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A new four-dimensional chaotic system∗
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A new four-dimensional chaotic system with a linear term and a 3-term cross product is reported. Some interesting

figures of the system corresponding different parameters show rich dynamical structures.
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1. Introduction

In 1963, Lorenz found the first chaotic attractor in
a three-dimensional (3D) autonomous system,[1] later
Rösslor constructed an even simpler three-dimensional
chaotic system.[2] Since then, chaos as an impor-
tant nonlinear phenomenon has been studied in sci-
ence, mathematics, engineering communities, and so
on.[3−12] As chaos is useful and has great potential
applications in many technological disciplines, the dis-
covery and the creation of chaos are important. In the
past few years, Chen[4] constructed a 3D chaotic sys-
tem via a simple state feedback to the second equa-
tion in the Lorenz system, followed by a closely re-
lated Lü system constructed by Lü,[5] and a unified
system[6] that combines Lorenz system, Chen system
and Lü system as its special cases. Some other 3D
chaotic systems are also constructed. Recently, Qi et
al.[13−18] proposed a new 3D chaotic system and 4D
chaotic system with cubic terms. Here we report a
new 4D chaotic system with a linear term and a cu-
bic term, which also takes on good symmetries and
similarities.

2. New 4D system and its prop-

erties

The new 4D system is described by

ẋ1 = ax1 − b1x1x2x3,

ẋ2 = bx2 − b2x1x3x4,

ẋ3 = cx3 − b3x1x2x4,

ẋ4 = cx4 − b4x1x2x3. (1)

(i) Symmetry
The system is invariant for the following coordi-

nate transformations:

(x1, x2, x3, x4)

−→ (−x1,−x2,−x3,−x4), (−x1,−x2, x3, x4),

(−x1, x2,−x3, x4), (−x1, x2, x3,−x4),

(x1,−x2,−x3, x4), (x1,−x2, x3,−x4),

(x1,−x2,−x3,−x4). (2)

So, it is of symmetry.
(ii) Dissipation
Since

5V =
∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ẋ3

∂x3
+

∂ẋ4

∂x4
= a + b + c + d, (3)

when a + b + c + d < 0, system (1) is dissipative, with
an exponential contraction rate

dV

dt
= a + b + c + d. (4)

It means that a volume element V0 is contracted into
a V0 e(a+b+c+d)t at time t. Therefore, orbits near the
chaotic attractor are ultimately restricted within a
specific fractal-dimensional subspace of zero volume.

(iii) Equilibria
The equilibria of system (1) can be obtained by

solving the following equation:

ax1 − b1x1x2x3 = 0, bx2 − b2x1x3x4 = 0,
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cx3 − b3x1x2x4 = 0, cx4 − b4x1x2x3 = 0. (5)

By calculations one can find 9 real equilibria in-
cluding zero. Let

p = ±
4
√

cdb1 bb3
3a3b2

3b4
3

b4ab2b3
,

q = ±
√

b1 bab2p

b1 b
,

r = ±
√

cb1 b3 ap

cb1
, (6)

then the equilibria except zero can be denoted by

S =
(

p, q, r,−b4pqr

d

)
. (7)

Let

p1 =
4
√

cdb1 bb3
3a3b2

3b4
3

b4ab2b3
,

p2 = −
4
√

cdb1 bb3
3a3b2

3b4
3

b4ab2b3
,

q11 =
√

b1 bab2p1

b1 b
, q12 = −

√
b1 bab2p1

b1 b
,

q21 =
√

b1 bab2p2

b1 b
, q22 = −

√
b1 bab2p2

b1 b
,

r11 =
√

cb1 b3 ap1

cb1
, r12 = −

√
cb1 b3 ap1

cb1
,

r21 =
√

cb1 b3 ap2

cb1
, r22 = −

√
cb1 b3 ap2

cb1
, (8)

the equilibria can be denoted as follows:

S0 = (0, 0, 0, 0),

S1 =
(

p1, q11, r11,−b4p1q11r11

d

)
,

S2 =
(

p1, q11, r12,−b4p1q11r12

d

)
,

S3 =
(

p1, q12, r11,−b4p1q12r11

d

)
,

S4 =
(

p1, q12, r12,−b4p1q12r12

d

)
,

S5 =
(

p2, q21, r21,−b4p2q21r21

d

)
,

S6 =
(

p2, q21, r22,−b4p2q21r22

d

)
,

S7 =
(

p2, q22, r21,−b4p2q22r21

d

)
,

S8 =
(

p2, q22, r22,−b4p2q22r22

d

)
. (9)

It can be seen that S1 and S2 are symmetric with
respect to plane x1–x2, S1 and S3 are symmetric with
respect to plane x1–x3, S1 and S4 are symmetric with

respect to plane x1–x4, S1 and S5 are symmetric with
respect to (0,0,0,0), S1 and S6 are symmetric with re-
spect to plane x3–x4, S1 and S7 are symmetric with
respect to plane x2–x4, S1 and S8 are symmetric with
respect to plane x2–x3.

(iv) Jacobian matrix
By linearizing system (1) at Si = (x1, x2, x3, x4),

one can obtain the Jacobian as follows:

Ai =




a b1x3x4 b1x2x4 b1x2x3

b2x3x4 b b2x1x4 b2x1x3

b3x2x4 b3x1x4 c b3x1x2

b4x2x3 b4x1x3 b4x1x2 d




. (10)

If i = 0, x1 = x2 = x3 = x4 = 0, then the eigen-
values of matrix A0 are

λ01 = a, λ02 = b, λ03 = c, λ04 = d. (11)

Therefore, when abcd < 0, the equilibrium S0 is a
saddle point. Given the values of x1, x2, x3, x4 at
Si (i = 1, . . . , 8), one can calculate the eigenvalues
of Ai. By calculating, it is seen that Ai (i = 1, . . . , 8)
have the same eigenvalues.

3. Observation of new chaotic at-

tractor

By choosing the parameters from system (1), a
great deal of dynamics can be observed, which is listed
together with some discoveries as follows:

(I) a = −35, b = 10, c = −1, d = −10, b1 = 1, b2 =
−1, b3 = 1 and b4 = 1.

In this case, a+b+c+d = −35+10−1−10 = −36,
so the system is dissipative, and the eigenvalues of the
Jacobian matrix at S0 are

λ01 = −35, λ02 = 10, λ03 = −1, λ04 = −10, (12)

and one can easily find λ02 = 10 > 0, implying that
S0 is a saddle point. By calculating with Maple, we
can obtain the eigenvalues of the Jacobian matrix at
Si (i = 1, . . . , 8) as

λi1 = 3.4903 + 12.1911i,

λi2 = 3.4903− 12.1911i,

λi3 = −3.9551, λi4 = −44.0254, (13)

the real part of λi1, λi2 is 3.49026006 > 0, so Si (i =
1, . . . , 8) is also a saddle point. By calculating with
Matlab, the Lyapunov exponents of this system with
these parameters are obtained to be

l1 = 4.3614, l2 = 0.0000,
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l3 = −3.47442, l4 = −36.8879. (14)

We can easily find that the maximum Lyapunov ex-
ponent is positive, so the system is chaotic. Figure

1 shows numerical results for projections on different
phase planes and phase spaces. Especially, we can ob-
tain two chaotic attractors when we choose different
initial values, which can be seen in Figs. 1(a)–1(k).

Fig. 1. Chaos system projections on different phase planes and phase spaces with the parameters: a = −35, b = 10, c =

−1, d = −10, b1 = 1, b2 = −1, b3 = 1 and b4 = 1. (a) 3D view in the x1–x2–x4 space; (b) 3D view in the x1–x2–x3 space;

(c) 3D view in the x2–x3–x4 space; (d) 3D view in the x1–x3–x4 space; (e) Projection in the x1–x2 plane; (f) Projection

in the x1–x3 plane; (g) Projection in the x1–x4 plane; (h) Projection in the x2–x3 plane; (i) Projection in the x2–x4 plane;

(j) Projection in the x3–x4 plane; (k) two coexisting chaotic attractor.

When a varies from –35 to –20, the Lyapunov exponents are

l1 = 0.0022, l2 = −2.2532,

l3 = −4.7042, l4 = −14.0448. (15)

The maximum Lyapunov equals zero, implying that the system has a periodic orbit. Figure 2 shows numerical
results for projections on different phase spaces.

(II) a = −15, b = 5, c = −1, d = −9, b1 = 1, b2 = −1, b3 = 1 and b4 = 1.
Similar to the first case, the system by choosing the above parameters is also chaotic. Here, only the 3D

view figure (see Fig. 3) in the x1–x2–x4 space is given, the other figures are omitted for the sake of concision.
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Fig. 2. Chaos system projections on different phase planes and phase spaces with the parameters: a = −20, b =

10, c = −1, d = −10, b1 = 1, b2 = −1, b3 = 1 and b4 = 1. (a) 3D view in the x1–x2–x3 space; (b) 3D view in the

x1–x3–x4 space; (c) Projection in the x1–x2 plane; (d) Projection in the x1–x3 plane.

Fig. 3. 3D view in the x1–x2–x4 space with parameters: a = −15, b = 5, c = −1, d = −9, b1 = 1, b2 = −1, b3 = 1

and b4 = 1.

(III) a = −10, b = 3, c = −1, d = −2, b1 = 1, b2 = −1, b3 = 1 and b4 = 1.
Similar to the first case, this system under the above parameters is chaotic. The 3D view figures (see Fig. 4)

in the x1–x2–x4 space with one initial value and two initial values are given, the other figures are omitted for
the sake of concision.

Fig. 4. 3D view in the x1–x2–x4 space with parameters: a = −10, b = 3, c = −1, d = −2, b1 = 1, b2 = −1, b3 = 1

and b4 = 1: (a) one initial value; (b) two initial values.
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In summary, we first constructed a new 4D chaotic system and studied its properties. Some interesting
figures are given, in which one can see that the new system possesses very rich dynamical structures. Hopf
bifurcation, Poincaré map, synchronization and so on will be our further study.
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