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Abstract

In this paper, the generalized Darboux transformation is established to the AB system, which mainly describes

marginally unstable baroclinic wave packets in geophysical fluids and ultra-short pulses in nonlinear optics. A

unified formula of Nth-order rogue wave solution for the AB system is found by the direct iterative rule. In

particular, rogue wave solutions possessing several free parameters from first to second order are calculated. The

dynamic properties of rogue waves in the AB system are shown through some figures.
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1. Introduction

In geophysical fluid dynamics, the process by which the available potential energy of a rotating stratified fluid

may be converted into the kinetic energy of a growing disturbance is called Baroclinic instability [1–5]. Some

important baroclinic wave packets equations have attracted widespread attention in recent decades, such as the two

and the three-layer Phillips models [4, 5], the (2+1)-dimensional two-layer equations [6, 7], the (2+1) and (3+1)-

dimensional baroclinic potential vorticity equations [8, 9] and the AB system [1]. Among them, the AB system

serves as model equations to describe marginally unstable baroclinic wave packets in geophysical fluids [10]. It was

firstly proposed by Pedlosky through using the singular perturbation theory [1], and is also important to describe

ultra-short optical pulse propagation in nonlinear optics [2], to illustrate mesoscale gravity current transmission on

a sloping bottom in the problem of cold gravity current [3]. So far, there has been surge of interest in studying

the dynamic properties of the AB system, such as the single-phase periodic solution depending on a complete

set of four complex parameters [11], the envelope solitary waves and periodic waves [10], the Painlevé analysis

and conservation laws of the variable-coefficient AB system [12], the soliton and breather solutions through the

classical Darboux transformation [13], and the N-soliton solutions by using the dressing method [14].

To our knowledge, there are no reports on rogue wave solutions of the AB system up to the present. While

in the past five years, rogue waves (also known as freak waves, monster waves, killer waves, rabid-dog waves

and similar names) have become a hot spot in many research fields [15–18]. Rogue waves were first observed

in deep ocean, they constitute a frightening phenomenon which can lead to water walls as tall as 20-30 m and

represent a threat for large boats and mariners [19]. A wave can be classified into this category when it has

height and steepness much greater than the average crest, and appears from nowhere and disappears without a

trace [20]. So far, rogue waves have also appeared in the fields of optics [21], atmosphere [22], Bose-Einstein

condensates [23], superfluid [24], capillary flow [25] and even finance [26] and so on [27]. Rogue waves are

localized in both space and time, and it is known that the rational form solution can describe rogue waves well

in mathematics [20]. Many nonlinear Schrödinger (NLS)-type equations, for instance, the standard NLS equation

[17, 28–32], the Hirota equation [33], the Sasa-Satsuma equation [34], the high-order dispersive generalized NLS

equation [35], the variable coefficient NLS equation [36], the discrete NLS equation [37], the Manakov equations

[27, 38, 39], the coupled Hirota equations [40], the three-component NLS equations [41] have been confirmed to

possess lower or high-order rogue waves of diverse structures. Nevertheless, there are relatively fewer papers on

rogue waves for the non-NLS-type equations, and a complete understanding of the mysterious and catastrophic

rogue wave phenomenon is still far from been achieved, due to the difficult and hazardous observational conditions

[20]. Therefore, it is of great interest to investigate rogue wave solutions of the non-NLS-type AB system, which
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may be helpful to better understand the dynamic properties of the complicated rogue wave phenomenon in fluid

mechanics and atmosphere.

In this paper, we take the AB system in canonical form [11]

Axt = AB, (1)

Bx = −
1

2
(|A|2)t, (2)

where x and t are semi-characteristic normalized coordinates, A and B are the wave amplitudes yielding the nor-

malization condition

|At |2 + B2
= 1. (3)

When A is the real value, Eqs. (1) and (2) can be transformed into the sine-Gordon equation, and when A is the

complex value, the self-induced transparency system [2, 11].

The aim of the present paper is to research Eqs. (1) and (2) through the so-called generalized Darboux transfor-

mation (DT) proposed by Guo, Ling and Liu [29], which is a powerful tool to derive general rogue wave solutions

of many nonlinear equations, the NLS equation [29], the derivative NLS equation [42], the Manakov equations

[43], etc. Based on the generalized DT, we construct a unified formula of Nth-order rogue wave solution for Eqs.

(1) and (2) by the direct iterative rule. As application, rogue waves in Eqs. (1) and (2) from first to second order

are studied. The first-order rogue wave of fundamental pattern, the second-order rogue waves of fundamental and

triangular patterns are displayed by choosing different parameters, respectively.

Our paper is organized as follows. In section 2, we construct the generalized DT to Eqs. (1) and (2) under

the normalization condition (3), then a unified formula of Nth-order rogue wave solution for Eqs. (1) and (2) is

obtained by the direct iterative rule. In section 3, the dynamic properties of rogue waves in Eqs. (1) and (2) from

first to second order are illustrated through some figures. In section 4, we give the conclusion.

2. Generalized Darboux transformation

In this section, we start from the Lax pair of Eqs. (1) and (2), which reads [11]

Ψx = UΨ, U =

(

−iλ 1
2
A

− 1
2
A∗ iλ

)

, (4)

Ψt = VΨ, V =
1

4iλ

(

−B At

A∗t B

)

, (5)

where Ψ = (ψ(x, t), φ(x, t))T is the vector eigenfunction, λ is the spectral parameter, and asterisk denotes the

complex conjugation. It could be easily verified that the compatibility condition Ut −Vx +UV −VU = 0 gives rise

to Eqs. (1) and (2).

Next, let Ψ1 = (ψ1, φ1)T be a basic solution of the Lax pair (4) and (5) with A = A[0], B = B[0] and λ = λ1.

Thus, on basis of the above lax pair, the classical DT [44, 45] of Eqs. (1) and (2) can be built [13]

Ψ[1] = T [1]Ψ, T [1] = λI − H[0]Λ1H[0]−1, (6)

A[1] = A[0] − 4i(λ1 − λ∗1)
ψ1[0]φ1[0]∗

(|ψ1[0]|2 + |φ1[0]|2)
, (7)

B[1] = B[0] − 4i(λ1 − λ∗1)
[|ψ1[0]|2(|φ1[0]|2)t − |φ1[0]|2(|ψ1[0]|2)t]

(|ψ1[0]|2 + |φ1[0]|2)2
, (8)

where ψ1[0] = ψ1, φ1[0] = φ1,

I =

(

1 0

0 1

)

, H[0] =

(

ψ1[0] φ1[0]∗

φ1[0] −ψ1[0]∗

)

, Λ1 =

(

λ1 0

0 λ∗
1

)

.

In the following, suppose Ψl = (ψl, φl)
T , 1 ≤ l ≤ N be a basic solution of the Lax pair (4) and (5) with A = A[0],
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B = B[0] and λ = λl. Then the N-step classical DT of Eqs. (1) and (2) can be naturally given as follows

Ψ[N] = T [N]T [N − 1] · · · T [1]Ψ, T [l] = λI − H[l − 1]ΛlH[l − 1]−1, (9)

A[N] = A[N − 1] − 4i(λN − λ∗N)
ψN[N − 1]φN[N − 1]∗

(|ψN[N − 1]|2 + |φN[N − 1]|2)
, (10)

B[N] = B[N − 1] − 4i(λN − λ∗N)
[|ψN[N − 1]|2(|φN[N − 1]|2)t − |φN[N − 1]|2(|ψN[N − 1]|2)t]

(|ψN[N − 1]|2 + |φN[N − 1]|2)2
, (11)

where

H[l − 1] =

(

ψl[l − 1] φl[l − 1]∗

φl[l − 1] −ψl[l − 1]∗

)

, Λl =

(

λl 0

0 λ∗
l

)

,

with (ψl[l − 1], φl[l − 1])T
= Ψl[l − 1], and

Ψl[l − 1] = Tl[l − 1]Tl[l − 2] · · · Tl[1]Ψl, Tl[k] = T [k]|λ=λl
, 1 ≤ l ≤ N, 1 ≤ k ≤ l − 1.

According to the above facts, the generalized DT can be derived for Eqs. (1) and (2). To this end, let Ψ1(λ1+δ)

be a special solution of the Lax pair (4) and (5) with A[0], B[0] and λ = λ1 + δ, and it can be expanded as Taylor

series at δ = 0, that is

Ψ1 = Ψ
[0]

1
+ Ψ

[1]

1
δ + Ψ

[2]

1
δ2
+ Ψ

[3]

1
δ3
+ · · · + Ψ[N]

1
δN
+ o(δN), (12)

where Ψ
[k]

1
= (ψ

[k]

1
, φ

[k]

1
)T
= lim

δ→0

1
k!
∂k
Ψ1

∂δk , k = 0, 1, 2, · · · .

Afterwards, it is easy to find that Ψ
[0]

1
is a special solution of the Lax pair (4) and (5) with A = A[0], B = B[0]

and λ = λ1. Hence, by means of the formulas (6)-(8), the first-step generalized DT of Eqs. (1) and (2) can be

directly given.

(1) The first-step generalized DT

Ψ[1] = T [1]Ψ, T [1] = λI − H[0]Λ1H[0]−1, (13)

A[1] = A[0] − 4i(λ1 − λ∗1)
ψ1[0]φ1[0]∗

(|ψ1[0]|2 + |φ1[0]|2)
, (14)

B[1] = B[0] − 4i(λ1 − λ∗1)
[|ψ1[0]|2(|φ1[0]|2)t − |φ1[0]|2(|ψ1[0]|2)t]

(|ψ1[0]|2 + |φ1[0]|2)2
, (15)

where ψ1[0] = ψ
[0]

1
, φ1[0] = φ

[0]

1
,

H[0] =

(

ψ1[0] φ1[0]∗

φ1[0] −ψ1[0]∗

)

, Λ1 =

(

λ1 0

0 λ∗
1

)

.

(2) The second-step generalized DT

It is clear that T [1]Ψ1 is a basic solution of the Lax pair (4) and (5) with A[1], B[1] and λ = λ1 + δ. So that, by

using the identity T1[1]Ψ
[0]

1
= 0, the following limit process

lim
δ→0

T [1]|λ=λ1+δΨ1

δ
= lim

δ→0

(δ + T1[1])Ψ1

δ
= Ψ

[0]

1
+ T1[1]Ψ

[1]

1
≡ Ψ1[1]

provides a nontrivial solution of the Lax pair (4) and (5) with A[1], B[1], λ = λ1, and can be adopted to do the

second-step generalized DT, i.e.

Ψ[2] = T [2]T [1]Ψ, T [2] = λI − H[1]Λ2H[1]−1, (16)

A[2] = A[1] − 4i(λ1 − λ∗1)
ψ1[1]φ1[1]∗

(|ψ1[1]|2 + |φ1[1]|2)
, (17)

B[2] = B[1] − 4i(λ1 − λ∗1)
[|ψ1[1]|2(|φ1[1]|2)t − |φ1[1]|2(|ψ1[1]|2)t]

(|ψ1[1]|2 + |φ1[1]|2)2
, (18)
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where (ψ1[1], φ1[1])T
= Ψ1[1],

H[1] =

(

ψ1[1] φ1[1]∗

φ1[1] −ψ1[1]∗

)

, Λ2 =

(

λ1 0

0 λ∗
1

)

.

(3) The third-step generalized DT

In the same way, with the aid of the identities

T1[1]Ψ
[0]

1
= 0, T1[2](Ψ

[0]

1
+ T1[1]Ψ

[1]

1
) = 0,

we get the following limit process

lim
δ→0

[T [2]T [1]]|λ=λ1+δΨ1

δ2
= lim

δ→0

(δ + T1[2])(δ + T1[1])Ψ1

δ2
= Ψ

[0]

1
+ (T1[2] + T1[1])Ψ

[1]

1
+ T1[2]T1[1]Ψ

[2]

1
≡ Ψ1[2],

which is a nontrivial solution of the Lax pair (4) and (5) with A[2], B[2], λ = λ1, and can lead to the third-step

generalized DT, namely,

Ψ[3] = T [3]T [2]T [1]Ψ, T [3] = λI − H[2]Λ3H[2]−1, (19)

A[3] = A[2] − 4i(λ1 − λ∗1)
ψ1[2]φ1[2]∗

(|ψ1[2]|2 + |φ1[2]|2)
, (20)

B[3] = B[2] − 4i(λ1 − λ∗1)
[|ψ1[2]|2(|φ1[2]|2)t − |φ1[2]|2(|ψ1[2]|2)t]

(|ψ1[2]|2 + |φ1[2]|2)2
, (21)

where (ψ1[2], φ1[2])T
= Ψ1[2],

H[2] =

(

ψ1[2] φ1[2]∗

φ1[2] −ψ1[2]∗

)

, Λ3 =

(

λ1 0

0 λ∗
1

)

.

(4) The N-step generalized DT.

Iterating the above process N times, we arrive at the N-step generalized DT of Eqs. (1) and (2)

Ψ1[N − 1] = Ψ
[0]

1
+

N−1
∑

l=1

T1[l]Ψ
[1]

1
+

N−1
∑

l=1

l−1
∑

k=1

T1[l]T1[k]Ψ
[2]

1
+ · · · + T1[N − 1]T1[N − 2] · · · T1[1]Ψ

[N−1]

1
,

Ψ[N] = T [N]T [N − 1] · · · T [1]Ψ, T [N] = (λI − H[N − 1]ΛN H[N − 1]−1), (22)

A[N] = A[N − 1] − 4i(λ1 − λ∗1)
ψ1[N − 1]φ1[N − 1]∗

(|ψ1[N − 1]|2 + |φ1[N − 1]|2)
, (23)

B[N] = B[N − 1] − 4i(λ1 − λ∗1)
[|ψ1[N − 1]|2(|φ1[N − 1]|2)t − |φ1[N − 1]|2(|ψ1[N − 1]|2)t]

(|ψ1[N − 1]|2 + |φ1[N − 1]|2)2
, (24)

where (ψ1[N − 1], φ1[N − 1])T
= Ψ1[N − 1],

H[l − 1] =

(

ψ1[l − 1] φ1[l − 1]∗

φ1[l − 1] −ψ1[l − 1]∗

)

, Λl =

(

λ1 0

0 λ∗
1

)

, 1 ≤ l ≤ N.

For better applying the above formulas to generate rogue wave solutions of the AB system, we rewrite (23) and

(24) as

A[N] = A[0] − 4i(λ1 − λ∗1)

N−1
∑

j=0

ψ1[ j]φ1[ j]∗

(|ψ1[ j]|2 + |φ1[ j]|2)
, (25)

B[N] = B[0] − 4i(λ1 − λ∗1)

N−1
∑

j=0

[|ψ1[ j]|2(|φ1[ j]|2)t − |φ1[ j]|2(|ψ1[ j]|2)t]

(|ψ1[ j]|2 + |φ1[ j]|2)2
. (26)

Hence, according to the generalized DT of the NLS equation [29], we know that (25) and (26) give rise to a unified
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formula of Nth-order rogue wave solution for Eqs. (1) and (2) by the direct iterative rule, and can be converted into

the 2N × 2N determinant representation. But, to avoid the calculation of the determinant of a matrix of very high

order, we prefer to use Darboux transformations of degree one successively instead of a Darboux transformation

of higher degree with determinant representation. In the next section, the formulas (25) and (26) will be applied to

work out the explicit rogue wave solutions of Eqs. (1) and (2), the dynamic properties of rogue waves in Eqs. (1)

and (2) from first to second order are illustrated through some figures.

3. Rogue wave solutions

From the above section, we can observe that acquiring the adequate initial eigenfunction under the seed solu-

tions enables us to generate rogue wave solutions of Eqs. (1) and (2). To this end, we start from the periodic plane

waves

A[0] = eiθ, B[0] = −
a

√
1 + a2

, (27)

where θ =
(a
√

1 + a2x + t)
√

1 + a2
, and a is a real constant. After that, inserting (27) into the Lax pair (4) and (5) and

solving it, we have

Ψ1 =

(

(C1eM −C2e−M)e
i
2
θ

(C1e−M −C2eM)e−
i
2
θ

)

, (28)

where

C1 =
(2λ + a −

√
4λ2 + 4aλ + 1 + a2)

1
2

√
4λ2 + 4aλ + 1 + a2

, C2 =
(2λ + a +

√
4λ2 + 4aλ + 1 + a2)

1
2

√
4λ2 + 4aλ + 1 + a2

,

and

M =
i

4
√

1 + a2λ

√
4λ2 + 4aλ + 1 + a2(2

√
1 + a2λx + t +

N
∑

k=1

sk f 2k).

Here f is a small real parameter, sk = mk + ink, (mk, nk ∈ R). Next, we fix λ1 = −
a

2
+

i

2
, and set λ = −

a

2
+

i

2
+ f 2

in (28). Then, the vector function Ψ1 can be expanded as Taylor series at f = 0, that is

Ψ1( f ) = Ψ
[0]

1
+ Ψ

[1]

1
f 2
+ Ψ

[2]

1
f 4
+ · · · , (29)

here we firstly present the explicit expression of Ψ
[0]

1

ψ
[0]

1
= −

√
2

2
√

1 + a2(i − a)
p

[0]

1
e

i
2
θ, φ

[0]

1
=

√
2

2
√

1 + a2(i − a)
p

[0]

2
e−

i
2
θ, (30)

where
p

[0]

1
= (1 − i)

√
1 + a2(i − a)x + (1 − i)t + (1 − i)

√
1 + a2(i − a),

p
[0]

2
= (1 − i)

√
1 + a2(i − a)x + (1 − i)t − (1 − i)

√
1 + a2(i − a).

With the aid of the symbolic computation tool Maple, it is easy to verify that Ψ
[0]

1
= (ψ

[0]

1
, φ

[0]

1
)T is a nontrivial

solution of the Lax pair (4) and (5) with the seed solutions (27) and the fixed spectral parameter λ1 = −
a

2
+

i

2
. So

that, by means of the formulas (25) and (26) with N = 1, we have

A[1] = eiθ(1 +
F1 + iH1

D1

), B[1] =
1

√
1 + a2

G1

D2
1

, (31)

where

F1 = (2a4
+ 4a2

+ 2)x2 − 4
√

1 + a2axt + 2t2 − 2a4 − 4a2 − 2, H1 = 4
√

1 + a2t,

D1 = −(a4
+ 2a2

+ 1)x2
+ 2a

√
1 + a2xt − t2 − a4 − 2a2 − 1,

G1 = −a(a2
+ 1)4x4

+ 4a2(a2
+ 1)5/2tx3 − 2a(a2

+ 1)((3a2
+ 1)t2

+ a6
+ 5a4

+ 7a2
+ 3)x2

+

4
√

1 + a2(a2t2
+ a6
+ 4a4

+ 5a2
+ 2)xt − at4 − (2a5

+ 8a3
+ 6a)t2 − a9

+ 6a5
+ 8a3

+ 3a,

5



  

which is nothing but the first-order rogue wave solution of the AB system. Now we discuss dynamic properties of

the solution (31), see Figs. 1-2.

For A component, from Figs. 1 (a) and 2 (a), we see that the first-order rogue wave in A component is just the

standard eye-shaped Peregrine soliton like the NLS equation [17], there is one highest peak at the center (0,0), the

maximum value of the peak is three times higher than the background crest.

However, for B component the situation is quite different. From Figs. 1 (b) and 2 (b), we see that the first-order

rogue wave in B component is actually a four peaky-shaped rogue wave, in contrast to the standard eye-shaped

Peregrine soliton in NLS equation. There are four highest peaks around the center (0,0), whose coordinates are

(0.6669,0.6736), (-0.7384,0.7458), (-0.6669,-0.6736) and (0.7384,-0.7458). And the maximum value of these four

highest peaks is uniformly 1, which is ten times higher than the background crest. The reason for this interesting

structure can also be theoretically explained by the concrete expression of B[1], since orders of the numerator and

the denominator in B[1] are both four. This is different from the first-order rational solution of the NLS equation,

and the similar circumstances can also be found in the p and η components of the Hirota and the Maxwell-Bloch

(H-MB) system [46].

Next, in order to obtain the second-order rogue wave solution of Eqs. (1) and (2), Ψ
[1]

1
should be used to

construct the generating function,

ψ
[1]

1
=

√
2(1 + i)

12(i − a)3(1 + a2)3/2
p

[1]

1
e

i
2
θ, φ

[1]

1
= −

√
2(1 + i)

12(i − a)3(1 + a2)3/2
p

[1]

2
e−

i
2
θ,

where

p
[1]

1
=

√
1 + a2(i − a)[(a4 − 2ia3 − 2ia − 1)x3

+ (3a4 − 6ia3 − 6ia − 3)x2
+ (3a4 − 6ia3 − 6ia − 3)x

+ (3x + 3)t2 − 3a4
+ 6ia3

+ 6ia + 3] + t3
+ ((3a4 − 6ia3 − 6ia − 3)x2

+ (6a4 − 12ia3 − 12ia − 6)x

+ 3a4
+ 6ia3

+ 12a2
+ 6ia + 9)t + 6im1a4 − 6n1a4

+ 12in1a3
+ 12m1a3

+ 12in1a + 12m1a − 6im1

+ 6n1,

p
[1]

2
=

√
1 + a2(i − a)[(a4 − 2ia3 − 2ia − 1)x3 − (3a4 − 6ia3 − 6ia − 3)x2

+ (3a4 − 6ia3 − 6ia − 3)x

+ (3x − 3)t2
+ 3a4 − 6ia3 − 6ia − 3] + t3

+ ((3a4 − 6ia3 − 6ia − 3)x2 − (6a4 − 12ia3 − 12ia − 6)x

+ 3a4
+ 6ia3

+ 12a2
+ 6ia + 9)t + 6im1a4 − 6n1a4

+ 12in1a3
+ 12m1a3

+ 12in1a + 12m1a − 6im1

+ 6n1.

By using the following limit process

lim
f→0

T [1]|λ=−a/2+i/2+ f 2Ψ1

f 2 = lim
f→0

( f 2
+ T1[1])Ψ1

f 2 = Ψ
[0]

1
+ T1[1]Ψ

[1]

1
≡ Ψ1[1],

we have

ψ1[1] =

√
2(−1 + i)

6(i − a)2(1 + a2)3/2D1

ρ1e
i
2
θ, φ1[1] =

√
2(−1 + i)

6(i − a)2(1 + a2)3/2D1

ρ2e−
i
2
θ, (32)

where

ρ1 =

√
1 + a2[(−a8

+ 2ia7 − 2a6
+ 6ia5

+ 6ia3
+ 2a2

+ 2ia + 1)x4
+ (−2a8

+ 4ia7 − 4a6
+ 12ia5

+ 12ia3

+ 4a2
+ 4ia + 2)x3

+ (−6a8
+ 12ia7 − 12a6

+ 36ia5
+ 36ia3

+ 12a2
+ 12ia + 6)x − t4

+ ((−6a4
+ 6ia3

− 6a2
+ 6ia)x2

+ (−6a4
+ 12ia3

+ 12ia + 6)x + 6ia3
+ 6a2

+ 6ia + 6)t2
+ (3im1a4 − 3n1a4

+ 6m1a3

+ 6in1a3
+ 6in1a + 6m1a − 3im1 + 3n1)t − 3a8

+ 6ia7 − 6a6
+ 18ia5

+ 18ia3
+ 6a2

+ 6ia + 3] + (3n1a7

− 3im1a7 − 3m1a6 − 3in1a6
+ 9n1a5 − 9im1a5 − 9m1a4 − 9in1a4 − 9im1a3

+ 9n1a3 − 9in1a2 − 9m1a2

+ 3n1a − 3im1a − 3m1 − 3in1)x + ((4a3 − 2ia2
+ 4a − 2i)x + 2a3 − 4ia2

+ 2a − 4i)t3
+ ((4a7 − 6ia6

+ 8a5 − 14ia4
+ 4a3 − 10ia2 − 2i)x3

+ (6a7 − 12ia6
+ 6a5 − 24ia4 − 6a3 − 12ia2 − 6a)x2 − (6ia6

+ 18ia4
+ 18ia2

+ 6i)x + 6a7
+ 18a5

+ 18a3
+ 6a)t + 3im1a7 − 3n1a7

+ 3m1a6
+ 3in1a6 − 9n1a5

+ 9im1a5
+ 9m1a4

+ 9in1a4
+ 9im1a3 − 9n1a3

+ 9in1a2
+ 9m1a2 − 3n1a + 3im1a + 3m1 + 3in1,

ρ2 =

√
1 + a2[(−a8

+ 2ia7 − 2a6
+ 6ia5

+ 6ia3
+ 2a2

+ 2ia + 1)x4
+ (2a8 − 4ia7

+ 4a6 − 12ia5 − 12ia3

− 4a2 − 4ia − 2)x3
+ (6a8 − 12ia7

+ 12a6 − 36ia5 − 36ia3 − 12a2 − 12ia − 6)x − t4
+ ((−6a4

+ 6ia3

− 6a2
+ 6ia)x2

+ (6a4 − 12ia3 − 12ia − 6)x + 6ia3
+ 6a2

+ 6ia + 6)t2
+ (3im1a4 − 3n1a4

+ 6in1a3

+ 6m1a3
+ 6m1a + 6in1a3n1 − 3im1)t − 3a8

+ 6ia7 − 6a6
+ 18ia5

+ 18ia3
+ 6a2

+ 6ia + 3] + (3n1a7

− 3im1a7 − 3in1a6 − 3m1a6 − 9im1a5
+ 9n1a5 − 9in1a4 − 9m1a4 − 9im1a3

+ 9n1a3 − 9m1a2 − 9in1a2
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− 3im1a + 3n1a − 3m1 − 3in1)x + ((4a3 − 2ia2
+ 4a − 2i)x − 2a3

+ 4ia2 − 2a + 4i)t3
+ ((4a7 − 6ia6

+ 8a5 − 14ia4
+ 4a3 − 10ia2 − 2i)x3

+ (−6a7
+ 12ia6 − 6a5

+ 24ia4
+ 6a3

+ 12ia2
+ 6a)x2 − (6ia6

+ 18ia4
+ 18ia2

+ 6i)x − 6a7 − 18a5 − 18a3 − 6a)t − 3im1a7
+ 3n1a7 − 3m1a6 − 3in1a6

+ 9n1a5

− 9im1a5 − 9m1a4 − 9in1a4 − 9im1a3
+ 9n1a3 − 9in1a2 − 9m1a2

+ 3n1a − 3im1a − 3m1 − 3in1,

then a special solution of the Lax pair (4) and (5) with A[1], B[1] and λ = λ1 = −a/2 + i/2 can be obtained.

Hence, the second-order rogue wave solution of Eqs. (1) and (2) can be given by substituting (27), (30) and (32)

into (25) and (26) with N = 2. Here we omit the explicit expressions of A[2] and B[2] because it is rather tedious

and inconvenient to write them down here, but it is not difficult to verify that they satisfy Eqs. (1), (2) and (3) with

the help of Maple. Finally, we show some interesting structures and dynamic properties of the second-order rogue

waves, see Figs. 3-6.

For A component, like the first-order case, we say that it has absolutely identical shape with the second-

order rogue wave of NLS equation. When m1 = 0, n1 = 0, the fundamental second-order rogue wave can be

presented, see Figs. 3 (a) and 4 (a). Here, the maximum amplitude is arrived at the center (0,0), and its value

is five times higher than the background crest. When m1 = 500, n1 = 0, the second-order rogue wave in A

component of triangular pattern can be generated, see Fig. 5 (a) and 6 (a). The maximum amplitude 3 is achieved

at (11.4405,0.3733), (-4.9500,9.7731) and (-6.2283,-10.1196).

For B component, the situation becomes complicated. When m1 = 0, n1 = 0, we obtain the fundamental

second-order rogue wave, see Figs. 3 (b) and 4 (b). In this case, The maximum value of the peak is also 1

like the first-order case, while instead of four highest peaks, there are twelve highest peaks around the center

(0,0). The coordinates are (0.3943,0.3983), (-0.3750,0.3787), (0.5101,2.0165), (-0.5845,2.1537), (1.9965,0.5152),

(-2.1323,0.5903) and their symmetric points about the original point. When m1 = 500, n1 = 0, we get the second-

order rogue wave in B component of triangular pattern, see Fig. 5 (b) and 6 (b). It is clear that there are three basic

four peaky-shaped rogue waves distributed around the original point, the maximum value is 1, and every basic four

peaky-shaped rogue wave has four highest peaks around its center. Through direct numerical calculation, we can

also determine the concrete positions of the highest peaks, here we omit the lengthy data of them.

4. Conclusion

In summary, based on the generalized DT the AB system (1) and (2) is investigated, which is important to

describe marginally unstable baroclinic wave packets in geophysical fluids, ultra-short optical pulse propagation

in nonlinear optics, and mesoscale gravity current transmission on a sloping bottom in the problem of cold gravity

current. We find a unified formula to construct Nth-order rogue wave solution for Eqs. (1) and (2) by the direct

iterative rule. As application, rogue wave solutions from first to second order are obtained. With the help of some

free parameters, the first-order rogue wave of fundamental pattern, the second-order rogue waves of fundamental

and triangular patterns are shown, respectively. The results further reveal and enrich the dynamical properties of

Eqs. (1) and (2), and we hope our results will be verified in real experiments in the future. Besides, on the one

hand, continuing the generalized DT one by one, the higher-order rogue wave solutions of Eqs. (1) and (2) can be

generated, and they are likely to possess the more abundant dynamic properties, such as the “claw”, “claw-line”,

and “claw-arc”structures like the high-order rogue waves in the standard NLS equation [30]. On the other hand,

motivated by the remarkable work of Baronio and Guo et al. for the Manakov equations [27, 38], the interactions

between the rogue waves and the solitons or the breathers in Eqs. (1) and (2) may also be obtained by the Darboux

transformation. In addition, based on the recent work of us [47, 48], the exact interactional solutions among

solitons and other kinds of complicated waves such as cnoidal waves and Painlevé waves for Eqs. (1) and (2) may

also be derived through the localization procedure of nonlocal symmetries, which is useful to further study the

dynamical properties of Eqs. (1) and (2). All of these problems are interesting, and we will investigate them in our

future papers.
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  (a) (b)

Fig. 1: The first-order rogue waves in AB system. (a) Rogue wave in A component; (b) Rogue wave in B component. The parameters are

a = 1/10.

(a) (b)

Fig. 2: Density plot of the first-order rogue waves in AB system. (a) Rogue wave in A component; (b) Rogue wave in B component. The

parameters are a = 1/10.

(a) (b)

Fig. 3: The second-order rogue waves in AB system. (a) Rogue wave in A component; (b) Rogue wave in B component. The parameters are

a = 1/10, m1 = 0, n1 = 0.

(a) (b)

Fig. 4: Density plot of the second-order rogue waves in AB system. (a) Rogue wave in A component; (b) Rogue wave in B component. The

parameters are a = 1/10, m1 = 0, n1 = 0.
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(a) (b)

Fig. 5: The second-order rogue waves of triangular pattern in AB system. (a) Rogue wave in A component; (b) Rogue wave in B component.

The parameters are a = 1/10, m1 = 500, n1 = 0.

(a) (b)

Fig. 6: Density plot of the second-order rogue waves of triangular pattern in AB system. (a) Rogue wave in A component; (b) Rogue wave in

B component. The parameters are a = 1/10, m1 = 500, n1 = 0.
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                Highlights 
     1. The generalized Darboux transformation of the AB system is constructed.  

     2. A unified formula of Nth-order rogue wave is obtained by the direct iterative rule. 

     3. Rogue waves from first to second order are illustrated through some figures. 


