk∂−1(mjθ1k − nkθ2j))

+ θ2j ∧ (nj∂
−1(mkθ1k − nkθ2k) + nk∂−1(mkθ1j − njθ2k))] ∧ ∂−1(miθ1i − niθ2i)

+ [θ1i ∧ (mj∂
−1(mkθ1k − nkθ2k) + mk∂−1(mjθ1k − nkθ2j))

+ θ2j ∧ (ni∂
−1(mkθ1k − nkθ2k) + nk∂−1(mkθ1i − niθ2k))] ∧ ∂−1(miθ1j − njθ2i)dx
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=
s∑

i,j,k=1

∫
(mjθ1j + njθ2j) ∧ ∂−1(mkθ1k − nkθ2k) ∧ ∂−1(miθ1i − niθ2i)

+ (mjθ1k + nkθ2j) ∧ ∂−1(mkθ1j − njθ2k) ∧ ∂−1(miθ1i − niθ2i)

+ (mjθ1i + niθ2j) ∧ ∂−1(mkθ1k − nkθ2k) ∧ ∂−1(miθ1j − njθ2i)

+ mkθ1i ∧ ∂−1(mjθ1k − nkθ2j) ∧ ∂−1(miθ1j − njθ2i)

+ nkθ2j ∧ ∂−1(mkθ1i − niθ2k) ∧ ∂−1(miθ1j − njθ2i)dx

=
s∑

i,j,k=1

∫
mkθ1i ∧ ∂−1(mjθ1k − nkθ2j) ∧ ∂−1(miθ1j − njθ2i)

+ nkθ2j ∧ ∂−1(mkθ1i − niθ2k) ∧ ∂−1(miθ1j − njθ2i)dx , (A2)

where we have used integration by parts and the skew-symmetry of the operator ∂−1. Afterwards, expanding the two
terms in Eq. (A2) into eight terms, we get

PrVJ θ(ΘJ ) =
s∑

i,j,k=1

∫
mkθ1i ∧ ∂−1mjθ1k ∧ ∂−1miθ1j −mkθ1i ∧ ∂−1mjθ1k ∧ ∂−1njθ2i

−mkθ1i ∧ ∂−1nkθ2j ∧ ∂−1miθ1j + mkθ1i ∧ ∂−1nkθ2j ∧ ∂−1njθ2i

+ nkθ2j ∧ ∂−1mkθ1i ∧ ∂−1miθ1j − nkθ2j ∧ ∂−1mkθ1i ∧ ∂−1njθ2i

− nkθ2j ∧ ∂−1niθ2k ∧ ∂−1miθ1j + nkθ2j ∧ ∂−1niθ2k ∧ ∂−1njθ2idx

=
s∑

i,j,k=1

∫
−mkθ1i ∧ ∂−1mjθ1k ∧ ∂−1njθ2i −mkθ1i ∧ ∂−1nkθ2j ∧ ∂−1miθ1j

+ mkθ1i ∧ ∂−1nkθ2j ∧ ∂−1njθ2i + nkθ2j ∧ ∂−1mkθ1i ∧ ∂−1miθ1j

− nkθ2j ∧ ∂−1mkθ1i ∧ ∂−1njθ2i − nkθ2j ∧ ∂−1niθ2k ∧ ∂−1miθ1j dx

=
s∑

i,j,k=1

∫
−mkθ1i ∧ ∂−1mjθ1k ∧ ∂−1njθ2i + miθ1j ∧ ∂−1mkθ1i ∧ ∂−1nkθ2j

+ njθ2i ∧ ∂−1nkθ2j ∧ ∂−1mkθ1i − nkθ2j ∧ ∂−1niθ2k ∧ ∂−1miθ1j dx = 0 . (A3)

In the above, we have dropped the terms which only contain mi or ni using the integration by parts and the skew-
symmetry of the operator ∂−1, which are also applied to the remaining terms.

From Eq. (3), we know J is Hamiltonian.
Secondly, we will show the compatibility of K and J , i.e., the equality (16).
Notice that

Kθ =
(

θ2x + θ2

θ1x − θ1

)
, (A4)

we calculate

PrVKθ(ΘJ ) =
s∑

i,j=1

∫
[θ1j ∧ (θ2jx + θ2j)− θ2j ∧ (θ1jx − θ1j)] ∧ ∂−1(miθ1i − niθ2i)

+ [θ1i ∧ (θ2jx + θ2j)− θ2j ∧ (θ1ix − θ1i)] ∧ ∂−1(miθ1j − njθ2i)dx

=
s∑

i,j=1

∫
−θ1j ∧ θ2j ∧ (miθ1i − niθ2i)− θ1i ∧ θ2j ∧ (miθ1j − njθ2i)dx = 0 , (A5)

which implies the operators K and J are compatible Hamiltonian operators.
Thus, we complete the proof of the theorem.
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