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Abstract: We construct the differential invariants of Lie
symmetry pseudogroups of the (2+1)-dimensional break-
ing soliton equation and analyze the structure of the
induced differential invariant algebra. Their syzygies and
recurrence relations are classified. In addition, a moving
frame and the invariantization of the breaking soliton
equation are also presented. The algorithms are based on
the method of equivariant moving frames.
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1 Introduction

The applications of differential invariants can be found in
a broad range of problems arising in geometry, differential
equations, mathematical physics, and engineering [1-9].
The determination of the structure of the algebra of dif-
ferential invariants for a given Lie group or pseudogroup
action is an essential first step in performing these appli-
cations. Fels and Olver [10, 11] introduced a new equiv-
ariant formulation of Cartan’s method of moving frames,
which then developed through a series of papers [12-15].
For a system of differential equations, the moving frame
techniques have been used to obtain the structure equa-
tions and differential invariants for its symmetry groups
directly from the infinitesimal determining equations
[12, 16]. These algorithms are powerful and efficient for
classifying the differential invariants as well as analyzing
the induced algebra structure. In addition, they require
only linear algebra and differentiation and do not require
any explicit formulas for the moving frame, the differential
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invariants and invariant differential operators, or even the
Maurer-Cartan forms.
The (2+1)-dimensional breaking soliton equation
[17-19],
u, —4uu —2u u -u =0, €))

ooy

describes the (2 +1)-dimensional interaction of a Riemann
wave propagating along the y axis with a long wave along
the x axis. This equation admits breaking solitons [20],
and it becomes to the KdV equation when y=x. In recent
years, a large number of papers have been focusing on
Painlevé property, dromion-like structures, Lax pairs,
and various exact solutions of this equation [21-30]. Yet,
to the best of our knowledge, the differential invariants
of (1) have not been studied so far. The goal of this paper
is to investigate the algebra of differential invariants for
(1) through the constructive computational algorithms
[11, 14, 16]. We analyze the structure of the induced dif-
ferential invariants algebra in detail and classified the
syzygies and recurrence relations among the differential
invariants.

The outline of this paper is as follows. In Section 2, the
preliminaries about the algorithms used are presented. The
detailed constructions of the algebra of differential invari-
ants for the breaking soliton equation are given in Section
3, and the recurrence formulas and syzygies among them
are also established. In Section 4, a moving frame for the
breaking soliton equation is presented. Lastly, Section 5
presents a short summary and discussion.

2 Preliminaries

In this section, the theoretical preliminaries about the
algorithms are introduced briefly [2, 3, 10, 11, 14, 16]. Con-
sider a system of differential equations with p independ-
ent variables x=(x!, ---, x’) and g dependent variables
u=!, ---, w9, and the derivatives u;‘ up to some finite
order n, which reads

A (x, u™)=0,v=1,2, - k. ®)

Here, z=(x, u) is regarded as local coordinates on the
total space M, a manifold of dimension m=p+gq.
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Consider a smooth vector field on M,

> 06, -2+ 3, )2
V= (x, u)—+ “(x, u)—. 3
;’g‘xuaxl Z{pxuaua 3)
And let
LB Y 3 W
Vrl — 17i+ (2)11 - 4
o o0x a=1#7=0 ]au, “)

which denotes its nth-order prolongation to J*(M, p),
whose coefficients are determined by the well-known pro-
longation formula

7= D][<p" —Z{uf‘&‘}+2{uii§’. 5)

A vector field v is an infinitesimal symmetry of the
system of the differential equation (2) if and only if it
satisfies the infinitesimal invariance condition. When
expanded, this forms the following system of infinitesimal
determining equation,

L0, X, o u”, -y ;,...,(p:,...)zo, (6)
which includes the original determining equations along
with all equations obtained by repeated differentiation.

Let H®™ — J"(M, p) be the pullback of G — M along
the usual jet projection z":J"(M, p) — M, which, assuming
regularity, forms a subbundle H® c¢®™. Local coordinates
on H™ are of the form (x, u®, A®), where (x, u™) are jet
coordinates on J*(M, p) and the fiber coordinates A repre-
sent the pseudogroup parameters of order <n.

Definition 1. An nth-order moving frame for a pseudog-
roup G acting on p-dimensional submanifolds Nc M is a
locally G-equivariant section p™:J"(M, p) — H®™.

The necessary and sufficient condition for the exist-
ence of a locally equivalent moving frame is given by the
following theorem.

Theorem 1. A locally equivariant moving frame exists in a
neighborhood of a jet (x, u™) € J*(M, p) if and only if G acts
locally freely at (x, u®).

A practical way to construct a moving frame p®™ is
through the normalization procedure based on the choice
of a cross section to the G-orbits. Once a moving frame is
fixed, invariantizing the nth-order jet coordinates (x, u®)
leads to the normalized differential invariants,

H' = (), I = 1), @)

where [ is the induced invariantization process.

DE GRUYTER

Theorem 2. Suppose the pseudogroup G admits a mutu-
ally compatible hierarchy of moving frames defined
on suitable open subsets of J*(M, p) for n> 0. Then the
nonphantom normalized differential invariants (7) of all
orders n>0 are functionally independent and generate
the differential invariant algebra I o

The more traditional way to get higher-order differen-
tial invariants is through invariant differential. A basis for
the invariant differential operators D,, ---, and Dp can be
obtained by invariantizing the total differential operators
D, -, and Dp. More explicitly, by invariantizing the hori-
zontal coordinate coframe, we get the contact-invariant
horizontal coframe

Cl)i :[(dXi), i=1’ 2! P (8)

To establish the recurrence formulas relating the nor-
malized and differentiated invariants, the Maurer-Cartan
forms for the diffeomorphism pseudogroup are necessary
and essential, which are explicitly realized as the right-
invariant contact forms on the infinite jet bundle. A basis
is labeled by the fiber coordinates X;, U5, and

X;’ﬂ;’ fOfi:l,"'ap, 05:1,"',% #AZO) (9)

are used to denote the corresponding basis Maurer-Cartan
forms.

Theorem 3. The restricted Maurer-Cartan forms satisfy
the lifted determining equations

L0 X, ey Ua’...’Xiq’...’[u‘;’ --)=0, (10)
which are obtained by applying the following replace-
ment rules:

X=X, usU% §’A|—>x'A, P UG,

for all i, @, and A to the infinitesimal determining equa-
tions (6).

Nevertheless, in the construction of recurrence for-
mulas, the most important form are not the Maurer-Cartan
forms per se but their pullback under the moving frame
map.

Definition 2. Given a moving frame p™:J"(M, p) — H®, the
invariantized Maurer-Cartan forms are defined as the hori-
zontal components of the pullbacks

B =m (p") ), & =m, [(p™) us). (11)
Theorem 4. The invariantized Maurer-Cartan forms
satisfy the invariantized determining equations
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L(--+, HY, oo, T4, oo, ;, ey 80 ..)=0. (12)
Extending the invariantization process, we set
wE)=p4,, pl)=ts, (13)

to be the corresponding invariantized Maurer-Cartan
forms (11).

Theorem 5. The recurrence formulas for the normalized
differential invariants (7) are

p
d H :z(ZDiHj)a)i =0 +p,
i1

P : P : -~
d, I =Y (DI)o' = Z{I”w +y7,

i=1

(14)

in which 12)? =1(¢7) is the invariantization of the coeffi-
cients of the prolonged vector field.
The general recurrence formula is as follows:
DJy=I +R}

J.K J.K?

(15)

which is valid for any multi-indices J, K. In computa-
tions, the correction terms R}’,K are rewritten in terms of
the generating differential invariants and their invariant
derivatives.

The generating syzygies are of two types, the first one
involves the syzygies of the form

a __ La a
DIy =cp + M7,

(16)

where I7 is a generating differential invariant and
I;‘K = cj‘K is a phantom differential invariant, whereas the
second one consists of all equations of the form
—M“

LJ.K’

D 1% ~DIs = M

KL LK,J

17)

where I and IZ] are generating differential invariants,
the multi-indices K" J=0 are disjoint and nonzero, and L
is an arbitrary multi-index.

3 The Algebra of Differential
Invariants

For the (2+1)-dimensional breaking soliton equation,
the underlying total space is M=R* with coordinates
(t, x, y, u), and its solutions u=f{(t, x, y) define p =3-dimen-
sional submanifolds of M. Its infinitesimal symmetry
algebra consists of the vector fields,
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v=1(t, x, y, u)%%(t, X, Y, u)a%ﬂy(t, X, Y, u)%

d
+ t; s Vo PN
o(t, x, y, u) u (18)
on M, and their prolongations,
d d d .; 0
V=gt + Y9
ot ety T 2P 5, (19)

7

are tangent to the variety in J~(M, 3) defined by (1). This
invariance condition leads to the infinitesimal determin-
ing equations along with their differential consequences
reduce to the following system:

T, =T,=T, :gyzgu:nx =n,=0,
1 1
Tt =M =M, =0, gx :E(Tt _77y)’ My, :Et"’

1 1 1
0= M0 0, =580 0, =50, -1). (20)

Our actual choice of cross section, which defines the
moving frame, will be deferred until we acquire some
familiarity with the structure of the recurrence formulas.
First, we take

H'=t), H =ix), H’=uy), I, =uuy),

to denote the corresponding normalized differential invar-
iants and

az‘jklzl(rijkl)’ ﬁz‘jklzl(gijkl)’ Vijklzl(nijkl)’ Cijklzl((pijkl)’

to denote the invariantized Maurer-Cartan forms. The
complete system of linear dependencies among the invar-
iantized Maurer-Cartan forms can be obtained by the
invariantization of the determining (20), namely,

axzayzauzﬁy:ﬁuz'yx:’yuzo’

1 1
O =Y =Vyy =05 ﬁx =E(O‘T —VY), Yoy =EO!TT,

1

1 1
CX:_ZyTx CYz_EﬂT’ CU:E(VY_QT)’ 1)

and so on. A basis of the invariantized Maurer-Cartan
forms is provided as follows:

n=0.

A Cpy Cprs Vs Vps Yy B E

Moreover, we let D, D,, and D, be the invariant dif-
ferential operators dual to the invariantized horizontal
coframe

o' =u(dt), o’=idx), o’ =(dy). (22)
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As mentioned previously, the explicit formulas are
not required at the moment.

The correction terms 12;5‘ in (14) are the invariantiza-
tion of the coefficients {0? of the prolonged vector field.
Here without computing the explicit expressions of ¢,
only the prolongation formula of the vector field, the
determining equations (20), and their differential conse-
quences are needed to express @j‘.

Then (14) directly yield the following recurrence
formulas:

dH=0'+a, d,H=0’+p, d,H =0’+y,

2 3
dHIOOO = Iloow1 + Iomw + IOOlw + C’
1
dHImo = Izoow1 + Inow2 + Ilolw3 +§IIOO()/Y - 3ar)_ 1010137'
- 10017/T + CT ’
1
dHIOIO = Inowl + Iozow2 + Ionw3 + 1010(VY _aT) _ZVT’
d.I =1 o'+ o*+I 51 I ( ) !
oot = i@ T 1oy @ + 40,0 _5 001\ O Ty _Eﬁr’
1
2 3
dHIIIO = 1210601 + Ilzow + Imw _EIOlOaTT + 1110 (yY _2aT)
- Iozoﬁr _Iouyr’
d.I =1 o'+ o*+I 51 3 I
whion = L@ 1,0 +1,0 _EﬁTT _Z oo %rr
1
_51101(3ar + Vy)_ Iouﬁr - IoozyT’
1
dHlou = Ima)l + I(mwz + Iouw3 - gan - IouaT ’
1
1 2 3
dHIzoo = Iaoow + IZlOw + Izolw + Elzoo(yy - 5ar)
3
- 21110ﬁr _211017/T _EllooaTT - IOlOﬁTT + éTT’
3
1 2 3
dHlozo = Ilzow + Iosow + Iouw + EIozo(yY - ar)’
1
2
dHIooz = IlOZa)l + Iouw + Ioosw3 _EIOOZ(aT + 37/1/)’
1
_ 1 2 3
dHlaoo - I4oow + Ialow + 1301(” + 51300(7/)' - 7ar) - 3Izmﬂr
15
- BIZOlVT _leooaTT - 3InolBTT - IOlOﬂTTT * CTTT’
2 3
dHIO30 = 11306‘)1 + Ioaow + IOBlw + 21030 (VY - aT)’
1
dHIOO3 = Ilo3a)1 + Iouw2 + 10046()3 _Eloos(ar + Syy)’
1
1 2 3
dHIuo = Izzow +1130w +Ilz1w +EI120(37/Y _Sar)
3
- IO3OﬂT _1021VT _ZIOZOaTT’
dHIno = I310wl + 12206()2 + Iznw3 + 1210 (yy - 3OCT) - lezoﬂT
- 21111VT - ZIlloaTT - Iozoﬁrr ’
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d, I, =L, +I,0"+I o’ —%Im(aT +y,)-1,,B,
=17y —%Iooza”,

d, L, =L+ o+ o - %Izm Ga, +y,)-2L,8,
=2I.,v; —g[lma” 1,8 —%ﬁm,

d,J,=L,0+I, 0 +I o -1 (a+y,),

d I, =I,0'+1 o'+ o +%1021(yy -3a,),

(23)
Here we choose the following normalizations:

H'—0, H'—0, H'~0, I 0, I, ~0, I 0,
I,~0, I, =0, [ =0, L —0,1I, =1 I 1,

Il.’o,0 =0, Il._w’1 —0, foralli>3, (24)

which, when substituted into (23), yield the following
expressions:

a:_wly ﬂ:_af’ V:_(U3, C:Oa

)w2+%(1 1 )’

021 003

a, =%(I +1I

102 120

1
o' +§(I012 +1,,
a,, =8I, o' +8I 0’ +8I o,
ﬂT = zwg’ ﬁTT = _81110(1)1 + 2(1111 - 4)(,()2 + 21102(,()3,
ﬁTTT = 2(1301 =811 )(Ul +2(I,, —8I )a)2

1107 102 211 102
+2(I. 41 )’

202 m T

3

1 1 1 1
+2(1012 —3103())0)2 +2(Ioo3 _31021)(”3’

1 1
V= 411100)1 + 4602’ Ty = 2(1102 Ilzojwl

CT = _Inowz’ é‘TT = _Izlow2 + 41110(”3’
CTTT = _(2411210 + I4oo )wl + (611101111 - 241110 - 1310 )wz

+(6I I (25)

1107102

+61210_1301)w3’ T
for the basic invariant forms. However, the higher-order
invariantized Maurer-Cartan forms can be recursively
determined from them.

Next, (25) was substituted into the equations for the
nonphantom variables in (23) to derive the recurrence
formulas between the differentiated and the normalized
invariants:

1 7
Dllllo = 1210 _51110 (1102 +31120)’

1 7
D21110 = IlZO _51110 (1012 +3Io3oj’
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DI, =1, —%Im (1003 + 21021)—2,

Dl =1, —%10301120,

Dl =1y 31530,

Dl =1, —%10301021,

Doy, =1, —%1003 (31102 —;Im),

Dy, =1, ;1003(31012—;1030),

Dy, =1y, —%1003 (31003 —;1021],

Dl =1, - 1120(1102+31120) 4L, 0, 61,
Dl =1, 1120(1012+31030) 101,,,,
D=1~ ;IHO(IOO}+3IOH) 61,21,
Dl =L, 1210(1102+§112J 81,,GI,, -1,
DL, =1 1210(1012+§103) 1611, ~10I,, +8,
D3Im=1211—1210(1003+§IOZ) 1611, ~21,0,— 41,
D, =1L, — 1102(1120+31102) 41,1, -10I,,
DI, =1,, 1102(1030+31012) 4,,-10I,,,,
D, =1, - 1102(1021+31003) 121,,,,

1
D11012 = 1112 _1012 (1102 +31120)’

1
DImz 1022_1012 1012+§Ioso ’

Dl

37012

1
= 1013 _1012 (1003 +31021j’

1
,Dllozlzlm_floz I +31120j’
Dzlozl 031 2 1021 (I +3 3 1030)
D3Ioz1 022 I (I * 31021)

>

>

(26)
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Following the method of Olver and Pohjanpelto [14],
we calculate that the invariant horizontal one-forms w?,
w?, and w? satisfy the following structure equations:

do'= (I +1 o' e’ —

H 012 030 (I +1 )w Aw ’

003 021

1
d o’ =—0'A0’ 20" A0’

H —51021602/%03,

ERTIPRIURTE PR VI FO

H(l) = w AW 2 102 3 120 w AN
1 1
+2(1012—3IO30)602/\(03.

By duality, (27) implies the commutation relations
among the invariant differential operators D,, D,, and D,,

(D, D=

@7)

(I +1,,)D,~

012 030

3D2+4D3,

[D, D=1 (1 +1)D,+2D, -2(1102-11 jp

003 021 3 120 3

1
[Dz’ D3]_ 310211)2_2(1012_31030)2)3' (28)

Then the higher-order normalized invariants can be
obtained in terms of the lower-order invariants by the
repeated application of the recurrence formulas (26). Spe-
cifically, we can express I, in terms of I , I ., I, and
I, and the invariant derlvatlve of I, from the first two
equations (26). Furthermore, the following fundamental
syzygies among the basic differential invariants I, I

110° 7102’
I, 1, I, and I are derived as follows:

DI, ~DI, += I (I +I1_)=0,

2 0217012 030

1 1

D, 1003 D, 1012 5 I (I 012 _31030)_310121021 =0,

1 5
DIou Dlom +I I P 31030 21021 I ;T 31021 =0,
D11003 - Dslloz 6 (D Iuo += (31 + 71030)1110)

(Iozl +24)1012 ’
1 7
DzD Ino D11021 5 (Iou +Io3o)1003 - 4 31 012 +§Io3o Iozl
1 7
5 ,D21003 T 6 D, 1021 0’

Dleoz DlIou 3 (Iou + 1030 )IIOZ

03077110

jlw + 4[003 + 1OI021 =0,

3(DZIHO+ GBI, +71,)1,

- 10.1515/zna-2016-0209
Downloaded from PubFactory at 09/01/2016 03:53:40PM
via De Gruyter / TCS



860 —— 7Z.Han andY. Chen: Differential Invariants of the (2 +1)-Dimensional Breaking Soliton Equation

I+I)I

3 030

QZIIIO D 1030 + ((4

7 4
6(D1030+6I§30)+ DIOHJI +(I +31 )DIHO

+101, =0,

I+I)I

DBZIIIO D, IlOZ +( D, IOO3 + (2 003 3 021

+= (I2 +D,I ))I1 += (31 +33 021)DI

021 021 110

a1 -6l 21 -t1 o,

21 2 012 2 030

1 7
D3ZI110 DIOIZ +(3 D, 1110 + I 6 (1012 _31030j1110]1012

5
I,+21I jIOO

2 003 3 021

+4[021 +21003 +( DI003 +(

1
+2 (D1021+I§21)j (31 + 331 jDIuo_O. (29)

Theorem 6. The differential invariants I, , I ,1 ., 1, I
and I, form a generating set for the algebra of differential
invariants for the symmetry pseudogroup of the breaking
soliton equation.

The recurrence formulas (26) and the generating
syzygies (29), along with the commutation relations (28),
serve to completely specify the structure of the differen-
tial invariant algebra for the breaking soliton equation.
Remember that so far we have only used the infinitesi-
mal determining equations and choice of cross-sectional
normalization to completely determine this intricate
structure. In the next part, the explicit formulas for the
symmetry pseudogroup transformations are constructed
to derive explicit formulas for the moving frame, the differ-
ential invariants, and the invariant differential operators.

4 A Moving Frame and
Invariantization

The solution to the infinitesimal determining (20) is
given by
=%/11t2+/12t+/13, g:%ulnzaz-zzs)xw,
N= Y+ 2 )+ A+ A,
(30)

1 1 1 1,
(p=—2(ilt+2/’{2 —2).5)”—2/14X—§11Xy—5y1: +G,

DE GRUYTER

where 4, i=1, 2, ---, 6 are constants, F=F(t), and
G=G(t) are arbitrary smooth functions. The prime is
used to denote derivative. According to the standard
algorithm for constructing a group action from the
infinitesimal generators, we get the following explicit
transformations:

2t+4,) ok,
) (t+2,)

_ J2(x+F)
QA+ A

1
S04

s

B 2('14”3""16)(3&5
C2-A(t+A)

J2 422, (t+2)K - /l(it+y+/1)(x+F) la, =

U=
8 Q-4 (t+2,)"

€3)

A
where K=u—%yF’—Z“(x+F)+G.

The lifted horizontal coframe associated to the pseu-
dogroup action (31) is given by

d,T= s —edt,
Q-4,(t+2)
N 20,-2,) A(x+F)
dX=— " e P00 \df+dx,
N CRYNTRUR) T2 ar )
2
dY=—"——e"((4(y+4)+4,2-14,))dt-dy), (32)

o 2-2(t+4,)
with dual lifted total differential operators

_)2 2 l 4 —
=Z Q2-A(t+2,))D, k=4 € Q2-A(t+4)

D, =L o i (t4a )"
= ¢ 2-4,(t+4,)
1
D, =e B@2-A,(t+2,)D,. (33)

Then the prolonged pseudogroup action of the sym-
metry algebra on submanifold jets can be obtained by
repeatedly applying the differential operators in (33) to U
in (31). For instance,
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T . 1
U =§e’s b ((2—/11(t+/l3))ux—4(/11(y+/16—/13/14)+2/14)),

X
. 2 %(Azms)
UY :Te

@-2,(t+2,))"

1) 4
((2—ll(t+;{3))(uy—2F )—4(X+F)j,
~ W2
—e

U. =

XX

oAt )

N 1 -/1 A
Uy =" 0= l(t+/1))((2 A+ A ), —4],

~

J2 ey
UYY =?e 2 (2—/11(t+}.3))5/2uyy,
J2 lag-sy )

SN2 (A,

XXy 8
g =1

etk Q-4+ )V U, (34)

XXXY 8

On the subset V= {uxxuyy> 0}, we can solve the normal-

ization equations (24) for the pseudogroup parameters

1
A =8u_, A 2ln(umuyy) A=

1y
14:411)(’ A, :Eln(uxi?’uyy)y 1’6:_y_4tux’
F=-x, F'= 2u, F”—2u -8uu, —4u u, -,
G=yuy_u’ =y(uty_4uxuyy)+2uy(ux_yuxy)_u“’

(35)

Substituting (35) into the jet coordinates of trans-
formed submanifold yields the normalized differential
invariants

I, =tw=0, I =i«u)=0,
I 10=L(ux)=0’ 1001

I =1(u,)=(u,

=L(uy)=0,

—4uu —2u u /6y 112

u,”,
Ly, =u(u,)=0, I, =uu,)=1,
Ly, =t(u,)=1, I, =uu )=0,
I, =tlu,, ) =u, uw ), e (36)

By substituting (35) into (33), we get the invariant dif-
ferential operators

D =(uu )"(D,- 2u D, ~4uD),

xxyy

u1/6u71/2D
XX yy

D,=u’D, D= 37)
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Finally, the (2+1)-dimensional breaking soliton equa-
tion (1) can be immediately rewritten in terms of the dif-
ferential invariants obtained by applying the induced
invariantization process ¢ to it:

-2u u-u_ )
XXy XXXy

—4uu —-2u u —u
XXy XXy

0=uu, - 4uu,

(38)
= 1110 _1031 =(u u,

)u77/6u71/2

xxy? xx Tyt

5 Conclusions

The equivariant moving frame method has been proven
to be a very powerful tool in studying the differential
invariants for Lie pseudogroups. In this paper, only using
the infinitesimal determining equations and choosing of
cross-sectional normalization, we have completely deter-
mined the algebra structure of differential invariant for
the breaking soliton equation. The complete classification
of the differential invariants, their syzygies, and recur-
rence relations are obtained. These results are useful in
performing a wide variety of applications of differential
invariants of the symmetry pseudogroup for the breaking
soliton equation. Furthermore, how to solve the original
equation via the differential invariants obtained, the rela-
tionship among Lax pairs, the Maurer-Cartan forms, and
the differential invariant algebra, which are interesting
and meaningful, deserves our further research.
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