

Up-conversion luminescence polarization control in Er³⁺-doped NaYF₄ nanocrystals

Hui Zhang, Yun-Hua Yao, Shi-An Zhang, Chen-Hui Lu, Zhen-Rong Sun Citation: Chin. Phys. B . 2016, 25(2): 023201. doi: 10.1088/1674-1056/25/2/023201

Journal homepage: http://cpb.iphy.ac.cn; http://iopscience.iop.org/cpb

What follows is a list of articles you may be interested in

Electromagnetic wave absorbing properties and hyperfine interactions of Fe-Cu-Nb-Si-B nanocomposites

Han Man-Gui, Guo Wei, Wu Yan-Hui, Liu Min, Magundappa L. Hadimani Chin. Phys. B . 2014, 23(8): 083301. doi: 10.1088/1674-1056/23/8/083301

Quantum confinement and surface chemistry of 0.8-1.6 nm hydrosilylated silicon nanocrystals

Pi Xiao-Dong, Wang Rong, Yang De-Ren Chin. Phys. B . 2014, 23(7): 076102. doi: 10.1088/1674-1056/23/7/076102

Spectral decomposition at complex laser polarization configuration

Yang Hai-Feng, Gao Wei, Cheng Hong, Liu Hong-Ping Chin. Phys. B . 2013, 22(5): 053201. doi: 10.1088/1674-1056/22/5/053201

Polarization and phase control of two-photon absorption in an isotropic molecular system

Lu Chen-Hui, Zhang Hui, Zhang Shi-An, Sun Zhen-Rong Chin. Phys. B . 2012, 21(12): 123202. doi: 10.1088/1674-1056/21/12/123202

Surface effect of nanocrystals doped with rare earth ions enriched on surface and its application in upconversion luminescence

RS

Set college roles of the set of t He En-Jie, Liu Ning, Zhang Mao-Lian, Qin Yan-Fu, Guan Bang-Gui, Li Yong, Guo Ming-Le Chin. Phys. B . 2012, 21(7): 073201. doi: 10.1088/1674-1056/21/7/073201 _____

Volume 25 February 2016 Number 2

A series Journal of the Chinese Physical Society Distributed by IOP Publishing iopscience.org/cpb cpb.iphy.ac.cn

CHINESE PHYSICAL SOCIETY | IOP Publishing

Chinese Physics B(中国物理 B)

Published monthly in hard copy by the Chinese Physical Society and online by IOP Publishing, Temple Circus, Temple Way, Bristol BS1 6HG, UK Institutional subscription information: 2016 volume For all countries, except the United States, Canada and Central and South America, the subscription rate per annual volume is UK£974 (electronic only) or UK£1063 (print + electronic). Delivery is by air-speeded mail from the United Kingdom. Orders to: Journals Subscription Fulfilment, IOP Publishing, Temple Circus, Temple Way, Bristol BS1 6HG, UK For the United States, Canada and Central and South America, the subscription rate per annual volume is US\$1925 (electronic only) or US\$2100 (print + electronic). Delivery is by transatlantic airfreight and onward mailing. Orders to: IOP Publishing, P. O. Box 320, Congers, NY 10920-0320, USA © 2016 Chinese Physical Society and IOP Publishing Ltd All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner. Supported by the China Association for Science and Technology and Chinese Academy of Sciences Editorial Office: Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190, China Tel: (86-10) 82649026 or 82649519, Fax: (86-10) 82649027, E-mail: cpb@aphy.iphy.ac.cn 主管单位:中国科学院 国际统一刊号: ISSN 1674-1056 主办单位:中国物理学会和中国科学院物理研究所 国内统一刊号: CN 11-5639/O4 编辑部地址:北京 中关村 中国科学院物理研究所内 主 编: 欧阳钟灿 出 版:中国物理学会 通讯地址: 100190北京603信箱 印刷装订:北京科信印刷有限公司 电 话: (010) 82649026, 82649519 编 辑: Chinese Physics B 编辑部 传 真: (010) 82649027 国内发行: Chinese Physics B 出版发行部 "Chinese Physics B"网址:

http://cpb.iphy.ac.cn (编辑部)

http://iopscience.iop.org/cpb (IOPP)

国内发行: Chinese Physics B 出版 国外发行: IOP Publishing Ltd 发行范围: 公开发行

Published by the Chinese Physical Society

顾问	Advisory Board	
陈佳洱	教授, 院士 北京大学物理学院, 北京 100871	Prof. Academician Chen Jia-Er School of Physics, Peking University, Beijing 100871, China
冯端	教授,院士 南京大学物理系,南京 210093	Prof. Academician Feng Duan Department of Physics, Nanjing University, Nanjing 210093, China
李政道	教授,院士	Prof. Academician T. D. Lee Department of Physics, Columbia University, New York, NY 10027, USA
李荫远	研究员,院士 中国科学院物理研究所,北京 100190	Prof. Academician Li Yin-Yuan Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
丁肇中	教授, 院士	Prof. Academician Samuel C. C. Ting LEP3, CERN, CH-1211, Geneva 23, Switzerland
杨振宁	教授,院士	Prof. Academician C. N. Yang Institute for Theoretical Physics, State University of New York, USA
杨福家	教授, 院士 复旦大学物理二系, 上海 200433	Prof. Academician Yang Fu-Jia Department of Nuclear Physics, Fudan University, Shanghai 200433, China
周光召	研究员,院士 中国科学技术协会,北京 100863	Prof. Academician Zhou Guang-Zhao (Chou Kuang-Chao) China Association for Science and Technology, Beijing 100863, China
王乃彦	研究员,院士 中国原子能科学研究院,北京 102413	Prof. Academician Wang Nai-Yan China Institute of Atomic Energy, Beijing 102413, China
梁敬魁	研究员,院士 中国科学院物理研究所,北京 100190	Prof. Academician Liang Jing-Kui Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2012-2 主 始	015 Eliteric Cliff	2 31590
土 痈 欧阳钟灿	Editor-in-Chief 研究员, 院士 中国科学院理论物理研究所, 北京 100190	Prof. Academician Ouyang Zhong-Can Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
副主编	Associate Editors	
赵忠贤	研究员,院士 中国科学院物理研究所,北京 100190	Prof. Academician Zhao Zhong-Xian Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
杨国桢	研究员,院士 中国科学院物理研究所,北京 100190	Prof. Academician Yang Guo-Zhen Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
张 杰	研究员, 院士 上海交通大学物理与天文系, 上海 200240	Prof. Academician Zhang Jie Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

邢定钰 教授,院士 Prof. Academician Xing Ding-Yu 南京大学物理学院,南京 210093 School of Physics, Nanjing University, Nanjing 210093, China 沈保根 研究员,院士 Prof. Academician Shen Bao-Gen Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 中国科学院物理研究所,北京 100190 龚旗煌 教授,院士 Prof. Academician Gong Qi-Huang 北京大学物理学院,北京 100871 School of Physics, Peking University, Beijing 100871, China 薛其坤 Prof. Academician Xue Qi-Kun 教授,院士 清华大学物理系,北京 100084 Department of Physics, Tsinghua University, Beijing 100084, China 沈 平 教授 Prof. Sheng Ping 香港科技大学物理学系,香港九龍 Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China 编辑委员 Editorial Board 2011-2016 Prof. F. R. de Boer van der Waals-Zeeman Institute der Universiteit van Amsterdam Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands Prof. H. F. Braun Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany 陈东敏 教授 Prof. Chen Dong-Min Rowland Institute for Science, Harvard University, USA Prof. Feng Shi-Ping 冯世平 教授 北京师范大学物理系,北京 100875 Department of Physics, Beijing Normal University, Beijing 100875, China Prof. Academician Gao Hong-Jun Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 高鸿钧 研究员 院士 中国科学院物理研究所,北京 100190 研究员 中国科学院物理研究所, 北京 100190 顾长志 Prof. Gu Chang-Zhi Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Prof. Hu Gang 胡 岗 教授 北京师范大学物理系,北京 100875 Department of Physics, Beijing Normal University, Beijing 100875, China 教授,院士 中国科学技术大学中国科学院结构分析 重点实验室,合肥 230026 侯建国 Prof. Academician Hou Jian-Guo Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, China 李方华 研究员,院士 Prof. Academician Li Fang-Hua 中国科学院物理研究所,北京 100190 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 闵乃本 教授,院士 Prof. Academician Min Nai-Ben 南京大学物理系,南京 210093 Department of Physics, Nanjing University, Nanjing 210093, China 聂玉昕 研究员 Prof. Nie Yu-Xin 中国科学院物理研究所,北京 100190 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 教授,院士 潘建伟 Prof. Academician Pan Jian-Wei Department of Modern Physics, University of Science and Technology of 中国科学技术大学近代物理系, 合肥 230026 China, Hefei 230026, China 沈志勋 教授 Prof. Shen Zhi-Xun Stanford University, Stanford, CA 94305–4045, USA 苏肇冰 研究员,院士 Prof. Academician Su Zhao-Bing Institute of Theoretical Physics, Chinese Academy of Sciences, 中国科学院理论物理研究所, Beijing 100190, China 北京 100190 孙昌璞 研究员,院士 Prof. Academician Sun Chang-Pu Beijing Computational Science Research Center, China Academy of 中国工程物理研究院北京计算科学 研究中心, 北京 100094 Engineering Physics, Beijing 100094, China 王恩哥 研究员,院士 Prof. Academician Wang En-Ge School of Physics, Peking University, Beijing 100871, China 北京大学物理学院,北京 100871 研究员,院士 夏建白 Prof. Academician Xia Jian-Bai 中国科学院半导体研究所, Institute of Semiconductors, Chinese Academy of Sciences, 北京 100083 Beijing 100083, China 向 涛 研究员,院士 Prof. Academician Xiang Tao 中国科学院理论物理研究所, Institute of Theoretical Physics, Chinese Academy of Sciences, 北京 100190 Beijing 100190, China Prof. Academician Xie Xin-Cheng 谢心澄 教授,院士 北京大学物理学院,北京 100871 RS School of Physics, Peking University, Beijing 100871, China 研究员,院士 中国科学院,北京 100864 Prof. Academician Zhan Wen-Long 詹文龙 Chinese Academy of Sciences, Beijing 100864, China 朱邦芬 教授,院士 Prof. Academician Zhu Bang-Fen Department of Physics, Tsinghua University, Beijing 100084, China 清华大学物理系,北京 100084 2013 - 2018Prof. Antonio H. Castro Neto Physics Department, Faculty of Science, National University of Singapore, Singapore 117546, Singapore Prof. Chia-Ling Chien Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Prof. David Andelman Israel Prof. Masao Doi Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan Research Institute for Scientific Measurements, Tohoku University, Katahira 2–1–1, Aoba-ku 980, Sendai, **Japan** Prof. Michiyoshi Tanaka Stephenson Institute for Renewable Energy, The University of Liverpool, Liverpool L69 3BX, **UK** Prof. Werner A. Hofer 丁 军 教授 Prof. Ding Jun Department of Materials Science & Engineering, National University of Singapore, Singapore 117576, Singapore Prof. Academician He Xian-Tu 贺贤土 研究员,院士 北京应用物理与计算数学研究所, Institute of Applied Physics and Computational Mathematics, Beijing 100088, 北京 100088 China 金晓峰 教授 Prof. Jin Xiao-Feng Department of Physics, Fudan University, Shanghai 200433, China 复旦大学物理系,上海 200433

吕 力 李晓光	研究员 中国科学院物理研究所,北京 100190 教授	Prof. Lü Li Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Prof. Li Xiao-Guang
子呒儿	中国科学技术大学物理系,合肥 230026	Department of Physics, University of Science and Technology of China, Hefei 230026, China
沈元壤	教授	Prof. Shen Yuan-Rang Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
王亚愚	教授 清华大学物理系, 北京 100084	Prof. Wang Ya-Yu Department of Physics, Tsinghua University, Beijing 100084, China
王玉鹏	研究员 中国科学院物理研究所, 北京 100190	Prof. Wang Yu-Peng Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
王肇中	教授	Prof. Wang Zhao-Zhong Laboratory for Photonics and Nanostructures(LPN) CNRS–UPR20, Boute de Nozay, 91460 Marcoussis, France
闻海虎	教授	Prof. Wen Hai-Hu School of Physics, Naniing University, Naniing 210002, China
徐至展	南东八子初埕子优东,南京 210095 研究员,院士 中国科学院上海光学精密机械研究所	Prof. Academician Xu Zhi-Zhan Shanghai Institute of Ontics and Fine Mechanics. Chinese Academy of
许岑珂	上海 201800 助理教授	Sciences, Shanghai 201800, China Assist. Prof. Xu Cen-Ke
-1	Jul Let	Department of Physics, University of California, Santa Barbara, CA 93106, USA
叶 车	教授	Prof. Ye Jun Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA
张振宇	教授	Prof. Z. Y. Zhang Oak Ridge National Laboratory, Oak Ridge, TN 37831–6032, USA
2015–2 Prof. J.	020 Y. Rhee	Department of Physics, Sungkyunkwan University, Suwon, Korea
Prof. Ro 程建春	bert J. Joynt 教授	Physics Department, University of Wisconsin-Madison, Madison, USA Prof. Cheng Jian-Chun
戴 希	南京大学物理学院,南京 210093 研究员	School of Physics, Nanjing University, Nanjing 210093, China Prof. Dai Xi
郭光灿	中国科学院物理研究所,北京 100190 教授,院士	Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Prof. Academician Guo Guang-Can
	中国科学技术大学物理学院, 合肥 230026	School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
刘朝星	助理教授	Assist. Prof. Liu Chao-Xing Department of Physics, Pennsylvania State University, PA 16802-6300, USA
刘 荧	教授 上海交通大学物理与天文系,	Prof. Liu Ying Department of Physics and Astronomy, Shanghai Jiao Tong University,
龙桂鲁	上海 200240 教授	Shanghai 200240, China Prof. Long Gui-Lu
牛谦	清华大学物理系,北京 100084 教授	Prof. Niu Qian
欧阳颀	教授,院士	Prof. Academician Ouyang Qi
孙秀冬	北京大学物理学院,北京 100871 教授	School of Physics, Peking University, Beijing 100871, China Prof. Sun Xiu-Dong
童利民	哈尔浜工业大学物理系,哈尔浜 150001 教授	Department of Physics, Harbin Institute of Technology, Harbin 150001, China Prof. Tong Li-Min
	浙江大学光电信息工程学系, 杭州 310027	Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
童彭尔	教授 香港科技大学物理系,香港九龍	Prof. Tong Penger Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
王开友	研究员 中国科学院半导体研究所, 北京 100083	Prof. Wang Kai-You Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, Chinese
魏苏淮	教授 中国工程物理研究院北京计算科学研究	Prof. Wei Su-Huai Beijing Computational Science Research Center, China Academy of
解思深	中心,北京 100094 研究员,院士 中国利学院物理研究所 北京 100100	Prof. Academician Xie Si-Shen
叶朝辉	研究员,院士 中国科学院武汉物理与数学研究所,	Prof. Academician Ye Chao-Hui Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences,
郁明阳	武汉 430071 教授	Wuhan 430071, China Prof. Yu Ming-Yang
张富春	教授	Theoretical Physics I, Ruhr University, D-44780 Bochum, Germany Prof. Zhang Fu-Chun
张 勇	香港大学物理糸, 香港 教授	Department of Physics, The University of Hong Kong, Hong Kong, China Prof. Zhang Yong
Mer 3-1	+11-1-57	Electrical and Computer Engineering Department, The University of North Carolina at Charlotte, Charlotte, USA
郑 波	教授 浙江大学物理系, 杭州 310027	Prof. Zheng Bo Physics Department, Zhejiang University, Hangzhou 310027, China
周兴江	研究员 中国科学院物理研究所, 北京 100190	Prof. Zhou Xing-Jiang Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
编辑	Editorial Staff 王久丽 Wang Jiu-Li 章志英 Zhang Zh	● i-Ying 蔡建伟 Cai Jian-Wei 翟 振 Zhai Zhen 郭红丽 Guo Hong-Li

Up-conversion luminescence polarization control in Er³⁺-doped NaYF₄ nanocrystals*

Hui Zhang(张晖)¹, Yun-Hua Yao(姚云华)², Shi-An Zhang(张诗按)^{2,†}, Chen-Hui Lu(卢晨晖)³, and Zhen-Rong Sun(孙真荣)²

¹Institute of Science, Information Engineering University, Zhengzhou 450001, China

² State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China ³ College of Mechanical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

(Received 8 August 2015; revised manuscript received 9 October 2015; published online 20 December 2015)

We propose a femtosecond laser polarization modulation scheme to control the up-conversion (UC) luminescence in Er^{3+} -doped NaYF₄ nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorption. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth ions by applying a two-color femtosecond laser field.

Keywords: up-conversion luminescence, laser polarization, nanocrystal

PACS: 32.80.Qk, 33.80.-b, 61.46.Hk

DOI: 10.1088/1674-1056/25/2/023201

1. Introduction

Recently, the up-conversion (UC) luminescence of luminescent material doped with rare-earth ions, which converts the low-frequency stimulation into high-frequency emission via two-photon or multi-photon absorption process, has attracted considerable attention because of its unique optical properties, such as narrow emission spectrum, intense luminescence intensity, high conversion efficiency, good optical stability, and long luminescence lifetime, and has been widely used in various related fields, such as lightemitting diodes,^[1,2] fiber optic communication,^[3,4] laser sources,^[5,6] color display,^[7,8] medical imaging,^[9,10] biological labels,^[11,12] etc. If the UC luminescence can be controlled, such as in enhancement, suppression or multi-color tuning, its relevant applications can be greatly extended. By now, several schemes have been proposed to experimentally realize the UC luminescence enhancement, suppression, and tuning. For example, a common method is to adjust the material property by varying its dopant-host combination,^[13–15] nanoparticle size,^[16,17] and dopant concentration^[18,19] in the synthesis process, and the other common method is to control the laser parameter by varying the excitation wavelength,^[20] power density,^[21] pulse duration,^[22] spectral phase^[23,24] or polarization.^[25,26] In addition, applying an electric or magnetic field has also been proved to be an available method to control the UC luminescence.^[27,28]

Because of the surface effect, volume effect, quantum size effect, and macroscopic quantum tunnel effect, the nanocrystal material shows different performances in magnetic, optic, electric, and chemical properties compared with normal bulk material.^[29,30] The nanocrystal material doped with rare-earth ions combines the unique optical properties of both nanocrystals and rare-earth ions, and therefore is shown to be a promising alternative to luminescent materials, such as NaGdF4based nanocrystals for biological fluorescence imaging,^[31] NaYbF₄:Tm³⁺/Ho³⁺/Er³⁺ and NaYF₄:Yb³⁺ used as biological markers.^[32] In the present work, we experimentally and theoretically show that the UC luminescence in Er³⁺-doped NaYF4 nanocrystals dispersed in the silicate glass can be controlled by varying the femtosecond laser polarization. Our experimental results show that the UC luminescence intensity can be reduced when the laser polarization is changed from linear through elliptical to circular, but the control efficiency will be affected by the laser repetition rate, and the lower repetition rate will yield the higher control efficiency. Our theoretical studies indicate that the polarization modulation depends on the near-resonant two-photon absorption but is independent of the on-resonant two-photon absorption, energy transfer upconversion, and excited state absorption. In addition, a twocolor femtosecond laser field is proposed to improve the polarization control efficiency of UC luminescence by keeping the near-resonant two-photon absorption process but exclud-

*Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11304396), the National Natural Science Foundation of China (Grant Nos. 11474096 and 51132004), and the Shanghai Municipal Science and Technology Commission, China (Grant No. 14JC1401500).

[†]Corresponding author. E-mail: sazhang@phy.ecnu.edu.cn

^{© 2016} Chinese Physical Society and IOP Publishing Ltd

ing the other excitation processes.

2. Experimental arrangement

Our experimental arrangement is shown in Fig. 1, where a Ti-sapphire mode-locked regenerative amplifier (Spectra-Physics, Spitfire) with a pulse duration of about 50 fs, central wavelength of 800 nm, and repetition rate of 1 kHz and a mode-locked Ti-sapphire laser oscillator (Spectra-Physics, Tsunami) with a pulse duration of about 35 fs, central wavelength of 800 nm, and repetition rate of 80 MHz are used as the excitation sources, and two removable mirrors are utilized to switch the two laser sources. A quarter wave plate (Thorlabs, AQWP05M-980, 690–1120 nm) is used to vary the laser polarization from linear through elliptical to circular. The polarization-modulated femtosecond laser pulse is focused into the experimental sample with a lens of 50-mm focal length, and the laser intensities at the focus area are estimated to be 4×10^{13} W/cm² for the 1-kHz laser amplifier and about 2×10^{11} W/cm² for the 80-MHz laser oscillator respectively. All luminescence signals emitted from the sample are collected perpendicularly by a telescope system and recorded by a spectrometer with charge-coupled device (CCD).

Fig. 1. (color online) Schematic diagram of experimental arrangement for polarization control of UC luminescence in Er^{3+} -doped NaYF₄ nanocrystals. Here, M1 and M3 are removable mirrors, which are used to switch the 1-kHz femtosecond laser amplifier and 80-MHz femtosecond laser oscillator.

In our experiment, the glass ceramic containing Er^{3+} doped NaYF₄ nanocrystals is used as our study example, which is synthesized via modification from melt-quenching to subsequent heat treatment. The precursor sample is prepared with the molar ratio of 40SiO₂-25Al₂O₃-18Na₂CO₃-10YF₃-7NaF-1ErF₃. The original material is mixed and melted in a covered platinum crucible at a temperature of 1450 °C for 45 min in the ambient atmosphere and then cast into a brass mold followed by annealing at a temperature of 450 °C for 10 h. The synthesized glass is heated to a temperature of 600 °C in steps of 10 K/min, kept at this temperature for 2 h, and then cooled to room temperature to form the glass ceramic through crystallization. The glass ceramic sample is cut and polished for optical measurement in our experiment. X-ray diffraction (XRD) analysis is performed to identify the crystallization phase with a power diffractometer (Bruker D8 Advance) operated at 40 kV and 40 mA, and the measured result is shown in Fig. 2, where Cu K α is used as a radiation source, and 2θ is scanned in a range of $20^{\circ}-90^{\circ}$ in steps of 0.01° . Multiple sharp peaks are observed in the XRD curve, which can be attributed to cubic α -NaYF₄ crystalline phase, indicating the

crystallization of α -NaYF₄ during thermal treatment.

Fig. 2. (color online) XRD curve of glass ceramic containing Er^{3+} -doped NaYF₄ nanocrystals. Here, those peaks from α -NaYF₄ are indexed.

Transmission electron microscopy (TEM) images of the sample are provided in Fig. 3(a), which show that nanocrystals with an average size of 20 nm–30 nm disperse densely in the glass matrix. Besides, the high-resolution TEM (HRTEM) of an individual α -NaYF₄ in Fig. 3(b) displays the lattice fringe

with a distance of 0.3 nm.

Fig. 3. (color online) The TEM (a) and HRTEM (b) images of the glass ceramic containing Er^{3+} :NaYF₄ nanocrystals.

3. Results and discussion

The UV-VIS-NIR absorption spectrum of Er³⁺-doped NaYF₄ nanocrystals is shown in Fig. 4(a). As can be seen, six main absorption peaks appear around the wavelengths of 377, 407, 487, 545, 651, and 799 nm, which can be attributed to the absorptions of these excited states ${}^{4}G_{11/2}$, ${}^{2}H_{9/2}$, ${}^{4}F_{7/2}$, ⁴S_{3/2}, ⁴F_{9/2}, and ⁴I_{9/2}. The measured UC luminescence spectrum in the visible light region is shown in Fig. 4(b). One can see that five luminescence signals are observed around the wavelengths of 408, 475, 527, 547, and 656 nm, which can be attributed to the state transitions from the five excited states ${}^{2}H_{9/2}$, ${}^{4}F_{7/2}$, ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$, and ${}^{4}F_{9/2}$ to the ground state ${}^{4}I_{15/2}$, respectively. It is easy to observe that the green and red UC luminescence signals dominate the visible light spectrum, and therefore our goal in this work is to control the green and red UC luminescence by varying the femtosecond laser polarization.

Fig. 4. (color online) The UV-VIS-IR absorption (a) of the glass ceramic containing Er^{3+} :NaYF₄ nanocrystals and UC luminescence spectrum (b) of the sample excited by 800-nm femtosecond laser with a repetition rate of 1 kHz.

Figure 5(a) shows the green (546 nm) (green triangles) and red (656 nm) (red circles) UC luminescence intensities each as a function of quarter wave plate angle excited by the 1-kHz laser amplifier. The quarter wave plate angle has no

effect on the intensity of the laser past the $\lambda/4$ plate, which is confirmed experimentally. As can be seen, both the green and red UC luminescence intensities can be controlled by the laser polarization modulation, which decreases when the laser polarization changes from linear through elliptical to circular. But their control efficiencies are different, which are, respectively, 13% and 6%, and the green UC luminescence obtains the higher control efficiency. Here, the control efficiency is defined as $\eta = 1 - I^{\min}/I^{\max}$, where I^{\max} and I^{\min} represent the maximum and minimum luminescence intensities (in units of a.u., i.e., atomic unit), respectively. However, when the excitation source is switched to the 80-MHz laser oscillator, as shown in Fig. 5(b), both the green and red UC luminescence intensities almost remain constant, that is to say, the green and red luminescence are independent of the laser polarization. Obviously, the laser repetition rate will affect the polarization control efficiency of UC luminescence intensity, and a higher repetition rate will yield a lower control efficiency. Therefore, to obtain the effective polarization control of the green and red UC luminescence in the Er³⁺-doped NaYF₄ nanocrystals, it is critical to utilize the low laser repetition rate, such as 1 kHz.

Fig. 5. (color online) Variations of experimental green (546 nm) (green triangles) and red (656 nm) (red circles) up-conversion luminescence intensities with $\lambda/4$ wave plate angle with using a 1-kHz laser amplifier (a) and an 80-MHz laser oscillator (b), together with the theoretical simulations (solid lines).

According to the absorption and luminescence spectra of Er^{3+} -doped NaYF₄ nanocrystals in Fig. 4, we present the excitation and detection scheme in our experiment as shown in Fig. 6. The population in the ground state ${}^{4}I_{15/2}$ is pumped to the excited state ${}^{2}H_{9/2}$ through a resonance-mediated two-photon absorption (TPA) process, which contains on- and near-resonant two-photon absorption. The on-resonant two-photon absorption means that the population in the ground state ${}^{4}I_{15/2}$ is pumped to the intermediate state ${}^{4}I_{9/2}$ by absorbing one photon and then is further pumped to the excited state ${}^{2}H_{9/2}$ by absorbing another photon, whereas the near-resonant two-photon absorption means that the population in the ground state ${}^{2}H_{9/2}$ by absorbing another photon, whereas the near-resonant two-photon absorption means that the population in the ground state ${}^{2}H_{9/2}$ by absorbing another photon, whereas the near-resonant two-photon absorption means that the population in the ground state ${}^{2}H_{9/2}$ by absorbing another photon, whereas the near-resonant two-photon absorption means that the population in the ground state ${}^{4}I_{15/2}$ is directly pumped to the excited state

²H_{9/2} by simultaneously absorbing two photons without passing through the intermediate state ${}^{4}I_{9/2}$. The population in the excited state ${}^{2}H_{9/2}$ can spontaneously decay to the ground state ${}^{4}I_{15/2}$ through these lower excited states ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$, and ${}^{4}F_{9/2}$, and emits the green and red up-conversion luminescence. The population in the intermediate state ${}^{4}I_{9/2}$ by single photon absorption (SPA) process can also relax to the two lower excited states ${}^{4}I_{11/2}$ and ${}^{4}I_{13/2}$, and then is further pumped to the higher excited states ${}^4F_{7/2}$ and ${}^4F_{9/2}$ by energy transfer up-conversion (ETU) process due to the higher dopant concentration. Generally, the excited state lifetime of rare-earth ions is relatively long in the range of microseconds. If the time separation between the laser pulses is shorter than the excited state lifetime, the populations in the excited states ${}^{4}I_{9/2}$, ${}^{4}I_{11/2}$, and ${}^{4}I_{13/2}$ can be further pumped to these higher excited states ${}^{2}H_{9/2}$, ${}^{4}F_{3/2}$, and ${}^{4}S_{3/2}$ by absorbing the photons from subsequent laser pulses (see Fig. 6(b)), which is called excited state absorption (ESA) process, and also emits green and red UC luminescences.

Fig. 6. (color online) Energy levels of Er^{3+} ions and possible pathways of green and red UC luminescences generated by a 1-kHz laser amplifier (a) and an 80-MHz laser oscillator (b).

As can be seen in Fig. 6, the green or red UC luminescence produced by the on-resonant TPA, ETU, and ESA processes depends on the population in the intermediate state ${}^{4}I_{9/2}$, and thus their intensities cannot be controlled by varying the laser polarization since the absorption in the intermediate state ${}^{4}I_{9/2}$ is a single photon process, which is independent of the laser polarization. Consequently, the polarization modulations of green and red UC luminescence should result from the near-resonant TPA process. Thus, the experimental observation in Fig. 5 can be well explained. In the case of the low repetition rate of 1 kHz, corresponding to the laser pulse separation of 1 ms, only one laser pulse arrives within the lifetime of the excited state since the excited state lifetime is far smaller than the laser pulse separation (see Fig. 6(a)). Compared with the green UC luminescence, the red UC luminescence generation additionally contains the ETU2 process, which will suppress the polarization control efficiency of red

UC luminescence, and therefore the polarization control efficiency of red UC luminescence is lower than that of green UC luminescence (see Fig. 5(a)). However, for the case of the high repetition rate of 80 MHz, corresponding to the laser pulse separation of 12.5 ns, multiple laser pulses arrive within the lifetime of the excited state because the excited state lifetime is far longer than the laser pulse separation (see Fig. 6(b)). The green and red UC luminescence contain the contribution of the ESA process, and thus their polarization control efficiencies will be greatly suppressed since the ESA process is independent of the laser polarization (see Fig. 5(b)).

As discussed above, the polarization modulations of green and red UC luminescence come from the contribution of the near-resonant TPA process. In order to demonstrate the effect of the femtosecond laser polarization on the near-resonant TPA process, we theoretically simulate the resonance-mediated TPA in the Er^{3+} ions by a time-dependent perturbation theory.^[33] Usually, the multi-photon absorption in a quantum system with a broad absorption line can be simplified into the sum of all individual transitions. Based on the theoretical model of the atom system with narrow absorption line limit,^[34,35] the resonance-mediated two-photon transition probability $S^{(1+1)}$ in the Er^{3+} ions can be approximated as

$$S^{(1+1)} \propto \int_{-\infty}^{+\infty} \mathrm{d}\omega_f A\left(\omega_f\right) \left| \int_{-\infty}^{+\infty} A\left(\omega_i\right) \times \int_{-\infty}^{+\infty} E\left(t_1\right) \exp\left[\mathrm{i}\left(\omega_f - \omega_i\right) t_1\right] \times \int_{-\infty}^{t_1} E\left(t_2\right) \exp\left(\mathrm{i}\,\omega_i t_2\right) \mathrm{d}t_2 \mathrm{d}t_1 \mathrm{d}\,\omega_i \right|^2, \quad (1)$$

where ω_i and ω_f are the resonant frequencies of intermediate state $|i\rangle$ (i.e., ${}^{4}I_{9/2}$) and final excited state $|f\rangle$ (i.e., ${}^{2}H_{9/2}$), and $A(\omega_i)$ and $A(\omega_f)$ are the absorption line-shape functions of intermediate state $|i\rangle$ and final excited state $|f\rangle$. By transforming Eq. (1) into the frequency domain, the transition probability $S^{(1+1)}$ can be rewritten as

$$S^{(1+1)} \propto \int_{-\infty}^{+\infty} \mathrm{d}\omega_f A\left(\omega_f\right) \left| P_{\mathrm{On-Res.}}^{(1+1)} + P_{\mathrm{Near-Res.}}^{(1+1)} \right|^2, \quad (2)$$

with

$$P_{\text{On-Res.}}^{(1+1)} = i\pi \int_{-\infty}^{+\infty} \mathrm{d}\,\omega_i A(\omega_i) E(\omega_f - \omega_i) E(\omega_i), \qquad (3)$$

and

$$P_{\text{Near-Res.}}^{(1+1)} = \mathscr{O} \int_{-\infty}^{+\infty} d\omega E\left(\omega_f - \omega\right) E(\omega) / (\omega_i - \omega), \quad (4)$$

where $P_{\text{On-Res.}}^{(1+1)}$ and $P_{\text{Near-Res.}}^{(1+1)}$ are, respectively, the onand near-resonant two-photon transition amplitudes, $E(\omega) = E_0(\omega) \exp[i\Phi(\omega)]$ is the Fourier transform of E(t), and $E_0(\omega)$ and $\Phi(\omega)$ are the spectral amplitude and phase respectively. As can be seen from Eq. (2), the resonance-mediated TPA process can be decomposed into on- and near-resonant components $P_{\text{On-Res.}}^{(1+1)}$ and $P_{\text{Near-Res.}}^{(1+1)}$. The on-resonant component $P_{On-Res.}^{(1+1)}$ involves all on-resonant two-photon excitation pathways with the frequencies of ω_i and $\omega_f - \omega_i$, whereas the nearresonant component $P_{\text{Near-Res.}}^{(1+1)}$ involves all other near-resonant two-photon excitation pathways with the frequencies of ω and $\omega_f - \omega$. The on-resonant component is excluded from the nearresonant component by Cauchy's principal value operator p. Obviously, the laser spectral width or pulse width will affect both the on- and near-resonant components, but the effect is greater for the near-resonant component since more photon pairs are absorbed by the near-resonant two-photon excitation process under the femtosecond laser field. For the transformlimited femtosecond laser pulse (i.e., $\Phi(\omega) = 0$), the value of laser field $E(\omega)$ is a positive real number for any laser frequency, and thus the value of on-resonant component $P_{On-Res.}^{(1+1)}$ is an imaginary number while the value of near-resonant component $P_{\text{Near-Res.}}^{(1+1)}$ is a real number. In this case, the transition probability $S^{(1+1)}$ can be further simplified into

 $S^{(1+1)} \propto S^{(1+1)}_{\text{On-Res.}} + S^{(1+1)}_{\text{Near-Res.}},$ (5)

with

$$S_{\text{On-Res.}}^{(1+1)} = \int_{-\infty}^{+\infty} \mathrm{d}\omega_f A\left(\omega_f\right) \left| P_{\text{On-Res.}}^{(1+1)} \right|^2, \tag{6}$$

and

$$S_{\text{Near-Res.}}^{(1+1)} = \int_{-\infty}^{+\infty} \mathrm{d}\,\omega_f A\left(\omega_f\right) \left| P_{\text{Near-Res.}}^{(1+1)} \right|^2.$$
(7)

When a linearly polarized laser field is modulated by the quarter wave plate, its polarization status will be changed. Mathematically, the polarization-modulated laser field can be defined by the function of

$$\boldsymbol{E}_{\lambda/4}(t) = \cos\left(\boldsymbol{\theta}\right) \boldsymbol{E}(t) \, \boldsymbol{e}_{x} + \sin\left(\boldsymbol{\theta}\right) \boldsymbol{E}(t) \, \boldsymbol{e}_{y}, \tag{8}$$

where e_x and e_y represent the polarization directions in a rectangular coordinate system, and θ is the angle between the input laser polarization direction and the optical axis of the quarter wave plate. It is easy to verify that the output laser fields are linear polarization for $\theta = m\pi/2$ (m = 0, 1, 2, ...), circular polarization for $\theta = (2m+1)\pi/4$ and elliptical polarization for other angle θ , respectively. The two photons via on-resonant absorption can come from the same polarization direction (i.e., $e_x e_x$ and $e_y e_y$) or different polarization directions (i.e., $e_x e_y$ and $e_y e_x$), whereas the two absorbed photons via near-resonant absorption can only come from the same polarization direction (i.e., $e_x e_x$ and $e_y e_y$).^[36] Thus, the on-resonant term $S_{\text{On-Res.}}^{(1+1)}$ and near-resonant term $S_{\text{Near-Res.}}^{(1+1)}$ induced by the polarization-modulated laser field can be written as

$$S_{\text{On-Res.}}^{(1+1)} = \left[\cos^{4}\left(\theta\right) + \sin^{4}\left(\theta\right) + 2\cos^{2}\left(\theta\right)\sin^{2}\left(\theta\right)\right] \\ \times \int_{-\infty}^{+\infty} d\omega_{f} A\left(\omega_{f}\right) \left|P_{\text{On-Res.}}^{(1+1)}\right|^{2}$$

and

$$S_{\text{Near-Res.}}^{(1+1)} = \left[\cos^{4}(\theta) + \sin^{4}(\theta)\right] \\ \times \int_{-\infty}^{+\infty} d\omega_{f} A\left(\omega_{f}\right) \left|P_{\text{Near-Res.}}^{(1+1)}\right|^{2}.$$
(10)

(9)

 $= \int_{-\infty}^{+\infty} \mathrm{d}\omega_f A\left(\omega_f\right) \left| P_{\mathrm{On-Res.}}^{(1+1)} \right|^2,$

As can be seen from Eqs. (9) and (10), the on-resonant term $S_{\text{On-Res.}}^{(1+1)}$ is independent of the laser polarization, whereas the near-resonant term $S_{\text{Near-Res.}}^{(1+1)}$ is related to the laser polarization (i.e., θ), which is consistent with the above discussion. One can see that $S^{(1+1)}$ is a maximal value for $\theta = m\pi/2$ (linear polarization) and a minimal value for $\theta = (2m + 1)\pi/4$ (circular polarization). Therefore, when the laser polarization is changed from linear through elliptical to circular, the transition probability $S^{(1+1)}$ decreases. Obviously, the theoretical result is in good agreement with the experimental observation. In Fig. 5, we also show the theoretical simulation, and here the weight of the near-resonant two-photon absorption in the whole excitation process is taken into account.

Since the polarization modulations of green and red UC luminescence result from the near-resonant TPA process, it is necessary to increase the weight of the near-resonant TPA component in the whole excitation process in order to improve the polarization control efficiency. One simple way is to keep the near-resonant TPA process and exclude other excitation processes. In this experiment, the on-resonant TPA, ESA and ETU processes are correlated with the absorption in the intermediate state ${}^{4}I_{9/2}$, and thus a two-color laser field may be a well-established tool to eliminate these excitation processes but keep the near-resonant TPA process. In the two-color excitation process, both laser fields should be far from the resonant absorption of intermediate state ${}^{4}I_{9/2}$, but the sum of their frequencies should be equal to the transition frequency of excited state ${}^{2}H_{9/2}$. By such a two-color laser field excitation, the green and red UC luminescence may be suppressed, but their polarization control efficiencies should be improved, and the polarization modulation should not be affected by the laser repetition rate.

4. Conclusions

In this study, we experimentally and theoretically demonstrate that the femtosecond laser polarization can control the UC luminescence in Er^{3+} -doped NaYF₄ nanocrystals dispersed in the silicate glass. It is shown that the circular polarization will suppress the UC luminescence, but the polarization control is affected by the laser repetition rate, and a higher repetition rate leads to a lower control efficiency. It is also shown that the UC luminescences come from the TPA, ETU, and ESA processes, but the polarization modulation only results from the near-resonant TPA process. Furthermore, the two-color femtosecond laser field is shown to be a feasible method to keep the near-resonant TPA process and exclude other excitation processes, and consequently can improve the polarization control efficiency. The study presents a clear physical process for the polarization control of UC luminescence in Er^{3+} -doped NaYF₄ nanocrystals, which is very useful for further understanding and controlling the UC luminescences in various luminescent materials. The laser polarization modulation provides a very simple method to control various nonlinear optical processes, and therefore these theoretical and experimental results can be used as the study basis in related fields.

References

- [1] Sivakumar S, van Veggel F C M and Raudsepp M 2005 J. Am. Chem. Soc. 127 12464
- [2] Kido J, Hayase H, Hongawa K, Nagai K and Okuyama K 1994 Appl. Phys. Lett. 65 2124
- [3] Tessler N, Medvedev V, Kazes M, Kan S and Banin U 2002 Science **295** 1506
- [4] Zhou P, Wang X, Ma Y, Lü H and Liu Z J 2012 Laser Phys. 22 1744
- [5] Scheps R 1996 Prog. Quantum Electron. 20 271
- [6] Wintner E, Sorokin E and Sorokina I T 2011 Laser Phys. 11 1193
- [7] Downing E, Hesselink L, Ralston J and Macfarlane R 1996 Science 273 1185
- [8] Glaspell G, Anderson J, Wilkins J R and El-Shall M S 2008 J. Phys. Chem. C 112 11527
- [9] Suyver J F, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Krämer K W, Reinhard C and Güdel H U 2005 Opt. Mater. 27 1111
- [10] Haase M and Schäfer H 2011 Angew. Chem. Int. Ed. 50 5808
- [11] Wang F, Tan W B, Zhang Y, Fan X and Wang M 2006 Nanotechnology 17 R1
- [12] Wolska E, Kaszewski J, Kiełbik P, Grzyb J, Godlewski M M and Godlewski M 2014 Opt. Mater. 36 1655
- [13] Heer S, Kömpe K, Güdel H U and Haase M 2004 Adv. Mater. 16 2102
- [14] Ehlert O, Thomann R, Darbandi M and Nann T 2008 ACS Nano 2 120

- [15] Dai L, Xu C, Zhang Y, Li D Y and Xu Y H 2013 Chin. Phys. B 22 094201
- [16] Mai H X, Zhang Y W, Sun L D and Yan C H 2007 J. Phys. Chem. C 111 13721
- [17] Bai X, Song H W, Pan G H, Lei Y Q, Wang T, Ren X G, Lu S Z, Dong B, Dai Q L and Fan L B 2007 J. Phys. Chem. C 111 13611
- [18] Wang F and Liu X G 2008 J. Am. Chem. Soc. 130 5642
- Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q and [19] Li Y 2005 Angew. Chem. Int. Ed. 44 6054
- [20] Franzò G, Iacona F, Vinciguerra V and Priolo F 2000 Mater. Sci. Eng. B 69 335
- [21] Bednarkiewicz A, Wawrzynczyk D, Nyk M and Samoć M 2011 J. Rare Earths 29 1152
- [22] Gainer C F, Joshua G S, De Silva C R and Romanowski M 2011 J. Mater. Chem. 21 18530
- [23] Zhang S A, Lu C H, Jia T Q, Qiu J R and Sun Z R 2013 Appl. Phys. Lett. 103 194104
- [24] Zhang S A, Xu S W, Ding J X, Lu C H, Jia T Q, Qiu J R and Sun Z R 2014 Appl. Phys. Lett. 104 014101
- [25] Zhou J J, Chen G X, Wu E, Bi G, Wu B T, Teng Y, Zhou S F and Qiu J R 2013 Nano Lett. 13 2241
- [26] Lu C H, Zhang H, Zhang S A and Sun Z R 2012 Chin. Phys. B 21 123202
- [27] Hao J H, Zhang Y and Wei X H 2011 Angew. Chem. Int. Ed. 50 6876
- [28] Liu Y X, Wang D S, Shi J X, Peng Q and Li Y D 2013 Angew. Chem. Int. Ed. 52 4366
- [29] Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P and Yan C H 2006 J. Am. Chem. Soc. 128 6426
- [30] Alivisatos A P 1996 J. Phys. Chem. 100 13226
- [31] Zhou J J, Shirahata N, Sun H T, Ghosh B, Ogawara M, Teng Y, Zhou S F, Chu R G S, Fujii M and Qiu J R 2013 J. Phys. Chem. Lett. 4 402
- [32] Ehlert O, Thomann R, Darbandi M and Nann T 2008 ACS Nano 2 120
- [33] Meshulach D and Silberberg Y 1999 Phys. Rev. A 60 1287
- [34] Dudovich N, Dayan B, Faeder S M G and Silberberg Y 2001 Phys. Rev. Lett. 86 47
- [35] Dayan B, Pe'Er A, Friesem A A and Silberberg Y 2004 Phys. Rev. Lett. **93** 23005
- [36] Xu S W, Huang Y X, Yao Y H, Jia T Q, Ding J X, Zhang S A and Sun Z R 2015 J. Phys. B: At. Mol. Opt. Phys. 48 135402

Chinese Physics B

Volume 25Number 2February 2016

GENERAL

020101	Analysis of robustness of urban bus network	
	Tao Ren, Yi-Fan Wang, Miao-Miao Liu and Yan-Jie Xu	
020201	Stochastic response of van der Pol oscillator with two kinds of fractional derivatives under Gaussian	
	white noise excitation	
	Yong-Ge Yang, Wei Xu, Ya-Hui Sun and Xu-Dong Gu	
020202	Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer	
	problems	
	Juan-Mian Lei and Xue-Ying Peng	
020203	Solving unsteady Schrödinger equation using the improved element-free Galerkin method	
	Rong-Jun Cheng and Yu-Min Cheng	
020204	Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme	
	Jin-Lian Ren and Tao Jiang	
020301	Weak value amplification via second-order correlated technique	
	Ting Cui, Jing-Zheng Huang, Xiang Liu and Gui-Hua Zeng	
020302	Quantum frequency doubling based on tripartite entanglement with cavities	
	Juan Guo, Zhi-Feng Wei and Su-Ying Zhang	
020303	Enhancing parameter precision of optimal quantum estimation by quantum screening	
	Jiang Huang, You-Neng Guo and Qin Xie	
020304	Mach-Zehnder interferometer with squeezed and EPR entangled optical fields	
	Xu-Dong Xu, Wei Li, Shi-Yao Zhu and Jing Zhang	
020305	Hong-Ou-Mandel interference with two independent weak coherent states	
	Hua Chen, Xue-Bi An, Juan Wu, Zhen-Qiang Yin, Shuang Wang, Wei Chen and Zhen-Fu Han	
020306	Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and	
	photon-number-resolving measurement	
	Jino Heo, Chang-Ho Hong, Dong-Hoon Lee and Hyung-Jin Yang	
020307	A quantum walk in phase space with resonator-assisted double quantum dots	
	Zhi-Hao Bian, Hao Qin, Xiang Zhan, Jian Li and Peng Xue	
020308	Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons	
	Lan Zhou and Yu-Bo Sheng	
020701	A-site ordered perovskite $CaCu_3Cu_2Ir_2O_{12-\delta}$ with square-planar and octahedral coordinated Cu ions	
	Qing Zhao, Yun-Yu Yin, Jian-Hong Dai, Xi Shen, Zhi-Wei Hu, Jun-Ye Yang, Qing-Tao Wang, Ri-Cheng Yu,	
	Xiao-Dong Li and You-Wen Long	

ATOMIC AND MOLECULAR PHYSICS

023101 Tune-out wavelengths for the alkaline-metal atoms Wei-Wei Yu, Rong-Mei Yu, Yong-Jun Cheng and Ya-Jun Zhou 023102 Tuning the energy gap of bilayer α -graphyne by applying strain and electric field Yang Hang, Wen-Zhi Wu, Jin Yu and Wan-Lin Guo 023201 Up-conversion luminescence polarization control in Er³⁺-doped NaYF₄ nanocrystals Hui Zhang, Yun-Hua Yao, Shi-An Zhang, Chen-Hui Lu and Zhen-Rong Sun 023301 Frequency dependence of quantum path interference in non-collinear high-order harmonic generation Shi-Yang Zhong, Xin-Kui He, Hao Teng, Peng Ye, Li-Feng Wang, Peng He and Zhi-Yi Wei Energy and rotation-dependent stereodynamics of $H(^2S) + NH(a^1\Delta) \rightarrow H_2(X^1\Sigma_g^+) + N(^2D)$ reaction 023401 Yong-Qing Li, Yun-Fan Yang, Yang Yu, Yong-Jia Zhang and Feng-Cai Ma X-ray emission from 424-MeV/u C ions impacting on selected target 023402 Xian-Ming Zhou, Rui Cheng, Yu Lei, Yuan-Bo Sun, Yu-Yu Wang, Xing Wang, Ge Xu, Ce-Xiang Mei, Xiao-An Zhang, Xi-Meng Chen, Guo-Qing Xiao and Yong-Tao Zhao ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS 024101 Anomalous propagation conditions of electromagnetic wave observed over Bosten Lake, China in July and August, 2014 Zheng Sun, Hui Ning, Jing Tang, Yong-Jie Xie, Peng-Fei Shi, Jian-Hua Wang and Ke Wang 024102 Property of slice square polycapillary x-ray optics Shi-Qi Peng, Zhi-Guo Liu, Tian-Xi Sun, Kai Wang, Long-Tao Yi, Kui Yang, Man Chen and Jin-Bang Wang 024201 New pattern recognition system in the e-nose for Chinese spirit identification Hui Zeng, Qiang Li and Yu Gu 024202 Lensless ghost imaging through the strongly scattering medium Zhe Yang, Lianjie Zhao, Xueliang Zhao, Wei Qin and Junlin Li 024203 Experimental study of the dependences of retrieval efficiencies on time delay between magneto-opticaltrap being turned off and optical storage Li-Rong Chen, Zhong-Xiao Xu, Ping Li, Ya-Fei Wen, Wei-Qing Zeng, Yue-Long Wu, Long Tian, Shu-Jing Li and Hai Wang 024204 2-µm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowthfree shallow-etched gratings by interference lithography Cheng-Ao Yang, Yu Zhang, Yong-Ping Liao, Jun-Liang Xing, Si-Hang Wei, Li-Chun Zhang, Ying-Qiang Xu, Hai-Qiao Ni and Zhi-Chuan Niu Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser 024205 Zi-Ye Gao, Jiang-Feng Zhu, Ke Wang, Jun-Li Wang, Zhao-Hua Wang and Zhi-Yi Wei Passively mode-locked erbium-doped fiber laser via a D-shape-fiber-based MoS₂ saturable absorber with 024206 a very low nonsaturable loss Li-Na Duan, Yu-Long Su, Yong-Gang Wang, Lu Li, Xi Wang and Yi-Shan Wang

024207	Design of LD in-band direct-pumping side surface polished micro-rod Nd:YVO ₄ laser
	Wen-Qi Zhang, Fei Wang, Qiang Liu and Ma-Li Gong
024208	Wavelength modulation spectroscopy at 1530.32 nm for measurements of acetylene based on Fabry-
	Perot tunable filter
	Yun-Long Li, Bing-Chu Yang and Xue-Mei Xu
024209	19-fs pulse generated by supercontinuum compression
	Hua-Qiang Zhang, Peng Wang, Wen-Jun Liu, Yi-Lei Yao, Zhi-Jing Xu and Jian Li
024210	Measurements of atmospheric NO ₃ radicals in Hefei using LED-based long path differential optical
	absorption spectroscopy
	Xue Lu, Min Qin, Pin-Hua Xie, Jun Duan, Wu Fang, Liu-Yi Ling, Lan-Lan Shen, Jian-Guo Liu and Wen-Qing
	Liu
024301	Tunable acoustic radiation pattern assisted by effective impedance boundary
	Feng Qian, Li Quan, Li-Wei Wang, Xiao-Zhou Liu and Xiu-Fen Gong
024302	Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating
	Ling-Zhi Huang, Yong Xiao, Ji-Hong Wen, Hai-Bin Yang and Xi-Sen Wen
024303	Experimental and numerical studies of nonlinear ultrasonic responses on plastic deformation in weld
	joints
	Yan-Xun Xiang, Wu-Jun Zhu, Ming-Xi Deng and Fu-Zhen Xuan
024304	Bubble nonlinear dynamics and stimulated scattering process
	Jie Shi, De-Sen Yang, Sheng-Guo Shi, Bo Hu, Hao-Yang Zhang and Shi-Yong Hu
024305	Underwater asymmetric acoustic transmission structure using the medium with gradient change of
	impedance
	Bo Hu, Jie Shi, Sheng-Guo Shi, Yu Sun and Zhong-Rui Zhu
024306	Calculation of multi-layer plate damper under one-axial load
	Hui Yan, Lu Zhang, Hong-Yuan Jiang and Alexander M. Ulanov
024701	Numerical investigation of a coupled moving boundary model of radial flow in low-permeable stress-
	sensitive reservoir with threshold pressure gradient
	Wen-Chao Liu, Yue-Wu Liu, Cong-Cong Niu, Guo-Feng Han and Yi-Zhao Wan
024702	Development of a new correlation to calculate permeability for flows with high Knudsen number
	Esmaeil Dehdashti
024703	Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond dis-
	charge plasma aerodynamic actuation
	Kang Chen and Hua Liang
	PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES
025201	Cycloid motions of grains in a dust plasma
	Yong-Liang Zhang, Fan Feng, Fu-Cheng Liu, Li-Fang Dong and Ya-Feng He
025202	Sheath structure in plasma with two species of positive ions and secondary electrons
	Xiao-Yun Zhao, Nong Xiang, Jing Ou, De-Hui Li and Bin-Bin Lin

025203	A hybrid mode of one- and two-surface multipactor on grooved dielectric surface
	Li-Bing Cai, Jian-Guo Wang, Guo-Xin Cheng and Xiang-Qin Zhu
	CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES
026101	Bandgap narrowing in the layered oxysulfide semiconductor $Ba_3Fe_2O_5Cu_2S_2$: Role of FeO ₂ layer
	Han Zhang, Shifeng Jin, Liwei Guo, Shijie Shen, Zhiping Lin and Xiaolong Chen
026102	Phase transition and chemical decomposition of liquid carbon dioxide and nitrogen mixture under ex-
	treme conditions
	Xiao-Xu Jiang, Guan-Yu Chen, Yu-Tong Li, Xin-Lu Cheng and Cui-Ming Tang
026103	Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal
	Chong-Lin Jia, Chang-Chun Ge and Qing-Zhi Yan
026104	High-pressure structural properties of tetramethylsilane
	Zhen-Xing Qin and Xiao-Jia Chen
026201	Fabrication of CoFe ₂ O ₄ ferrite nanowire arrays in porous silicon template and their local magnetic
	properties
	Hui Zheng, Man-Gui Han and Long-Jiang Deng
026301	Lattice stabilities, mechanical and thermodynamic properties of Al ₃ Tm and Al ₃ Lu intermetallics under
	high pressure from first-principles calculations
	Xu-Dong Zhang and Wei Jiang
026401	Phase transition, elastic and electronic properties of topological insulator Sb ₂ Te ₃ under pressure: First
	principle study
	Qing Lu, Huai-Yong Zhang, Yan Cheng, Xiang-Rong Chen and Guang-Fu Ji
026402	First principle investigation of the electronic and thermoelectric properties of ${ m Mg_2C}$
	Kulwinder Kaur and Ranjan Kumar
026501	First-principle investigation on the thermodynamics of $X_2 N_2 O$ ($X = C$, Si, Ge) compounds
	Qing-Yun Xiong, Qi-Xia Shen, Rui-Zi Li, Jiang Shen and Fu-Yang Tian
026801	Vibrational features of confined water in nanoporous TiO ₂ by Raman spectra
	Xin Gao, Qiang Wang, Gang Sun, Chen-Xi Li and Lin Hu
026802	Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al
	nanocomposites
	Hai-Yang Song and Yu-Long Li
	CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTI-
	CAL PROPERTIES
027101	First-principles calculations of structural and electronic properties of ${ m Tl}_x{ m Ga}_{1-x}{ m As}$ alloys
	G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan and N. B. Yurdasan
027102	Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-
	GaN films
	Jing Yang, De-Gang Zhao, De-Sheng Jiang, Ping Chen, Zong-Shun Liu, Jian-Jun Zhu, Ling-Cong Le, Xiao-
	Jing Li, Xiao-Guang He, Li-Qun Zhang and Hui Yang

027103	Evaluation of electrical and optical characteristics of ZnO/CdS/CIS thin film solar cell
027104	Hadi Zarei and Rasoul Malekfar Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic-organic
027104	nerovskite ABX_{2} from first-nrincinles study
	Oing Yuan Chan, Yung Huang, Dang Du Huang, Tei Ma, Chan Cao and Yao Ha
027201	Quing- Yuan Chen, Yang Huang, Peng-Ru Huang, Tai Ma, Chao Cao and Yao He
027201	Current-induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor
	junctions with strong spin-orbit coupling
	Nai-Qing Liu, Li-Jie Huang, Rui-Qiang Wang and Liang-Bin Hu
027202	Infrared laser-induced fast photovoltaic effect observed in orthorhombic tin oxide film
	Song-Qing Zhao, Ji-Rui Zhang, Hong-Jie Shi, Kun-Kun Yan, Chun Huang, Li-Min Yang, Rui Yang and Kun
	Zhao
027301	Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure
	Liang-Liang Du, Quan Li, Shao-Xian Li, Fang-Rong Hu, Xian-Ming Xiong, Yan-Feng Li, Wen-Tao Zhang and
	Jia-Guang Han
027302	Quantum information transfer between topological and conventional charge qubits
	Jun Li and Yan Zou
027303	Effect of gate length on breakdown voltage in AlGaN/GaN high-electron-mobility transistor
	Jun Luo, Sheng-Lei Zhao, Min-Han Mi, Wei-Wei Chen, Bin Hou, Jin-Cheng Zhang, Xiao-Hua Ma and Yue
	Hao
027304	Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co ₂ MnSi/graphene/n-Ge
	junction
	Gui-fang Li, Jing Hu, Hui Lv, Zhijun Cui, Xiaowei Hou, Shibin Liu and Yongqian Du
027305	Modeling of a triple reduced surface field silicon-on-insulator lateral double-diffused metal-oxide-
	semiconductor field-effect transistor with low on-state resistance
	Yu-Ru Wang, Yi-He Liu, Zhao-Jiang Lin, Dong Fang, Cheng-Zhou Li, Ming Qiao and Bo Zhang
027306	A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching
	technology
	Yan-Hui Zhang, Jie Wei, Chao Yin, Qiao Tan, Jian-Ping Liu, Peng-Cheng Li and Xiao-Rong Luo
027307	Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal pro-
	cess
	Yu-Xiang Qin, Cheng Liu, Wei-Wei Xie and Meng-Yang Cui
027401	Interplay of iron and rare-earth magnetic order in rare-earth iron pnictide superconductors under mag-
	netic field
	Lei-Lei Yang, Da-Yong Liu, Dong-Meng Chen and Liang-Jian Zou
027402	Superconductivity of bilayer phosphorene under interlayer compression
	Gui-Oin Huang and Zhong-Wen Xing
027501	Magnetic entrony change and magnetic properties of LaFe., -Si, - after controlling the Curie tempera-
02/001	ture by partial substitution of Mn and hydrogenation
	Die Ee end Lie Hee
	DIII Fu anu jie Han

027701	Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor
	Zhi Jiang, Yi-Qi Zhuang, Cong Li, Ping Wang and Yu-Qi Liu
027702	Improvement in electrical properties of high- κ film on Ge substrate by an improved stress relieved pre-
	oxide method
	Ji-Bin Fan, Xiao-Fu Ding, Hong-Xia Liu, Peng-Fei Xie, Yuan-Tao Zhang and Qing-Liang Liao
027703	Realization of a flux-driven memtranstor at room temperature
	Shi-Peng Shen, Da-Shan Shang, Yi-Sheng Chai and Young Sun
027801	Superluminal light attenuated by strong dispersion of complex refractive index
	Abdurahman Ahmed Yonis, Vadim Nickolaevich Mal'nev and Belayneh Mesfin Ali
027802	Molten-salt synthesis and composition-dependent luminescent properties of barium tungsto-molybdate-
	based solid solution phosphors
	Xiang-Hong He, Zhao-Lian Ye, Ming-Yun Guan, Ning Lian and Jian-Hua Sun
027901	Molecular dynamics simulation of Cu_n clusters scattering from a single-crystal Cu (111) surface: The
	influence of surface structure
	Xianwen Luo, Meng Wang and Bitao Hu
	INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY
028101	Effects of Ni doping on the structural properties and collapse of magnetic ordering in $NdFe_{1-x}Ni_xO_3$
	$(0.1 \le x \le 0.7)$ orthoferrites
	I. Ahmad, M. J. Akhtar and M. Siddique
028102	Room temperature NO2 gas sensing of Au-loaded tungsten oxide nanowires/porous silicon hybrid struc-
	ture
	Deng-Feng Wang, Ji-Ran Liang, Chang-Qing Li, Wen-Jun Yan and Ming Hu
028103	Nanodots and microwires of ZrO ₂ grown on LaAlO ₃ by photo-assisted metal-organic chemical vapor
	deposition
	Feng Guo, Xin-Sheng Wang, Shi-Wei Zhuang, Guo-Xing Li, Bao-Lin Zhang and Pen-Chu Chou
028201	<i>In-situ</i> characterization of electrochromism based on ITO/PEDOT:PSS towards preparation of high per-
020202	Xue-Jin Wang, Zheng-Fei Guo, Jing-Yu Qu, Kun Pan, Zheng Qi and Hong Li
028202	First principle study of LLX S ₂ ($X = Ga$, in) as cathode materials for L1 ion batteries
020401	Feng-Ya Rao, Fang-Hua Ning, Li-Wei Jiang, Xiang-Ming Zeng, Mu-Sheng Wu, Bo Xu and Chu-Ying Ouyang
028401	Investigations of the optical properties of Si surface with microwires for solar cell applications
000400	Li Li, Shi-Liang Wu, Dong Yu, Wei Wang, Wen-Chao Liu, Xiao-Shan Wu and Feng-Ming Zhang
028402	Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer
	Jian-Feng Li, Chuang Zhao, Heng Zhang, Jun-Feng Tong, Peng Zhang, Chun-Yan Yang, Yang-Jun Xia and

028501	Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with double electron	
	blocking layers	
	Cheng Zhang, Hui-Qing Sun, Xu-Na Li, Hao Sun, Xuan-Cong Fan, Zhu-Ding Zhang and Zhi-You Guo	
028701	Reverse-feeding effect of epidemic by propagators in two-layered networks	
	Dayu Wu, Yanping Zhao, Muhua Zheng, Jie Zhou and Zonghua Liu	
028702	Performance analysis of LDPC codes on OOK terahertz wireless channels	
	Chun Liu, Chang Wang and Jun-Cheng Cao	
028703	Terahertz multi-metal-wire hybrid-cladding hollow waveguide for refractive index sensing	
	Ying-Ying Yu, Xu-You Li, Kun-Peng He and Bo Sun	
028704	Simple phase extraction in x-ray differential phase contrast imaging	
	Xin Liu, Jin-Chuan Guo, Yao-Hu Lei, Ji Li and Han-Ben Niu	
028801	Flexible impedance and capacitive tensile load sensor based on CNT composite	

Zubair Ahmad, Kh S Karimov and Farid Touati

028901 Dynamic feature analysis in bidirectional pedestrian flows

Xiao-Xia Yang, Winnie Daamen, Serge Paul Hoogendoorn, Hai-Rong Dong and Xiu-Ming Yao

GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS

029401 A 0.33-THz second-harmonic frequency-tunable gyrotron Zheng-Di Li, Chao-Hai Du, Xiang-Bo Qi, Li Luo and Pu-Kun Liu

