Available online at www.sciencedirect.com

sclzucs@nlnzcrﬂ CHAOS
SOLITONS & FRACTALS

PERGAMON Chaos, Solitons and Fractals 19 (2004) 977-984

www.elsevier.com/locate/chaos

General projective Riccati equation method and exact
solutions for generalized KdV-type and KdV-Burgers-type
equations with nonlinear terms of any order

Yong Chen **, Biao Li °

& Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China
> MM Key Lab, Chinese Academy of Sciences, China

Accepted 7 May 2003

Communicated by Prof. M. Wadati

Abstract

Applying the improved generalized method, which is a direct and unified algebraic method for constructing multiple
travelling wave solutions of nonlinear partial differential equations and implemented in a computer algebraic system, we
consider the KdV-type equations and KdV-Burgers-type equations with nonlinear terms of any order. As a result, we
can not only successfully recover the previously known travelling wave solutions found by existing various tanh
methods and other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include
kink-shaped solitons, bell-shaped solitons, singular solitons and periodic solutions.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is known that to find exact solutions of differential equations is always one of the central theme of perpetual
interest in mathematics and physics. With the development of soliton theory, many powerful methods have been
presented, such as inverse scattering transform method [1], Backlund transformation [2,3], Darbour transformation [4],
various tanh methods [5-8], homogeneous balance method [9] and similarity reductions method [10,11] etc.

Solitary wave solutions of a nonlinear partial differential equation (NLPDEs) E(u) =0 in the unknown
u(x,y,z,...,t) are solutions of the ordinary differential equation obtained by the travelling wave reduction
u(x,y,z,...,t) > u( =x~+ Ay + oz + -+ J,t). Particularly, some general ansatz have been proposed in order to
obtain new formal solutions for given NLPDE.

In [12], Conte et al. presented a general ansatz to seek more new solitary wave solutions of some NLPDEs that can
be expressed as a polynomial in two elementary functions which satisfy a project Riccati equations [13]. Recently, Yan
developed Conte’s method and presented the general projective Riccati equation method. The key idea of Yan’s method
is to extend the projective Riccati equation (see Ref. [14] for detail)

d (&) =—a(&)r(8), T(&)=-7(&)— %U(Cf) +1, u,K = constant, (1)
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to be more general form

0'(&) = es()(8),  T(8) = R+e’(&) — no(&), e= £, R,u= constant, (3)

(&) = —e|R—2u0(8) + E—=62()|, (R #0), 4)

where ' =d/& When e = —1, R =1, u — u/K, (3) becomes (1).

The present work is motivated by the desire to improve the work made in [12,14] to study some systems of NLPDEs
with nonlinear term of any order. Up to now, some systems of NLPDEs with nonlinear term of any order have been
studied [15-17]. All of these models are interesting both from the mathematics as well as the physics points of view.
Mathematically, these equations are generalized. From the physics point of view, these models include many famous
known physical models and can describe more complex physical phenomena in such diverse areas as nonlinear optics,
hydrodynamics, condensed matter, plasma physics, quantum field theory and so on. However, to seek the exact so-
lutions of these equations, generally, we could not use above-mentioned method directly. In this paper, by making a
proper transformation, the method in [14] are improved so that it is able to deal with arbitrary balance constant. To
illustrate the improved method, we consider the two-dimensional KdV-Burgers-type equation with high-order non-
linear terms [15],

(u, + av’u, + buPu, + iy, + Oyer), + Stty, = 0, (5)

where a,b # 0, y, # 0, p are all constants. When setting the parameters to be equal to various values, Eq. (5) includes
many known KdV-type equations and KdV-Burgers-type equations in (1 + 1)-dimensional and (2 + 1)-dimensional
cases (see, e.g., Refs. [2,18-26] for detail). Making use of the improved method described in Section 2, some new exact
travelling wave solutions are found.

This paper is organized as follows. In Section 2, we summarize the improved generalized method. In Section 3, we
apply the improved method to G2DKdV-Burgers equation and bring out many solutions. Conclusions will be pre-
sented in finally.

2. Improved generalized method

In this section, we describe the improved generalized method as follows.
Consider a given NPLDE, say, two variables: x, ¢,

p(uhuxauxtauthuxxa’ ) = 07 (6)

under the transformation u(x, t) = u(&), & = x — At, (3) reduces to be
G u'u",...)=0. (7)
Step 1. Balancing the highest order derivative term and the nonlinear terms in Eq. (6) or (7), we get a balance con-

stant m (m is usually a positive integer). If m is a fraction or a negative integer, we make the following transformation
(1) when m = p/q is a fraction, we let

u(&) = v1(8), (8)

then return to determine the balance constant m again;
(2) when m is a negative integer, we let

u(¢) = v"(9), )

then return to determine balance constant m again.
Step 2. We express the solutions of Eq. (7) to be the following forms.
Type 1. When R # 0 in Eq. (3),

(@) = Ay + 300 io(E) + B, (10)

i=1

where ¢(&) and 7(¢) satisfy Eqgs. (3) and (4).
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Type 2. When R = u =0 in Eq. (3),
u(@) =Y 47(8), (1)
=0

where 7'(&) = t%(¢).
Step 3

(1) when R # 0, substituting (10) along with the conditions (3) and (4) into (7),

(2) when R = u = 0, substituting (11) along with /(&) = 72(¢) into (7), yields a set of algebraic equations for
d(6)7(¢), j=0,1,..;i=0,1) (z'¢,1 =0,1,...). Setting the coeflicients of these terms ¢/t (or 7/(£)) to zero
yields a set of over-determined algebraic equations in A, 4;, B;, R and pu.

Step 4. With the aid of Maple, solving the above set of equations, yields the values of 4;, B;, R, A.
Step 5. We know that Eq. (3) admits the following solutions:
Case 1. Whene=—1,R #0,

_ Rsech(VR¢) ~ VRtanh(VR¢)
e = usech(VRE) +1° )= psech(vVRE) + 17 (12)
&) = Resch(v/RE) ©) = VR coth(v/R¢)
7e) = pesch(VRE) +17 ol pesch(VRE) +1°
Case 2. When e =1,R#0,
(&) = R sec(VRE) (&) = VR tan(v/R¢&)
B wsec(vVRE) +1° B usec(vVRE) +1° (13)
oalE) = Rcsc(vVRE) (&) = VR cot(v/RE)
ne pesc(VRE) +17 A pesc(VRE) +1°
Case 3. When R = =0,
750 = = Cers®). wl©) ==, (14)

where C is a constant.
Thus according to (8) (or (9)), (10)—(14) and the conclusions in Step 4, we can obtain many solutions for Eq. (6).

3. Applications

Let us consider the G2DKdV-Burgers equation, i.e., Eq. (5). According to the improved method, to seek travelling
wave solutions of Eq. (5), we make the transformation

ulx,y,t) =v(&), E=x+ny— A, (15)
where n and A are constants to be determined later, and thus Eq. (5) becomes

(—)vvg + av”vé + bUz‘DDCf + yv:i + 505&)5 + snzvfi = 0 (16)
Integrating the above equation twice with regard to &, we obtain

S0 (&) + 9 (&) + (sn® — D)o(E) +—— (&) +

p+1 il =0 (17)

2p+1

with the integration constants taken to be zero. According to Step 1 in Section 2, if 6 #0, b # 0 and p # 0,%, by
balancing v”(¢) and v**V(¢) in Eq. (17), we get m = 1/p. Therefore we make the following transformation

o(€) = 9'7(8), (18)
then substituting (18) into Eq. (17) yields

alpp(&)@" (&) + (1 = p)o™ (O] + @ ()¢ (&) + Plaxg’ (&) + asg’ (&) + asg* ()] = 0, (19)
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where
ap=(1+p)(1+2p)o, ar=p(l+p)(1+2p),

ar = (14 p)(1 + 205~ 7), ay=(1+2p)a, as=(1+p)b 20)

According to Step 1 in Section 2, by balancing ¢ ()" (&) (or ¢ (¢)) and ¢*(&) in Eq. (19), we get m = 1. Therefore
we suppose that Eq. (19) has the following formal solutions
@(&) = Ao+ 410(S) + Biz(9), (21

where o(&), ©(£) satisfies (3) and (4), where 4y, 4;, B, are constants to be determined later.

With the aid of Maple, substituting (21) along with (3) and (4) into (19), yields a set of algebraic equations for
d(E)T(E) (j=0,1,...;i=0,1). Setting the coefficients of these terms ¢/’ to zero yields a set of over-determined al-
gebraic equations with respect to 4y, 4, Bi, R, n and A. (Note 1. Here we take ¢ = —1)

24\BiR(—ay + 2Bip*ayi’® + aop’ + aopp’ — 2B1pas + 2RAp’ay — app) = 0, (22)
R(fRaopAfu + Rp2a3A? — 2Ra0Af/4 — 12Rp2a4Afo,u + 4Rp2a4A0A? —2a;B A2 — 3,u3pra0 — 2aopApA,

+ 2,uBfa0 + 4uB‘l‘a4p2 + 3,uB%pa0 — 2,u3Bfao — 4,u33‘1‘a4p2 — 12p2a4A0A|B% — 3p2a3Ale + 2a1B14;

+ 12p*ag oA, B3 1% + 3p2a34, B2 + 2agpAod 12) = 0, (23)
P*BIR*(RBay + 3as A3 + 4RBlaydy + 2a,40 + 4as43) = 0, (24)
R(—2RaoB\ At — 8Rp*asA, Bi u + 12Rp*ay A0 A2 By + 3Rp* a3 A2 B — 2RaopB A it — Ray A3 + 2aopAoB 1

+ 4p2a4AOBfu2 —p2a3Bf + alB% — 2agpAoB; — 4p2a4AoB‘T — all:?f,u2 +p2a3Bf,u2) =0, (25)
—6p? a4 AIBIR + agA PR + 6p* a4 AIBIIPR — 2a0BHE + aoBE + p*asB] — aypAiR + pPayBi it + appAT PR

— 2aypBAu* + appB? — 2p*asBH? + prayATR? 4+ appBlut — apAR + apBiut = 0, (26)
R*(—a\B1A\R + 12p°asAgA, B3R — aopBiuR + 3p°az A, BIR + appAoA1R — 4p*ayBiuR + a AoB jt

- 12p2a4A(2)Bfu — 6p*azAoBip + 2pa oA, + 4p2a4A8A1 + 3p2a3A§A1 —2p*a2B ) = 0, (27)
R? (4p2a4A|B?R + appB14\R — 2p2a3Bfu + aleu — a1 ApA; + 2p2a2A|Bl + 6p2a3A0A1B1 + 12p2a4A(2)A1B1

— 8p2a4AOB?u — appAoBip) = 0, (28)
R(—3p’asAoB} — 6p°asA3B} + Rp*axAT — 6Rp* a4, B it + 3RaopBii* — a1AgBi 1> + 6p* asAGBri* + a1 AoB,

— 2Rp*ayB} + 3p*asAgB31* + 6Rp*ayBi1* + 6R*p*as A B? — 3RappAoA u + p*a B2 i — pra, B2

+ 3RaA\Bu — 24Rp2a4A0AlB%u + 3Rp2a3A0Af + 6Rp2a4AéAf + RzaoAf + RaoBf,u2 - 2Ra0pr) =0, (29)
DP*R*(6RayA3BY + 3RazAoBY + R*ayB] + a24} + asdy + a4 + RaxBY) = 0. (30)

By use of the Maple soft package “Charsets’” by Dongming Wang, which based on the Wu-elimination method [27],
solving Egs. (22)—(30), we get the following results.

Case 1
Bip*(4a4B\VR + 2pasBi VR — a3 — ’a,B?
QIZ:E lp( da 1\/_+ pa4 ]\/_ % pa3), aoz—p—a4 I’ AoziBl\/ﬁ, A]:’u:O,
1+p l+p
a) = —ZB|\/I_3(2614B1\/1_€— a3). (31)
Case 2

a = ;{2;%31 {2BIA1R3/2(2a4 + p) + A\Ras(1 + p) £ \/B? + RA>[2a4BR(2 + p) + asVR(1 + p)}]}
/{ + RAV(1+ p) + /B + REVER( +p)},

B? + RAZ _ 4B

Ay = +B,VR, u==+ . ap=
0 1 u B, 0 1 +p

s a) = —281 \/1_3(2Q4Bl \/1_3 - a3). (32)
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Case 3
ARasp(2 + p) A2Rp*ay A*R%ay
GEATRED ST e —p T T —p T T p (3)
Case 4
RAfp2a4 RZA%(M
AO—Bl—al—a3—,u—0, ao—ﬁ, az——1+p. (34)
From (12), (15), (18), (21) and Cases 1-4, we obtain the following solutions for Eq. (5)
Family 1
v
- [:F\/EBl iBl\/J‘etanh(\/Teg)] g (35)
1/
Uy = [:F VRB iBI\/Ecoth(\/ﬁé)} " (36)
where
2B1VR[F2B1VRb(1 142
E=x+ny—At, A=sn’F WVRIF2B VRV +p) +all + p)]7
(1+p)(1+2p)
g (P +29)6 o 1 [=p(1+p)(1 +2p) + Bipa(l +2p)]°
1 bp? ’ 4 Bb2p2(p +2) '
Family 2
1/p
un = | ¥ VRB £ \/R(12 — 1)B sech(VRS) + By VR tanh(vRS) ) (37)
usech(vVRE) + 1 psech(vRE) + 1
/p
csch(v/R¢E) VR coth(v/RE)
un = | FVRB, £ /R(12 —1)B +B > , 38
= ® : (u )i uesch(v/RE) + 1 1ucsch(\/fié) +1 (38)

where

Sty d—st T 2B, VR[F2B,VRb(1 + p) + a(1 + 2p))
’ (1+p)(1+2p) ’

(L+p)(1+2p)0 o 1 [=y(L+p)(1+2p) +2Bipa(1 + 2p))*

4bp? ’ 16 Bibp(p+2)

2
By =—

Family 3. From Eq. (33), we obtain the following solutions for the KdV-type equations: (u, + au’u, + bu*u, +
Oyer), + Sityy, = 0,

1/p
Rsech(vR
o= | (39)
usech(VRE) + 1
1/p
Rcsch(vR
Uy = AIM , (40)
pesch(vRE) + 1
where
g o004 CHp)  p (A4p)( 4206 =) bR2A}
e T (& 11+ )1+ 2
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Family 4. From Eq. (34), we obtain the following solutions for the KdV-type equations, (u, + bu*u, + tiyy), +

suy, = 0, as follows:

(1 +p)(1+2p)d

Uy =

RPN +2p)5[x+ny_

Alpzb A%pzb
1+p)(1+2p)o 1 +p)(1+2p)o 1+
Uy = —( [jl(pr ?) csch —( "2%(1)21) ?) [x +ny — (sn2 +( r)

where A, is an arbitrary constant.
The following periodic wave solutions obtained is under € = 1.
Family 5

s, = [; V—RB, + B, \/Etan(ﬁé)] "
Usy = [:F V—RB, :i:Bn/I?cot(x/]?f)] 1/177

(sn2 +

/p

I

where
B . 5 __2B\R[F2B\V—Rb(1 + p) +a(l + 2p)]
E=x+ny—At, A=sn"F VR0 ) 1) ,
g WP +29)0 o 1R +p)(1+2p) + Bipa(l + 2p)]°
[ 2 ’ - 2 '
bp 4 B p*(p +2)
Family 6
sec(vVR¢E) VR tan(v/R¢&)
= V= “R(12—1
el * RB, * R(p B sec(vVRE) + 1 +B usec(vVRE) + 1
_|_ — csc(v/RE) 3 VR cot(v/RE)
e { VRB, + R{w =D, ycsc(\/l_€£) +1 ! ,ucsc(\/ﬁé) +1
where
B . 5 2B\[F2BV—Rb(1 +p) 4+ a(1 + 2p)]
E=x+ny—At, A=sn" =+ VR )11 2p)
g UEp+29)6 1 [ +p)(1+2p) +2Bipa(l + 2p)f
1 ) - .

4bp? 16 Bibp(p+2)°

1/p
1 +p1 2986\
— )|

Aipt

(1+2p)52b” v
(1+p)(1+2)5 t} |

1/p

El

Family 7. The KdV-type equations, (u, + aw’u, + bu* u, + Oly), + su,, = 0, have the following solutions:

1/p

R sec(V/RE)
lu sec(vRE) + 1

I

un = |:A
Upp = l:A

Alzf ) R=-—

1/p

Rcsc(vVRE)
" iese(vRE) + 1

where

(1+p)(1+2p)o(* — 1)
bp* 43

)

A=sn

bR2A?

(w =11 +p)(1+2p)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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Family 8. We obtain the solutions of the equation, (i, + bu*fu, + Suy), + su,, = 0, as follows:

5 1/p
(1+p)(1+2p)o b)ﬂ | @9)

wy = | 4P 4205 [ (1 p)(1+2p)0
Apt

L+ p)d +2p)o 2
A, A%pr {x +ny + (sn +

v — {(Hp)(l +2)5 | _(L+p)1 +2p>5{x+ny+ <+

) 1/p
(L+p)(1+2p)8b
Alpzb A%pzb ’

Aipt

where A, is an arbitrary constant.
Family 9. Rational solutions: When setting the solutions of Eq. (20) in the form (11), we obtain the following rational
solutions for Eq. (5).

1

L VbGP AT 1 } 51)

"= bp X+ ny — sn’t
— 1)bo(1+2
wherey::l:\/ (p+ 1)bo( +p)a.
bp+b
Remark

(1) The solutions obtained in this paper recover all of the solutions obtained by improved tanh method in [15]. For
example, the solutions (35), (36), (43) and (44) are just the solutions (3.24)—(3.27) in [15] (see Ref. [15] for detail).

(2) The solutions obtained (37), (38), (45) and (46) are new and more general than the solutions (3.29)—(3.32) in [15]. It
is easy to see that the solutions (3.29)—(3.32) in [15] can be recovered by setting x = 0 in (37), (38), (45) and (46).

(3) The solutions (39), (40), (47) and (48) are new families of exact solutions, which can not be obtained by the known
various tanh methods.

4. Summary and conclusions

In summary, we have obtained many families of exact travelling wave solutions of general KdV-type and KdV-
Burgers-type equations with nonlinear terms of any order, based upon the improved generally projective Riccati
equations. Because Eq. (5) is more general than the equations studied in [12-26] and the method is more powerful, we
find new and more general solutions, which include the previously known travelling wave solutions found by extended
tanh method and other more sophisticated methods. We will extend the generally projective Riccati equations method
to seek soliton-like solutions in the forthcoming works.
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