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a b s t r a c t

The nonlocal symmetry of the Drinfeld–Sokolov–Satsuma–Hirota system is obtained
from the known Lax pair, and infinitely many nonlocal symmetries are given
by introducing the internal parameters. Then the nonlocal symmetry is localized
to a prolonged system by introducing suitable auxiliary dependent variables. By
applying the classical Lie symmetry method to this prolonged system, two main
results are obtained: a new type of finite symmetry transformation is derived, which
can generate new solutions from old ones; some exact interaction solutions among
solitons and other complicated waves including periodic cnoidal wave and Painlevé
waves are derived through similarity reductions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Drinfeld–Sokolov–Satsuma–Hirota (DSSH) system of coupled nonlinear evolution equations

ut = 1
2uxxx − 3uux + 3vx,

vt = −vxxx + 3uvx, (1)

which was proposed, independently, by Drinfeld and Sokolov [1], and by Satsuma and Hirota [2]. In [1],
the system (1) was developed as one example of nonlinear equations possessing Lax pairs of a special
form. In [2], this system was found as a special case of the four-reduction of the KP hierarchy, and its
one-soliton solution was given. In [3], a recursion operator and a bi-Hamiltonian structure for system (1)
was obtained, which provided the system with an infinite algebra of generalized symmetries and an infinite
set of conservations. In [4], an explicit Bäcklund transformation, which is in fact a superposition of two
simple Bäcklund transformations shown in [5], was constructed to derive special solutions of this system by
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the truncated singular expansions method. In [6], the sine–cosine method and the tanh method were used to
obtain exact traveling wave solutions. In [7], a class of sixth-order nonlinear wave equations was discussed,
which contains the DSSH system (1) as a special case by the Painlevé analysis. In [8], the Cole–Hopf
transformation, the tanh–coth method, and the exp-function method were used to obtain multiple singular
soliton solutions and singular periodic solutions. In [9], this system was shown to be one of the three nontrivial
reductions from a generalized Hirota–Satsuma coupled KdV equation. In [10], a Darboux transformation
was constructed with the aid of gauge transformation between the Lax pairs and some soliton solutions,
periodic solutions, rational solutions were obtained. In [11], the truncated Painlevé expansion was developed
to construct Bäcklund transformations, nonlocal symmetries and the soliton–cnoidal wave solutions were
explicitly obtained by the consistent Riccati expansion.

In this paper, we focus on the nonlocal symmetries [12–14] and similarity reductions of the DSSH system
(1). Compared with [11], infinitely many nonlocal symmetries, similarity reductions, and group invariant
solutions are obtained. The paper is organized as follows. In Section 2, the nonlocal symmetry of the DSSH
system is obtained from the Lax pair. Then the nonlocal symmetry is localized to Lie point symmetry by
prolonging the original system to a large system. In Section 3, the finite symmetry transformations and
similar reductions of the prolonged system are presented, and several new exact solutions of the original
system are derived. The last section contains a short summary and discussion.

2. Nonlocal symmetry and its localization

The Lax pair of the DSSH system (1) reads

ψxx =
(
u+ λ v

1 u− λ

)
ψ, ψt =

⎛⎝1
2ux −vx

0 1
2ux

⎞⎠ψ +
(

−u+ 2λ 2v
2 −u− 2λ

)
ψx,

we can rewrite the Lax pair in the following form

ψ1xx = (λ+ u)ψ1 + vψ2, ψ1t = 1
2uxψ1 − vxψ2 + (−u+ 2λ)ψ1x + 2vψ2x, (2)

ψ2xx = ψ1 − (λ− u)ψ2, ψ2t = 1
2uxψ2 + 2ψ1x − (u+ 2λ)ψ2x, (3)

where {u, v} is a solution of system (1), {ψ1, ψ2} is the spectral function and λ is a spectral parameter.

Proposition 1. If ψ1, ψ2 satisfy Lax pair (2)–(3) with λ = 0, then

σ = (σu, σv) ≡ (−2ψ2ψ2x, ψ1ψ2x − ψ2ψ1x), (4)

is a nonlocal symmetry of the DSSH system (1).

Remark 1. It is a fact that if ψ1, ψ2 satisfy Lax pair (2)–(3) with the arbitrary spectral parameter λ, σ
given by (4) is still a symmetry of the DSSH system (1). This fact can be verified by direct calculation.

From the method used in Refs. [15] and [16], more symmetries were constructed by differentiating a known
one with respect to inner parameters. Then one has the following proposition.

Proposition 2. If a λ-dependent function σ0(λ) is a symmetry of the DSSH system (1) with λ ≡
λ1, λ2, . . . , λr, then

σn ≡ d{n}

dλ{n}σ0(λ) ≡ d{n1}

dλ
{n1}
1

d{n2}

dλ
{n2}
2

· · · d
{nr}

dλ
{nr}
r

σ0(λ), (5)

is also a symmetry of the same DSSH system (1) for {n} ≡ {n1, n2, . . . , nr}.
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By Propositions 1 and 2, one can obtain infinitely many new nonlocal symmetries. For example, if we
take {ψ1, ψ2} and {ψ̄1, ψ̄2} are two solutions of Lax pair (2)–(3), then

σ(λ1, λ2) ≡ (σu(λ1, λ2), σv(λ1, λ2)), (6)

with

σu(λ1, λ2) = −2(λ1ψ2 + λ2ψ̄2)(λ1ψ2 + λ2ψ̄2)x,
σv(λ1, λ2) = (λ1ψ1 + λ2ψ̄1)(λ1ψ2 + λ2ψ̄2)x − (λ1ψ2 + λ2ψ̄2)(λ1ψ1 + λ2ψ̄1)x,

and ∂n1+n2
∂λ

n1
1 ∂λ

n2
2
σ(λ1, λ2) are also symmetries of the same DSSH system (1).

By introducing new dependent variables ϕ1 ≡ ϕ1(x, t) and ϕ2 ≡ ϕ2(x, t) with

ϕ1 = ψ1x, ϕ2 = ψ2x, (7)

the above symmetry (4) is converted into

σu = −2ψ2ϕ2, σv = ψ1ϕ2 − ψ2ϕ1. (8)

In order to compute local symmetries for the variables ψ1, ψ2, ϕ1, and ϕ2, we have to introduce another
potential variable p ≡ p(x, t). The variable p makes the prolonged system closed completely, and satisfies
the compatibility conditions:

px = ψ2
2 , pt = uψ2

2 − 2ϕ2
2 + 4ψ1ψ2. (9)

Then it can yield

σψ1 = −1
2pψ1, σψ2 = −1

2pψ2, σϕ1 = −1
2(ψ1ψ

2
2 + pϕ1), σϕ2 = −1

2(ψ3
2 + pϕ2), σp = −1

2p
2, (10)

where σψ1 , σψ2 , σϕ1 , σϕ2 , and σp denote the symmetries of ψ1, ψ2, ϕ1, ϕ2, and p, respectively.
Finally, the prolongation for nonlocal symmetry (4) is successfully localized with the vector form

V = −2ψ2ϕ2
∂

∂u
+ (ψ1ϕ2 − ψ2ϕ1) ∂

∂v
− 1

2pψ1
∂

∂ψ1
− 1

2pψ2
∂

∂ψ2

− 1
2(ψ1ψ

2
2 + pϕ1) ∂

∂ϕ1
− 1

2(ψ3
2 + pϕ2) ∂

∂ϕ2
− 1

2p
2 ∂

∂p
. (11)

Another meaningful point is that the introduced potential variable p just satisfies the Schwartz form
of (1)

2Ct + 2CCx − 2CSx − SSx + Cxxx − Sxxx = 0, (12)

where C = pt
px

and S = pxxx
px

− 3p2
xx

2p2
x

are all invariant under the Möbious transformation with transformation
(15)

p → a+ bp

c+ dp
(ad ̸= bc). (13)

Remark 2. The Schwartz form of a given differential equation is usually derived by utilizing singularity
analysis method. The above result is consistent with the Schwartz form [11] reduced by the truncated
Painlevé expansion.

3. Explicit solutions from nonlocal symmetry

After making the nonlocal symmetry (4) equivalent to Lie point symmetry (11), one can construct the
explicit solutions by Lie group theory in two aspects.
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3.1. Finite symmetry transformation

According to Lie point symmetry (11), by solving the following initial value problem:

dū(ϵ)
dϵ

= −2ψ̄2ϕ̄2,
dv̄(ϵ)
dϵ

= ψ̄1ϕ̄2 − ψ̄2ϕ̄1,
dψ̄1(ϵ)
dϵ

= −1
2 p̄ψ̄1,

dψ̄2(ϵ)
dϵ

= −1
2 p̄ψ̄2,

dϕ̄1(ϵ)
dϵ

= −1
2(ψ̄1ψ̄

2
2 + p̄ϕ̄1), dϕ̄2(ϵ)

dϵ
= −1

2(ψ̄3
2 + p̄ϕ̄2), dp̄(ϵ)

dϵ
= −1

2 p̄
2, (14)

ū(0) = u, v̄(0) = v, ψ̄1(0) = ψ1, ψ̄2(0) = ψ2, ϕ̄1(0) = ϕ1, ϕ̄2(0) = ϕ2, p̄(0) = p,

where ϵ is the group parameter, we arrive at the following symmetry group theorem:

Theorem 1. If {u, v, ψ1, ψ2, ϕ1, ϕ2, p} is a solution of the prolonged system consisting of (1)–(3), (7), and
(9) with λ = 0, then so is {ū, v̄, ψ̄1, ψ̄2, ϕ̄1, ϕ̄2, p̄} given by

ū = u− 4ϵψ2ϕ2

2 + ϵp
+ 2ϵ2ψ4

2
(2 + ϵp)2 , v̄ = v + 2ϵ(ψ1ϕ2 − ψ2ϕ1)

2 + ϵp
, ψ̄1 = 2ψ1

2 + ϵp
,

ψ̄2 = 2ψ2

2 + ϵp
, ϕ̄1 = 2ϕ1

2 + ϵp
− 2ϵψ1ψ

2
2

(2 + ϵp)2 , ϕ̄2 = 2ϕ2

2 + ϵp
− 2ϵψ3

2
(2 + ϵp)2 , p̄ = 2p

2 + ϵp
. (15)

Remark 3. For a given solution {u, v} of (1), the above finite symmetry transformation will denote another
solution {ū, v̄}. It is necessary to point out that the last equation of (15) is nothing but the corresponding
Möbious transformation.

3.2. Similarity reductions of the prolonged system

In order to find similarity reductions of (1), we employ the Lie symmetry method to the whole prolonged
system. Supposing Eqs. (1)–(3), (7), and (9) are invariant under the infinitesimal transformations

{x, t, u, v, ψ1, ψ2, ϕ1, ϕ2, p} → {x+ ϵX, t+ ϵT, u+ ϵU, v + ϵV, ψ1 + ϵΨ1, ψ2

+ ϵΨ2, ϕ1 + ϵΦ1, ϕ2 + ϵΦ2, p+ ϵP} (16)

with

σu = Xux + Tut − U, σv = Xvx + Tvt − V, σψ1 = Xψ1x + Tψ1t − Ψ1, σψ2 = Xψ2x + Tψ2t − Ψ2,

σϕ1 = Xϕ1x + Tϕ1t − Φ1, σϕ2 = Xϕ2x + Tϕ2t − Φ2, σp = Xpx + Tpt − P, (17)

where X,T, U, V,Ψ1,Ψ2,Φ1,Φ2, and P are functions with respect to {x, t, u, v, ψ1, ψ2, ϕ1, ϕ2, p}, and ϵ is a
small parameter.

Then substituting (17) into the linearized symmetry equations of the prolonged system

σut − 1
2σ

u
xxx + 3σu + 3uσux − 3σvx = 0, σvt + σvxxx − 3uσvx − 3σuvx = 0,

σψ1
xx − σuψ1 − uσψ1 − σvψ2 − vσψ2 = 0, σψ2

xx − σuψ2 − uσψ2 − σψ1 = 0,

σψ1
t − 1

2σ
u
xψ1 − 1

2uxσ
ψ1 + σvxψ2 + vxσ

ψ2 + σuψ1x + uσψ1
x − 2σvψ2x − 2vσψ2

x = 0, (18)

σψ2
t − 1

2σ
u
xψ2 − 1

2uxσ
ψ2 − 2σψ1

x + σuψ2x + uσψ2
x = 0, σψ1

x − σϕ1 = 0, σψ2
x − σϕ2 = 0,

σpx − 2σψ2ψ2 = 0, σpt − 2σψ2ψ2u− ψ2
2σ

u − 4σψ1ψ2 − 4ψ1σ
ψ2 + 4σϕ2ϕ2 = 0,
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so collecting coefficients of the variables and their partial derivatives, and setting all to zero, we obtain a
system of overdetermined linear equations of the infinitesimals {x, t, u, v, ψ1, ψ2, ϕ1, ϕ2, p}. By solving them,
one can get

X = c1x+ c2, T = 3c1t+ c4, U = −2c3ψ2ϕ2 − 2c1u, V = c3(ψ1ϕ2 − ψ2ϕ1) − 4c1v,

Ψ1 = −1
2c3pψ1 + c5ψ1, Ψ2 = −1

2c3pψ2 + (2c1 + c5)ψ2, Φ1 = −1
2c3(ψ1ψ

2
2 + pϕ1) + (c5 − c1)ϕ1, (19)

Φ2 = −1
2c3(ψ3

2 + pϕ2) + (c1 + c5)ϕ2, P = −1
2c3p

2 + (5c1 + 2c5)p+ c6,

where ci(i = 1 . . . 6) are six arbitrary constants. Especially, when c1 = c2 = c4 = c5 = c6 = 0, the obtained
symmetry is just Eq. (11), and when c3 = c5 = c6 = 0, the related symmetry is only the general Lie point
symmetry of (1).

To give more corresponding group invariant solutions, one need to solve the following characteristic
equations:

dx

X
= dt

T
= du

U
= dv

V
= dψ1

Ψ1
= dψ2

Ψ2
= dϕ1

Φ1
= dϕ2

Φ2
= dp

P
. (20)

Next, several different similarity reductions arising from (20) are considered under the condition c3 ̸= 0 in
detail.

Reduction 1. c1 ̸= 0. Without loss of generality, we assume c2 = c4 = c5 = 0 and redefine the parameter c
by c2 = 25c2

1+2c3c6
36c2

1
(c ̸= 0). By solving (20), we derive similarity solutions

u = U(z)
t

2
3

− c3

18c2c2
1t

2
3

exp
(

−2
3P (z)

)
Ψ2(z)(12cc1Φ2(z) tanh∆1 + c3Ψ

3
2 (z)sech2∆1),

v = V (z)
t

4
3

+ c3

3cc1t
4
3

exp
(

−4
3P (z)

)
(Ψ1(z)Φ2(z) − Ψ2(z)Φ1(z)) tanh∆1,

ψ1 = Ψ1(z)
t

5
6

exp
(

−5
6P (z)

)
sech∆1, ψ2 = Ψ2(z)

t
1
6

exp
(

−1
6P (z)

)
sech∆1, (21)

ϕ1 = 1
6cc1t

7
6

exp
(

−7
6P (z)

)
(6cc1Φ1(z) − c3Ψ1(z)Ψ2

2 (z) tanh∆1)sech∆1,

ϕ2 = 1
6cc1t

1
2

exp
(

−1
2P (z)

)
(6cc1Φ2(z) − c3Ψ

3
2 (z) tanh∆1)sech∆1, p = c1

c3
(5 + 6c tanh∆1),

with ∆1 = c(ln t+ P (z)), and the similarity variable z = x/ 3√t.
Here, U(z), V (z),Ψ1(z),Ψ2(z),Φ1(z),Φ2(z), P (z), and z in (21) represent eight group invariants and

substituting (21) into the prolonged system yields

U(z) = Ψ2zz(z)
Ψ2(z) − exp

(
−2

3P (z)
)

Ψ1(z)
Ψ2(z) − c3

9c1c2 exp
(

−1
3P (z)

)
Ψ2(z)Ψ2z(z)

+ c2
3(1 + 12c2)

432c2
1c

4 exp
(

−2
3P (z)

)
Ψ4

2 (z),

V (z) = exp
(

−2
3P (z)

) (
Ψ1zz(z)
Ψ2(z) − Ψ1(z)Ψ2zz(z)

Ψ2
2 (z)

)
− c3

18c1c2 exp(−P (z))(Ψ1(z)Ψ2z(z)

−Ψ1z(z)Ψ2(z)) + exp
(

−4
3P (z)

) (
Ψ2

1 (z)
Ψ2

2 (z) + 2c2
3

81c2
1c

4Ψ1(z)Ψ3
2 (z)

)
,

Ψ1(z) = cc1 exp(P (z))Q(z)√
6c1c3 exp

( 1
3P (z)

)
Pz(z)

, Ψ2(z) = c

c3

√
6c1c3 exp

(
1
3P (z)

)
Pz(z), (22)
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Φ1(z) = exp
(

1
3P (z)

)
Ψ1z(z) − 5c3

36c1c2Ψ1(z)(Ψ2
2 (z)), Φ2(z) = exp

(
1
3P (z)

)
Ψ2z(z) − c3

36c1c2 (Ψ3
2 (z)),

where Pz(z) ≡ P1(z) and Q(z) satisfy the ordinary differential equations

6P1(z)P1zz(z) − 9P 2
1z(z) + 4P 2

1 (z)z − 12P1(z) + 6P1(z)Q(z) − 12c2P 4
1 (z) = 0,

6P 2
1 (z)Qzzz(z) − 18P1(z)P1z(z)Qzz(z) + 4P 2

1 (z)Qz(z)z + 18P1(z)Q(z)Qz(z) + 9P 2
1z(z)Qz(z)

− 18P1(z)Qz(z) − 12P1z(z)Q2(z) + 18P1z(z)Q(z) − 36c2P 4
1 (z)Qz(z) = 0. (23)

It appears naturally that when P1(z) and Q(z) are solved from Eqs. (23), the explicit solutions of (1) would
be immediately obtained through Eqs. (21) with Eqs. (22) and (23).

Reduction 2. c1 = 0. Without loss of generality, let c4 = 1 and redefine the parameter k by k2 = c2
5 + 1

2c3c6
(k ̸= 0). By solving (20), we derive similarity solutions

u = U(z) − 2c3

k
Ψ2(z)Φ2(z) tanh∆2 − c2

3
2k2Ψ

4
2 (z)sech2∆2,

v = V (z) + c3

k
(Ψ1(z)Φ2(z) − Ψ2(z)Φ1(z)) tanh∆2,

ψ1 = Ψ1(z)sech∆2, ψ2 = Ψ2(z)sech∆2, ϕ1 =
(
Φ1(z) − c3

2kΨ1(z)Ψ2
2 (z) tanh∆2

)
sech∆2, (24)

ϕ2 =
(
Φ2(z) − c3

2kΨ
3
2 (z) tanh∆2

)
sech∆2, p = 2

c3
(c5 + k tanh∆2),

with ∆2 = k(t+ P (z)), and the similarity variable z = x− c2t.
Substituting (24) into the prolonged system yields

U(z) = Ψ2zz(z)
Ψ2(z) − Ψ1(z)

Ψ2(z) + c2
3
k2Ψ

4
2 (z),

V (z) = Ψ1zz(z)
Ψ2(z) − Ψ1(z)Ψ2zz(z)

Ψ2
2 (z) + Ψ2

1 (z)
Ψ2

2 (z) ,

Φ1(z) = Ψ1z(z), Φ2(z) = Ψ2z(z),

Ψ1(z) = kQ(z)√
2c3Pz(z)

, Ψ2(z) =
k
√

2c3Pz(z)
c3

,

Q(z) = 2
3(1 − c2P1(z) + k2P 3

1 (z)) + 1
2
P 2

1z(z)
P1(z) − 1

3P1zz(z),
(25)

where Pz(z) ≡ P1(z) satisfy the ordinary differential equation

P 2
1z(z) = −2P1z(z) + (4c2 + 6)P 2

1z(z) + a3P
3
1z(z) + 4c2P 4

1z(z). (26)

After summarizing the above formulas, the explicit solution of (1) would be immediately obtained. The
dynamic behaviors are illustrated in Fig. 1 by solving Eq. (26) with a special case. This kind of solution can
be easily applicable to the analysis of interesting physical phenomenon. In fact, there are full of the solitary
waves and the cnoidal periodic waves in the real physics world.

4. Summary and discussion

In summary, the nonlocal symmetry of the DSSH system is obtained from the Lax pair, and infinitely
many nonlocal symmetries are obtained by introducing the internal parameters. Then the nonlocal symmetry
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Fig. 1. The wave propagation plots of the DSSH system for solutions u and v with the solution of Eq. (26) are given as
P1(z) = 1

µ0+µ1sn2(mz,n) and the parameters m = 1, n = 1
2 , µ0 = 1, µ1 = − 1

2 , c2 = − 5
4 , k = 1. (a) and (d) The wave propagation

pattern of the wave along x axis at t = 0; (b) and (e) The wave propagation pattern of the wave along t axis at x = 0; (c) and (f)
The three-dimensional plot of the corresponding solution.

is successfully localized to a prolonged system and the Schwartz form of the DSSH system reduced by the
nonlocal symmetry from Lax pair is consistent with the truncated Painlevé expansion, which provides us a
way to obtain the Schwartz form of integrable models. Meanwhile, the nonlocal symmetry is just related to
the Möbious transformation of the Schwartz form. By using Lie point symmetry method, finite symmetry
transformations and similarity reductions of the prolonged system are considered, several exact interaction
solutions among solitons and other waves including periodic cnoidal waves, rational waves, and Painlevé
waves are presented. These kinds of solutions can be easily applied to the analysis of many interesting
physical phenomena, and this may provide us with a way to construct some new solutions for the integrable
models with the known Lax pair. The details deserve further exploration in the future.
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