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The high-resolution (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy
(REMPI-PS) can be obtained by measuring the photoelectron intensity at a given kinetic energy
and scanning the single π phase step position. In this paper, we further demonstrate that the high-
resolution (2 + 1) REMPI-PS cannot be achieved at any measured position of the kinetic energy by
this measurement method, which is affected by the laser spectral bandwidth. We propose a double
π phase step modulation to eliminate the effect of the laser spectral bandwidth, and show the ad-
vantage of the double π phase step modulation on achieving the high-resolution (2 + 1) REMPI-PS
by considering the contributions involving on- and near-resonant three-photon excitation pathways.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866452]

Recently, resonance-enhanced multiphoton-ionization
photoelectron spectroscopy (REMPI-PS) has shown to be an
effective method to study the energy-level structure of the ex-
cited or Rydberg state and the photoionization or photodis-
sociation processes.1–8 Femtosecond laser pulse was consid-
ered as an ideal excitation source because of its ultrahigh
laser intensity and ultrashort pulse duration. However, the
femtosecond-induced REMPI-PS suffers from poor spectral
resolution due to the large spectral width of the femtosec-
ond laser pulse, and this greatly limits its further applica-
tions and developments. Therefore, a crucial question for
the femtosecond-induced REMPI-PS is how to improve its
spectral resolution. Fortunately, with the advent of the ul-
trafast pulse shaping technique,9–14 the quantum coherent
control strategy by making use of the shaped femtosecond
laser pulse provides a new opportunity to manipulate the
resonance-enhanced multiphoton ionization process via the
quantum interference of different excitation pathways con-
necting the initial state and the desired final state. Nowadays,
the femtosecond pulse shaping technique has proven to be
a well-established tool to improve the spectral resolution of
the femtosecond-induced REMPI-PS. For example, Wollen-
haupt et al. demonstrated that the slow and fast photoelec-
tron components of the femtosecond-induced REMPI-PS can
be selectively excited by a sinusoidal, chirped, or phase-step
modulation.15–18 We showed that the femtosecond-induced
REMPI-PS can be greatly narrowed and enhanced by a π or
cubic phase modulation.19–23

In our previous study,23 we demonstrated that, by mea-
suring the photoelectron intensity at a given kinetic en-
ergy and scanning the single π phase step position, a high-
resolution (2 + 1) REMPI-PS can be obtained. However, in
present study we will demonstrate that the high-resolution
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(2 + 1) REMPI-PS cannot be achieved at any measured posi-
tion of the kinetic energy by this measurement method, which
is dependent of the laser spectral bandwidth. To eliminate the
effect of the laser spectral bandwidth, we propose a double π

phase step modulation instead of the single π phase step mod-
ulation, and show that the high-resolution (2 + 1) REMPI-PS
can be realized at any measured position of the kinetic energy
and with any laser spectral bandwidth. Furthermore, to show
the advantage of the double π phase step modulation, we
utilize the contributions involving the on- and near-resonant
three-photon excitation processes to illustrate the control of
the photoelectron intensity.

Figure 1(a) presents the schematic diagram of the
(2 + 1) resonance-enhanced three-photon ionization process
in cesium (Cs) atom pumped by the femtosecond laser field
E(t), where |6s〉 and |9s〉 are the ground state and the excited
state, respectively. The state transition |6s〉 → |9s〉 is cou-
pled by a non-resonant two-photon absorption, and then the
population in the |9s〉 state is ionized by absorbing the other
photon. In perturbative regime, the (2 + 1) REMPI-PS signal
P(2+1)(Eν) can be approximated by time-dependent perturba-
tion theory as23

P (2+1) (Ev) ∝ ∣∣A(2+1)
on−res (Ev) + A

(2+1)
near−res (Ev)

∣∣2
, (1)

where A(2+1)
on−res (Ev) and A(2+1)

near−res (Ev) represent, respectively,
the on- and near-resonant components, and are given by

A
(2+1)
on−res (Ev) = iπE[(Ev + EI ) /¯− ω6s→9s]S

(2) (ω6s→9s)
(2)

and

A
(2+1)
near−res (Ev) = −℘

∫ +∞

−∞
(1/�) E

× [
(Ev + EI ) /¯− ω6s→9s − �

]
× S(2) (ω6s→9s + �) d�, (3)
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FIG. 1. (a) The (2 + 1) resonance-enhanced three-photon ionization process
in Cs atom with different excitation pathways that are on-resonance (� = 0)
or near-resonance (� �= 0) with the excited state |9s〉. (b) The femtosecond
laser spectrum modulated by two types of spectral phase patterns with the
single π phase step modulation (upper panel) and the double π phase step
modulation (lower panel).

with

S(2) (�) =
∫ +∞

−∞
E (ω) E (� − ω) dω, (4)

where EI is the ionization energy from the |6s〉 state, ω6s→9s

is the transition frequency from the states |6s〉 to |9s〉, ℘

is the Cauchy’s principal-value operator, � is the detun-
ing of the non-resonant two-photon absorption in the |9s〉
state, and E(ω) is Fourier transform of E(t) with E(ω)
= A(ω)exp[i�(ω)], here A(ω) and �(ω) are the spectral
amplitude and phase in the frequency domain, respectively.
One can see from Eqs. (2) and (3) that the on-resonant term
A(2+1)

on−res(Ev) interferes all on-resonant three-photon excitation
pathways (� = 0) while the near-resonant term A(2+1)

near−res(Ev)
interferes all other near-resonant three-photon excitation path-
ways (� �= 0), and therefore the total signal P(2+1)(Eν) is the
result of both the inter- and intra-group interferences involv-
ing the on- and near-resonant three-photon excitation path-
ways.

As can be seen from Eqs. (2)–(4), the on-resonant term
A(2+1)

on−res(Ev) is proportional to the non-resonant two-photon
absorption amplitude S(2)(ω6s→9s) and therefore is maximal
value for the transform-limited laser pulse or the shaped laser
pulse with antisymmetric spectral phase distribution around
the two-photon transition frequency ω6s→9s/2. Thus, the on-
resonant contribution |A(2+1)

on−res(Eν)|2 can be suppressed but
cannot be enhanced by varying the laser spectral phase. How-
ever, the near-resonant term A(2+1)

near−res(Ev) integrates over both
positive (� > 0) and negative (� < 0) components, and there-
fore the transform-limited laser pulse induces a destructive in-
terference in these near-resonant three-photon excitation path-
ways. A simple way to enhance the near-resonant contribution
|A(2+1)

near−res(Eν)|2 is to induce a constructive interference instead
of the destructive interference by a phase inversion, such as
the spectral phase step modulation that we will demonstrate
in this paper.

In our theoretical simulation, the transition frequency
from the states |6s〉 to |9s〉 in Cs atom is ω6s→9s

FIG. 2. The normalized REMPI-PS signal P(2+1)(Eν ) (green solid line) in-
duced by the transform-limited laser pulse, together with the on-resonant
contribution |A(2+1)

on−res(Eν )|2 (red dashed lines) and near-resonant contribution

|A(2+1)
near−res(Eν )|2 (blue dotted lines), and the three vertical dashed lines are

used to indicate the measured positions of the kinetic energy.

= 26910 cm−1, the ionization energy from the |6s〉 state is
EI = 3.89 eV, which is corresponding to the frequency of
about 31 375 cm−1, and the central frequency of the femtosec-
ond laser pulse is set to be ωL = ω6s→9s/2 = 13 455 cm−1.
Figure 2 presents the REMPI-PS signal P(2+1)(Eν) (green
solid line) excited by the transform-limited laser pulse, and
the on-resonant contribution |A(2+1)

on−res(Eν)|2 (red dashed lines)
and near-resonant contribution |A(2+1)

near−res(Eν)|2 (blue dotted
lines) are also shown together. All traces are normalized by
the maximal photoelectron intensity. One can see that, un-
der the excitation of the transform-limited laser pulse, the
resonance-mediated three-photon excitation process is dom-
inated by the on-resonant contribution |A(2+1)

on−res(Eν)|2, while
the near-resonant contribution |A(2+1)

near−res(Eν)|2 is very small.
Our previous works showed that, by measuring the photo-
electron intensity at a given kinetic energy and scanning the
single π phase step position, the high-resolution (2 + 1)
REMPI-PS can be obtained.23 In order to show that the high-
resolution photoelectron spectroscopy will be affected by the
laser spectral bandwidth, we measure three different positions
of the kinetic energy that are at Emeas

ν = 1.1022, 1.1084, and
1.1146 eV, as shown with three vertical dashed lines in Fig. 2.

Figure 3 presents the normalized photoelectron intensi-
ties P(2+1)(Emeas

ν ) (green solid lines) measured at the kinetic
energies Emeas

ν = 1.1146 (a), 1.1084 (b), and 1.1022 eV (c) as
the function of the single π phase step position ωS

π with the
laser spectral bandwidths �ω = 100 (left panels), 200 (mid-
dle panels), and 300 cm−1 (right panels), together with the
on-resonant contribution |A(2+1)

on−res(E
meas
ν )|2 (red dashed lines)

and near-resonant contribution |A(2+1)
near−res(E

meas
ν )|2 (blue dotted

lines). The single π phase step modulation is shown in the
upper panel of Fig. 1(b), where the phase pattern is character-
ized by a phase jump from −π /2 to π /2 at the variable step
position ωS

π . All data are normalized by the photoelectron in-
tensity induced by the transform-limited laser pulse, and here-
after the same method is employed. As shown in Fig. 3(a),
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FIG. 3. The normalized photoelectron intensities P(2+1)(Emeas
ν ) (green solid

lines) measured at the kinetic energies Emeas
ν = 1.1146 (a), 1.1084 (b),

and 1.1022 eV (c) as the function of the single π phase step position
ωS

π with the laser spectral bandwidths �ω = 100 (left panels), 200 (mid-
dle panels), and 300 cm−1 (right panels), and also the on-resonant contri-
bution |A(2+1)

on−res(E
meas
ν )|2 (red dashed lines) and near-resonant contribution

|A(2+1)
near−res(E

meas
ν )|2 (blue dotted lines) are presented.

when the measured position of the kinetic energy is at Emeas
ν

= 1.1146 eV, corresponding to the maximal photoelectron
intensity, one narrowband peak at the step position ωS

π

= 13455 cm−1 can be observed with any laser spectral band-
width, that is to say, in this case the high-resolution photo-
electron spectroscopy is not correlated with the laser spec-
tral bandwidth. However, different results can be found when
the measured positions of the kinetic energy are not corre-
sponding to the maximal photoelectron intensity, as shown in
Figs. 3(b) and 3(c), where the measured positions of the ki-
netic energy are at Emeas

ν = 1.1084 and 1.1022 eV, respec-
tively. One can see from Fig. 3(b) that the narrowband peak
at the step position ωS

π = 13 405 cm−1 can be achieved
with the laser spectral bandwidths �ω = 100 and 300 cm−1

(see Figs. 3(b-1) and 3(b-3)), while it will be almost elimi-
nated with the laser spectral bandwidth �ω = 200 cm−1 (see
Fig. 3(b-2)). The similar results can be observed in Fig. 3(c),
where the narrowband peak almost disappears with the laser
spectral bandwidth �ω = 300 cm−1 (see Fig. 3(c-3)). Ob-
viously, by the single π phase step modulation, the high-
resolution REMPI-PS cannot be obtained at any given mea-
sured position of the kinetic energy, which is affected by
the laser spectral bandwidth. By further observing the on-
resonant contribution |A(2+1)

on−res(E
meas
ν )|2 and near-resonant con-

tribution |A(2+1)
near−res(E

meas
ν )|2, the essential reason for the disap-

pearance of the narrowband peaks in Figs. 3(b-2) and 3(c-3) is
that the near-resonant contribution |A(2+1)

near−res(E
meas
ν )|2 at these

π phase step positions is not large enough to far exceed the
on-resonant contribution |A(2+1)

on−res(E
meas
ν )|2.

In order to eliminate the effect of the laser spectral
bandwidth mentioned above, we proposed a double π phase
step modulation instead of the single π phase step modula-
tion, as shown in the lower panel of Fig. 1(b). The phase
distribution is composed of two equal π phase steps with
the left step ωD−L

π from −π to 0 and the right step ωD−R
π

from 0 to π , and the two phase steps are symmetrically

FIG. 4. The normalized photoelectron intensities P(2+1)(Emeas
ν ) (green solid

lines) measured at the kinetic energies Emeas
ν = 1.1084 (a) and 1.1022 eV (b)

as the function of the left π phase step position ωD−L
π with the laser spectral

bandwidths �ω = 100 (left panels), 200 (middle panels) and 300 cm−1 (right
panels), and the on-resonant contribution |A(2+1)

on−res(E
meas
ν )|2 (red dashed lines)

and near-resonant contribution |A(2+1)
near−res(E

meas
ν )|2 (blue dotted lines) are also

shown.

positioned at the two-photon transition frequency ω6s→9s/2.
Figure 4 presents the normalized photoelectron intensities
P(2+1)(Emeas

ν ) (green solid lines) measured at the kinetic en-
ergies Emeas

ν = 1.1084 (a) and 1.1022 eV (b) as the function
of the left π phase step position ωD−L

π with the laser spec-
tral bandwidths �ω = 100 (left panels), 200 (middle panels),
and 300 cm−1 (right panels), and also the on-resonant contri-
bution |A(2+1)

on−res(E
meas
ν )|2 (red dashed lines) and near-resonant

contribution |A(2+1)
near−res(E

meas
ν )|2 (blue dotted lines) are given.

As can be seen, these narrowband peaks at the left π phase
step positions ωD−L

π = 13 405 cm−1 and 13 355 cm−1 al-
ways can be observed for any laser spectral bandwidth. In
other words, by the double π phase step modulation, the high-
resolution REMPI-PS can be obtained at any measured posi-
tion of the kinetic energy, which is independent of the laser
spectral bandwidth. Similarly, by observing the on-resonant
contribution |A(2+1)

on−res(E
meas
ν )|2 and near-resonant contribution

|A(2+1)
near−res(E

meas
ν )|2, the on-resonant contribution |A(2+1)

on−res(Eν)|2
is a constant due to the antisymmetric spectral phase distribu-
tion, while the near-resonant contribution |A(2+1)

near−res(Eν)|2 are
greatly enhanced at these specific phase step positions due
to the constructive interference instead of the destructive in-
terference, and therefore the total signal P(2+1)(Emeas

ν ) is en-
hanced at these corresponding positions.

To further show why the double π phase step modu-
lation is more effective than the single π phase step mod-
ulation in obtaining the high-resolution REMPI-PS for any
measured position of the kinetic energy and any laser spec-
tral bandwidth, we present the dependence of the photo-
electron intensities at the kinetic energies Emeas

ν = 1.1084
and 1.1022 eV on the laser spectral bandwidth by both the
single and double π phase step modulations, and the cal-
culated results are presented in Fig. 5. By the single π

phase step modulation, as shown in Fig. 5(a-1), both the
on-resonant contribution |A(2+1)

on−res(E
meas
ν )|2 and near-resonant
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FIG. 5. The normalized photoelectron intensities P(2+1)(Emeas
ν ) (green solid

lines) measured at the kinetic energies Emeas
ν = 1.1084 (a) and 1.1022 eV

(b) as the function of the laser spectral bandwidth �ω with the single
π phase step positions ωS

π = 13 405 (a-1) and 13355 cm−1 (b-1) and the
left π phase step positions ωD−L

π = 13 405 (a-2) and 13 355 cm−1 (b-2), and

the on-resonant contribution |A(2+1)
on−res(E

meas
ν )|2 (red dashed lines) and near-

resonant contribution |A(2+1)
near−res(E

meas
ν )|2 (blue dotted lines) are also given.

contribution |A(2+1)
near−res(E

meas
ν )|2 are completely suppressed

with the laser spectral bandwidth �ω = 170 cm−1 and there-
fore the total signal P(2+1)(Emeas

ν ). The similar results can also
be found in Fig. 5(b-1) around the laser spectral bandwidth
�ω = 300 cm−1. Thus, the narrowband peak by scanning the
single π phase step position will disappear with these spe-
cific laser spectral bandwidths, as shown in Figs. 3(b-2) and
3(c-3). However, by the double π phase step modulation, as
shown in Figs. 5(a-2) and 5(b-2), the near-resonant contribu-
tion |A(2+1)

near−res(E
meas
ν )|2 can be obviously enhanced with any

laser spectral bandwidth and is far larger than the on-resonant
contribution |A(2+1)

on−res(E
meas
ν )|2, and therefore the total signal

P(2+1)(Emeas
ν ) is greatly enhanced. Consequently, the narrow-

band peak by scanning the double π phase step position al-
ways can be obtained with any laser spectral bandwidth, as
shown in Fig. 4.

The effects of the laser spectral bandwidth on the pho-
toelectron intensity at a given kinetic energy by the sin-
gle and double π phase step modulations in Figs. 3–5 can
be analyzed by the theoretical description formulated in
Eqs. (2)–(4). The single or double π phase step modulation
(i.e., �(ω) = 0 or π ) implies that the shaped laser field E(ω)
is always a positive or negative real number for any laser fre-
quency, and thus the on-resonant component A(2+1)

on−res(E
meas
v )

is imaginary number while the near-resonant component
A(2+1)

near−res(E
meas
v ) is real number. In this case, the photoelec-

tron intensity P(2+1)(Emeas
v ) is the sum of the on-resonant

contribution |A(2+1)
on−res(E

meas
v )|2 and near-resonant contribu-

tion |A(2+1)
near−res(E

meas
v )|2, i.e., P(2+1)(Emeas

v ) = |A(2+1)
on−res(E

meas
v )|2

+ |A(2+1)
near−res(E

meas
v )|2. In other words, the (2 + 1) resonance-

enhanced three-photon ionization is determined only by intra-
group interferences within each of the on- and near-resonant
excitation pathways. By the single π phase step modulation,
the amplitudes (1/�)E[(Emeas

v + EI)/¯− ω6s→9s − �] are all
negative value for small +|�| and −|�| with any laser

spectral bandwidth while the amplitudes S(2)(ω6s→9s + �)
will change from positive to negative value with the in-
crease of the laser spectral bandwidth,24 and thus the neg-
atively and positively detuned near-resonant three-photon
excitation pathways will constructively (or destructively)
interfere when the amplitudes S(2)(ω6s→9s + �) are of
the same (or different) sign. Consequently, both the on-
resonant contribution |A(2+1)

on−res(E
meas
v )|2 and near-resonant con-

tribution |A(2+1)
near−res(E

meas
v )|2 will be suppressed at some spe-

cific laser spectral bandwidths and therefore photoelectron
intensity P(2+1)(Emeas

v ), as shown in Figs. 3 and 5(a). By
the double π phase step modulation, the amplitudes (1/�)
E[(Emeas

v + EI)/¯− ω6s→9s − �] have the same sign for small
±|�| with any laser spectral bandwidth and the amplitudes
S(2)(ω6s→9s + �) are all positive value,24 and therefore the
interferences between negatively and positively detuned near-
resonant three-photon excitation pathways are constructive.
Thus, the near-resonant contribution |A(2+1)

near−res(E
meas
v )|2 can be

enhanced for any laser spectral bandwidth and the on-resonant
contribution |A(2+1)

on−res(E
meas
v )|2 keeps its maximal value due to

the antisymmetric spectral phase distribution, and therefore
the photoelectron intensity P(2+1)(Emeas

v ) always can be en-
hanced, as shown in Figs. 4 and 5(b).

In conclusion, we have demonstrated that the laser spec-
tral bandwidth will affect the high-resolution (2 + 1) REMPI-
PS by measuring the photoelectron intensity at a given kinetic
energy and scanning the single π phase step modulation, and
a double π phase step modulation instead of the single π

phase step modulation was proposed to eliminate the effect of
the laser spectral bandwidth, thus the high-resolution (2 + 1)
REMPI-PS can be achieved at any measured position of the
kinetic energy and with any laser spectral bandwidth. By con-
sidering the contributions involving on- and near-resonant
three-photon excitation processes, the advantage of the dou-
ble π phase step modulation on achieving the high-resolution
(2 + 1) REMPI-PS can be well illustrated. We believe that
these theoretical results are very helpful for the experimental
study and can be further extended to the control of various
resonance-enhanced multiphoton-ionization processes.

This work was partly supported by National Natu-
ral Science Fund (Grant Nos. 11004060, 11027403, and
51132004) and Shanghai Rising-Star Program (Grant No.
12QA1400900).
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