A new four－dimensional chaotic system＊

Chen Yong（陈 勇 $)^{\mathrm{a}) \mathrm{b}) ~} \dagger$ and Yang Yun－Qing（杨云青 $)^{\mathrm{a}}$ ）
${ }^{\text {a）Shanghai Key Laboratory of Trustworthy Computing，East China Normal University，Shanghai 200062，China }}$
b）Nonlinear Science Center and Department of Mathematics，Ningbo University，Ningbo 315211，China

（Received 26 January 2010；revised manuscript received 3 August 2010）

Abstract

A new four－dimensional chaotic system with a linear term and a 3 －term cross product is reported．Some interesting figures of the system corresponding different parameters show rich dynamical structures．

Keywords：chaotic system，Lyapunov exponent，attractor
PACC：0545， 0200

1．Introduction

In 1963，Lorenz found the first chaotic attractor in a three－dimensional（3D）autonomous system，${ }^{[1]}$ later Rösslor constructed an even simpler three－dimensional chaotic system．${ }^{[2]}$ Since then，chaos as an impor－ tant nonlinear phenomenon has been studied in sci－ ence，mathematics，engineering communities，and so on．${ }^{[3-12]}$ As chaos is useful and has great potential applications in many technological disciplines，the dis－ covery and the creation of chaos are important．In the past few years，Chen ${ }^{[4]}$ constructed a 3D chaotic sys－ tem via a simple state feedback to the second equa－ tion in the Lorenz system，followed by a closely re－ lated Lü system constructed by Lü，${ }^{[5]}$ and a unified system ${ }^{[6]}$ that combines Lorenz system，Chen system and Lü system as its special cases．Some other 3D chaotic systems are also constructed．Recently，Qi et al．${ }^{[13-18]}$ proposed a new 3D chaotic system and 4D chaotic system with cubic terms．Here we report a new 4D chaotic system with a linear term and a cu－ bic term，which also takes on good symmetries and similarities．

2．New 4D system and its prop－ erties

The new 4D system is described by

$$
\begin{aligned}
& \dot{x}_{1}=a x_{1}-b_{1} x_{1} x_{2} x_{3} \\
& \dot{x}_{2}=b x_{2}-b_{2} x_{1} x_{3} x_{4}
\end{aligned}
$$

$$
\begin{align*}
& \dot{x}_{3}=c x_{3}-b_{3} x_{1} x_{2} x_{4} \\
& \dot{x}_{4}=c x_{4}-b_{4} x_{1} x_{2} x_{3} \tag{1}
\end{align*}
$$

（i）Symmetry
The system is invariant for the following coordi－ nate transformations：

$$
\begin{align*}
& \left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\longrightarrow & \left(-x_{1},-x_{2},-x_{3},-x_{4}\right),\left(-x_{1},-x_{2}, x_{3}, x_{4}\right) \\
& \left(-x_{1}, x_{2},-x_{3}, x_{4}\right),\left(-x_{1}, x_{2}, x_{3},-x_{4}\right) \\
& \left(x_{1},-x_{2},-x_{3}, x_{4}\right),\left(x_{1},-x_{2}, x_{3},-x_{4}\right) \\
& \left(x_{1},-x_{2},-x_{3},-x_{4}\right) \tag{2}
\end{align*}
$$

So，it is of symmetry．
（ii）Dissipation
Since

$$
\nabla V=\frac{\partial \dot{x}_{1}}{\partial x_{1}}+\frac{\partial \dot{x}_{2}}{\partial x_{2}}+\frac{\partial \dot{x}_{3}}{\partial x_{3}}+\frac{\partial \dot{x}_{4}}{\partial x_{4}}=a+b+c+d,(3)
$$

when $a+b+c+d<0$ ，system（1）is dissipative，with an exponential contraction rate

$$
\begin{equation*}
\frac{\mathrm{d} V}{\mathrm{~d} t}=a+b+c+d \tag{4}
\end{equation*}
$$

It means that a volume element V_{0} is contracted into a $V_{0} \mathrm{e}^{(a+b+c+d) t}$ at time t ．Therefore，orbits near the chaotic attractor are ultimately restricted within a specific fractal－dimensional subspace of zero volume．

（iii）Equilibria

The equilibria of system（1）can be obtained by solving the following equation：

$$
a x_{1}-b_{1} x_{1} x_{2} x_{3}=0, \quad b x_{2}-b_{2} x_{1} x_{3} x_{4}=0
$$

[^0]（C） 2010 Chinese Physical Society and IOP Publishing Ltd
\[

$$
\begin{equation*}
c x_{3}-b_{3} x_{1} x_{2} x_{4}=0, \quad c x_{4}-b_{4} x_{1} x_{2} x_{3}=0 \tag{5}
\end{equation*}
$$

\]

By calculations one can find 9 real equilibria including zero. Let

$$
\begin{align*}
& p= \pm \frac{\sqrt[4]{c d b_{1} b b_{3}{ }^{3} a^{3} b_{2}{ }^{3} b_{4}{ }^{3}}}{b_{4} a b_{2} b_{3}}, \\
& q= \pm \frac{\sqrt{b_{1} b a b_{2} p}}{b_{1} b} \\
& r= \pm \frac{\sqrt{c b_{1} b_{3} a p}}{c b_{1}} \tag{6}
\end{align*}
$$

then the equilibria except zero can be denoted by

$$
\begin{equation*}
S=\left(p, q, r,-\frac{b_{4} p q r}{d}\right) \tag{7}
\end{equation*}
$$

Let

$$
\begin{align*}
& p_{1}=\frac{\sqrt[4]{c d b_{1} b b_{3}{ }^{3} a^{3} b_{2}{ }^{3} b_{4}{ }^{3}}}{b_{4} a b_{2} b_{3}} \\
& p_{2}=-\frac{\sqrt[4]{c d b_{1} b b_{3}{ }^{3} a^{3} b_{2}{ }^{3} b_{4}{ }^{3}}}{b_{4} a b_{2} b_{3}} \\
& q_{11}=\frac{\sqrt{b_{1} b a b_{2} p_{1}}}{b_{1} b}, \quad q_{12}=-\frac{\sqrt{b_{1} b a b_{2}} p_{1}}{b_{1} b} \\
& q_{21}=\frac{\sqrt{b_{1} b a b_{2} p_{2}}}{b_{1} b}, \quad q_{22}=-\frac{\sqrt{b_{1} b a b_{2}} p_{2}}{b_{1} b} \\
& r_{11}=\frac{\sqrt{c b_{1} b_{3} a} p_{1}}{c b_{1}}, \quad r_{12}=-\frac{\sqrt{c b_{1} b_{3} a} p_{1}}{c b_{1}} \\
& r_{21}=\frac{\sqrt{c b_{1} b_{3} a} p_{2}}{c b_{1}}, \quad r_{22}=-\frac{\sqrt{c b_{1} b_{3} a} p_{2}}{c b_{1}} \tag{8}
\end{align*}
$$

the equilibria can be denoted as follows:

$$
\begin{align*}
& S_{0}=(0,0,0,0) \\
& S_{1}=\left(p_{1}, q_{11}, r_{11},-\frac{b_{4} p_{1} q_{11} r_{11}}{d}\right) \\
& S_{2}=\left(p_{1}, q_{11}, r_{12},-\frac{b_{4} p_{1} q_{11} r_{12}}{d}\right) \\
& S_{3}=\left(p_{1}, q_{12}, r_{11},-\frac{b_{4} p_{1} q_{12} r_{11}}{d}\right) \\
& S_{4}=\left(p_{1}, q_{12}, r_{12},-\frac{b_{4} p_{1} q_{12} r_{12}}{d}\right) \\
& S_{5}=\left(p_{2}, q_{21}, r_{21},-\frac{b_{4} p_{2} q_{21} r_{21}}{d}\right) \\
& S_{6}=\left(p_{2}, q_{21}, r_{22},-\frac{b_{4} p_{2} q_{21} r_{22}}{d}\right) \\
& S_{7}=\left(p_{2}, q_{22}, r_{21},-\frac{b_{4} p_{2} q_{22} r_{21}}{d}\right) \\
& S_{8}=\left(p_{2}, q_{22}, r_{22},-\frac{b_{4} p_{2} q_{22} r_{22}}{d}\right) \tag{9}
\end{align*}
$$

It can be seen that S_{1} and S_{2} are symmetric with respect to plane $x_{1}-x_{2}, S_{1}$ and S_{3} are symmetric with respect to plane $x_{1}-x_{3}, S_{1}$ and S_{4} are symmetric with
respect to plane $x_{1}-x_{4}, S_{1}$ and S_{5} are symmetric with respect to $(0,0,0,0), S_{1}$ and S_{6} are symmetric with respect to plane $x_{3}-x_{4}, S_{1}$ and S_{7} are symmetric with respect to plane $x_{2}-x_{4}, S_{1}$ and S_{8} are symmetric with respect to plane $x_{2}-x_{3}$.

(iv) Jacobian matrix

By linearizing system (1) at $S_{i}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, one can obtain the Jacobian as follows:

$$
A_{i}=\left[\begin{array}{cccc}
a & b_{1} x_{3} x_{4} & b_{1} x_{2} x_{4} & b_{1} x_{2} x_{3} \tag{10}\\
b_{2} x_{3} x_{4} & b & b_{2} x_{1} x_{4} & b_{2} x_{1} x_{3} \\
b_{3} x_{2} x_{4} & b_{3} x_{1} x_{4} & c & b_{3} x_{1} x_{2} \\
b_{4} x_{2} x_{3} & b_{4} x_{1} x_{3} & b_{4} x_{1} x_{2} & d
\end{array}\right]
$$

If $i=0, x_{1}=x_{2}=x_{3}=x_{4}=0$, then the eigenvalues of matrix A_{0} are

$$
\begin{equation*}
\lambda_{01}=a, \quad \lambda_{02}=b, \quad \lambda_{03}=c, \quad \lambda_{04}=d \tag{11}
\end{equation*}
$$

Therefore, when $a b c d<0$, the equilibrium S_{0} is a saddle point. Given the values of $x_{1}, x_{2}, x_{3}, x_{4}$ at $S_{i}(i=1, \ldots, 8)$, one can calculate the eigenvalues of A_{i}. By calculating, it is seen that $A_{i}(i=1, \ldots, 8)$ have the same eigenvalues.

3. Observation of new chaotic attractor

By choosing the parameters from system (1), a great deal of dynamics can be observed, which is listed together with some discoveries as follows:
(I) $a=-35, b=10, c=-1, d=-10, b_{1}=1, b_{2}=$ $-1, b_{3}=1$ and $b_{4}=1$.

In this case, $a+b+c+d=-35+10-1-10=-36$, so the system is dissipative, and the eigenvalues of the Jacobian matrix at S_{0} are

$$
\begin{equation*}
\lambda_{01}=-35, \quad \lambda_{02}=10, \quad \lambda_{03}=-1, \quad \lambda_{04}=-10 \tag{12}
\end{equation*}
$$

and one can easily find $\lambda_{02}=10>0$, implying that S_{0} is a saddle point. By calculating with Maple, we can obtain the eigenvalues of the Jacobian matrix at $S_{i}(i=1, \ldots, 8)$ as

$$
\begin{align*}
& \lambda_{i 1}=3.4903+12.1911 \mathrm{i} \\
& \lambda_{i 2}=3.4903-12.1911 \mathrm{i} \\
& \lambda_{i 3}=-3.9551, \quad \lambda_{i 4}=-44.0254 \tag{13}
\end{align*}
$$

the real part of $\lambda_{i 1}, \lambda_{i 2}$ is $3.49026006>0$, so $S_{i}(i=$ $1, \ldots, 8)$ is also a saddle point. By calculating with Matlab, the Lyapunov exponents of this system with these parameters are obtained to be

$$
l_{1}=4.3614, \quad l_{2}=0.0000
$$

$$
l_{3}=-3.47442, \quad l_{4}=-36.8879
$$

(14) 1 shows numerical results for projections on different phase planes and phase spaces. Especially, we can obtain two chaotic attractors when we choose different initial values, which can be seen in Figs. 1(a)-1(k).

We can easily find that the maximum Lyapunov exponent is positive, so the system is chaotic. Figure

Fig. 1. Chaos system projections on different phase planes and phase spaces with the parameters: $a=-35, b=10, c=$ $-1, d=-10, b_{1}=1, b_{2}=-1, b_{3}=1$ and $b_{4}=1$. (a) 3 D view in the $x_{1}-x_{2}-x_{4}$ space; (b) 3 D view in the $x_{1}-x_{2}-x_{3}$ space; (c) 3 D view in the $x_{2}-x_{3}-x_{4}$ space; (d) 3D view in the $x_{1}-x_{3}-x_{4}$ space; (e) Projection in the $x_{1}-x_{2}$ plane; (f) Projection in the $x_{1}-x_{3}$ plane; (g) Projection in the $x_{1}-x_{4}$ plane; (h) Projection in the $x_{2}-x_{3}$ plane; (i) Projection in the $x_{2}-x_{4}$ plane; (j) Projection in the $x_{3}-x_{4}$ plane; (k) two coexisting chaotic attractor.

When a varies from -35 to -20 , the Lyapunov exponents are

$$
\begin{align*}
& l_{1}=0.0022, \quad l_{2}=-2.2532 \\
& l_{3}=-4.7042, \quad l_{4}=-14.0448 \tag{15}
\end{align*}
$$

The maximum Lyapunov equals zero, implying that the system has a periodic orbit. Figure 2 shows numerical results for projections on different phase spaces.
(II) $a=-15, b=5, c=-1, d=-9, b_{1}=1, b_{2}=-1, b_{3}=1$ and $b_{4}=1$.

Similar to the first case, the system by choosing the above parameters is also chaotic. Here, only the 3D view figure (see Fig. 3) in the $x_{1}-x_{2}-x_{4}$ space is given, the other figures are omitted for the sake of concision.

Fig. 2. Chaos system projections on different phase planes and phase spaces with the parameters: $a=-20, b=$ $10, c=-1, d=-10, b_{1}=1, b_{2}=-1, b_{3}=1$ and $b_{4}=1$. (a) 3 D view in the $x_{1}-x_{2}-x_{3}$ space; (b) 3D view in the $x_{1}-x_{3}-x_{4}$ space; (c) Projection in the $x_{1}-x_{2}$ plane; (d) Projection in the $x_{1}-x_{3}$ plane.

Fig. 3. 3 D view in the $x_{1}-x_{2}-x_{4}$ space with parameters: $a=-15, b=5, c=-1, d=-9, b_{1}=1, b_{2}=-1, b_{3}=1$ and $b_{4}=1$.
(III) $a=-10, b=3, c=-1, d=-2, b_{1}=1, b_{2}=-1, b_{3}=1$ and $b_{4}=1$.

Similar to the first case, this system under the above parameters is chaotic. The 3D view figures (see Fig. 4) in the $x_{1}-x_{2}-x_{4}$ space with one initial value and two initial values are given, the other figures are omitted for the sake of concision.

Fig. 4. 3D view in the $x_{1}-x_{2}-x_{4}$ space with parameters: $a=-10, b=3, c=-1, d=-2, b_{1}=1, b_{2}=-1, b_{3}=1$ and $b_{4}=1$: (a) one initial value; (b) two initial values.

Chin. Phys. B Vol. 19, No. 12 (2010) 120510

In summary, we first constructed a new 4D chaotic system and studied its properties. Some interesting figures are given, in which one can see that the new system possesses very rich dynamical structures. Hopf bifurcation, Poincaré map, synchronization and so on will be our further study.

References

[1] Lorenz E N 1963 J. Atmos. Sci. 20130
[2] Rossler O E 1976 Phys. Lett. A 57397
[3] Celikovsky S and Chen G 2002 Int. J. Bifur. Chaos 12 1789
[4] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 91465
[5] Lü J and Chen G 2002 Int. J. Bifur. Chaos 12659
[6] Lü J, Chen G, Cheng D and Celikovsky S 2002 Int. J. Bifur. Chaos 122917
[7] Zhang R and Yang S 2009 Chin. Phys. B 183295
[8] Chen Y and Yan Z 2003 Appl. Math. Mech. 24256
[9] Yang Y and Chen Y 2009 Chaos, Solitons and Fractals 392378
[10] Gu Q L and Gao T G 2009 Chin. Phys. B 1884
[11] Tao C H, Lu J A and Lü J 2002 Acta Phys. Sin. 511497 (in Chinese)
[12] Zhou P, Cao Y and Cheng X 2009 Chin. Phys. B 181394
[13] Qi G, Du S, Chen G, Chen Z and Yuan Z 2005 Chaos, Solitons and Fractals 231671
[14] Qi G, Chen G and Zhang Y 2006 Phys. Lett. A 352386
[15] Qi G, Chen G, Du S, Chen Z and Yuan Z 2005 Physica A: Stat. Mech. Appl. 352295
[16] Zhou P, Wei L and Cheng X 2009 Acta Phys. Sin. 585201 (in Chinese)
[17] Tang L, Li J and Fan B 2009 Acta Phys. Sin. 581446 (in Chinese)
[18] Hui Meng, Zhang Y and Liu C 2008 Chin. Phys. B 17 3258

[^0]: ${ }^{*}$ Project supported by the National Natural Science Foundation of China（Grant Nos．10735030， 11075055 and 90718041），the Shanghai Leading Academic Discipline Project，China（Grant No．B412），the Program for Changjiang Scholars，the Innovative Research Team in University of Ministry of Education of China（Grant No．IRT 0734），and the K．C．Wong Magna Fund in Ningbo University．
 ${ }^{\dagger}$ Corresponding author．E－mail：ychen＠sei．ecnu．edu．cn

