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Abstract—The key issue of renewable generations such as solar
and wind in energy harvesting system is the uncertainty of energy
availability. The characteristic of imprecise computation that
accepts an approximate result when energy is limited and exe-
cutes more computations yielding better results if more energy is
available, can be exploited to intelligently handle the uncertainty.
In this paper, we first propose a task allocation scheme that
adaptively assigns real-time imprecise computation tasks to indi-
vidual processors considering uncertainties in renewable energy
sources. The proposed task allocation scheme enhances energy
efficiency by minimizing system energy consumption followed
by adapting the execution of imprecise computation tasks to the
energy availability. We then present a QoS-aware task scheduling
scheme that determines the optional execution cycles of tasks
allocated to processors. The proposed task scheduling scheme
maximizes system QoS under the energy budget constraint.

I. INTRODUCTION

With the proliferation of cyber physical applications in harsh
environments where access is rather limited, it is desirable for
a real-time embedded system deployed in such an environ-
ment to scavenge energy from renewable sources to sustain
its perpetual operation. The key issue of renewable energy
sources is the uncertainty of output. A system with intermittent
renewable energy may fail to complete a task by its deadline
due to lack of energy, resulting in a timing fault. Since a timely
approximate result is preferable to a precise result delayed
[1], imprecise computation can be used to avoid timing faults
due to power fluctuation in energy harvesting systems. This
is achieved by producing an approximate result of acceptable
quality by the deadline when the system cannot produce an
exact result in time due to lack of energy.

Extensive investigations have been made into the design
of energy harvesting real-time systems. They mainly focus
on improving the efficiency of exploiting renewable energy,
reducing the capacity of energy storage, and minimizing the
deadline miss rate of real-time tasks. For example, Severini
et al. [2] presented an improved lazy scheduling algorithm.
Abdeddaim et al. [3] designed an optimal fixed-priority so-
lution to the problem of real-time scheduling that handles
energy and timing constraints. An efficient global control
algorithm was presented in [4] for real-time energy harvesting
systems. However, task execution precision is not considered.
Stavrinides et al. [5] combined imprecise computation and bin
packing to evaluate the impact of input error on the perfor-
mance of a heterogeneous distributed real-time system. Task
graphs with end-to-end deadlines are dynamically scheduled,
however, the energy design constraint is not taken into account.

This work was partially supported by Shanghai Municipal Natural Science
Foundation (Grant No. 16ZR1409000), Natural Science Foundation of China
(Grant No. 91418203 and 61672230), and ECNU Outstanding Doctoral
Dissertation Cultivation Plan of Action (Grant No. PY2015047). The effort
of X. Hu was supported in part by U.S. NSF (Grant No. CNS-1319904). T.
Wei is the corresponding author, email: tqwei@cs.ecnu.edu.cn.

 
Energy  
Source 

�
 

Energy 
Storage 

��
� … 

Energy Dissipation 
�

� �

Fig. 1: The diagram of the system architecture.

Few works have investigated the energy management for
imprecise computation-based real-time systems. Cortes et al.
[6] proposed a two-phase approach to maximize rewards for
real-time imprecise computation systems, and Yu et al. [7]
presented a runtime scheduling algorithm to maximize system
QoS under energy constraints. These two approaches, however,
are not well suited for energy harvesting systems since the
energy constraint for reward optimization is fixed. Considering
the uncertainty of energy availability in harvesting systems,
Kooti et al. [8] designed a two-step energy management
scheme to maximize QoS. However, the presented scheme
specifically targets applications in which dropouts of some
of real-time tasks are allowed, thus doesnot comply with the
stringent timing requirements of general real-time systems. In
addition, all the above works only consider single-processor
platforms, thus are not applicable to multiprocessor platforms.

In this paper, we propose an imprecise computation based
task allocation and scheduling scheme for multiprocessor real-
time systems that harvest energy from environments. The
characteristic of imprecise computation can be exploited to
intelligently handle the uncertainty of energy availability by
trading off task execution precision for timeliness. Specifically,
we introduce an energy-adaptive task allocation scheme which
not only minimizes system energy consumption but also adapts
to the execution of imprecise computation tasks to energy
availability. We further propose a novel scheduling scheme
to determine the number of optional cycles that each task
can execute such that system QoS is maximized under the
harvested energy constraint. We have conducted extensive
simulations to verify the effectiveness of our schemes in
reducing energy consumption and improving QoS. Results
demonstrate that our schemes reduce energy consumption
by up to 47.5% and improve system QoS by up to 147.8%

compared to existing schemes.

II. SYSTEM ARCHITECTURE & MODELS

The system mainly consists of three modules: energy source,
storage, and dissipation module. As shown in Fig. 1, the energy
source module automatically scavenges renewable energy at
the rate of Pharv(t), and converts the scavenged energy into
electrical energy. The energy storage module, typically in the
form of a battery or supercapacitor, serves as a buffer against
the uncertainty in harvested energy. A multiprocessor system-
on-chip (MPSoC) is considered as the energy dissipation
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module, which drains energy from either the energy source
or storage module at the rate of Pcons(t). The MPSoC system
Θ consists of M processors θ1, θ2, · · · , θM , where processor
θr (1 ≤ r ≤ M) is characterized by a given supply volt-
age/frequency pair (vr, fr) [9], [10].

A. Task Model
Consider a frame-based task set Γ consisting of N in-

dependent real-time tasks τ1, τ2, · · · , τN , in which all tasks
share a common deadline D that is also the frame size [11].
The whole frame is repeated until all task executions are
finished. Tasks are assumed to be heterogeneous in the sense
that different tasks exhibit different power consumptions on
the same processor, even when executing at the same speed
and temperature. This is due to that power consumptions of
tasks strongly rely on circuit activities and usage patterns of
different functional units [12]. Thus, the activity factor of
a task, denoted by μ ∈ (0, 1], is introduced to capture how
intensively functional units are being utilized by the task [13].

Every imprecise computation task τi (1 ≤ i ≤ N) is logically
decomposed into a mandatory part with execution cycles Mi

and an optional part with execution cycles Oi. The mandatory
part must execute to completion before the deadline and
generate an acceptable result, while the optional part refines
and improves the result produced by the mandatory part. The
characteristic of an imprecise computation task τi is described
by a quadruple τi : {μi, D,Mi, Oi}, where μi is the task activity
factor and D is the common deadline. Mi is mandatory cycles
of τi that must be completed before the deadline while Oi

is the maximum optional cycles of τi. Since optional cycles
are partially executed, we introduce a variable to represent the
executed optional cycles of task τi, which is denoted as oi and
holds for 0 ≤ oi ≤ Oi. Then, the actual length of τi, measured
by the total execution cycles, is expressed as

li = Mi + oi. (1)

B. Energy Model
The energy of the concerned system is modeled from the

perspective of both supply and demand. We first describe the
model for energy supply. Let Pharv(t) be the harvesting power
and Eharv(t1, t2) be the energy scavenged from environments
during time interval [t1, t2], then Eharv(t1, t2) is calculated as

Eharv(t1, t2) =

∫ t2

t1

Pharv(t)dt. (2)

As illustrated in Fig. 1, a part of the harvested energy is
consumed by the MPSoC system and the residuals are stored
in the energy storage module. Both of the energy source
and storage module can provide the energy to the energy
dissipation module. Let Esup(t1, t2) be the supply energy
available with the system during time interval [t1, t2], and E(t1)

be the energy stored in the battery at t1, then we have

Esup(t1, t2) = Eharv(t1, t2) + E(t1). (3)

We then describe the model for energy demand. The power
consumption of a CMOS device can be modeled as the sum
of static power Psta and dynamic power Pdyn, that is,

Pcons = Psta + Pdyn. (4)

Psta is independent of switching activity and maintains the
system basic state. It can only be eliminated by turning off the
system. Pdyn is related to processor switching activity and can
be formulated as a function of supply voltage v and operating
frequency f , i.e., Pdyn ∝ v2f . Therefore, based on the system-
level power model in [14], the overall power consumption of
processor θr when executing task τi at (vr, fr) is

Pcons(τi, θr) = Psta,r + Ceff
r μiv

2
rfr, (5)

where Psta,r is the static power of θr, Ceff
r is the effective

switching capacitance of θr, and μi is the activity factor of τi.

The static power is always consumed to maintain basic
circuits, and the dynamic power is only consumed when
executing tasks. Thus, based on (5), the total energy consumed
(or demanded) by the system during the scheduling horizon
(i.e., the frame size D), denoted by Edem, is calculated as

Edem =
∑M

r=1
(Psta,rD +

∑
τi∈Γr

Ceff
r μiv

2
rfr · li

fr
), (6)

where Γr is the subset of tasks allocated to processor θr, and
li
fr

is the execution time of task τi at frequency fr.

III. OVERALL FRAMEWORK

Due to the intermittent nature of renewable energy sources,
the energy available to support system operation varies in
a predefined time domain. To analyze the system at a fine
granularity, the system operation with respect to energy is
divided into three states: low, medium, and high energy state.
The system is deemed to be in low energy state when the
energy available during the scheduling horizon is insufficient
to finish the execution of all the mandatory parts of tasks.
The system is considered in high energy state if the energy
available during the scheduling horizon is sufficient for all
tasks to finish their mandatory and optional parts. The system
is in medium energy state if it is neither in low nor high energy
state. In medium energy state, the mandatory parts of all tasks
are ensured to finish in time while not all the optional parts
of tasks have enough energy to complete their executions.

We concentrate on systems in medium energy state, and
design a task allocation and scheduling scheme to maximize
the QoS. It has been shown in [1] and [6] that the QoS of a
task in the imprecise computation system highly depends on
task optional part and can be represented as a linear or concave
function of task optional cycles. In addition, the more optional
cycles the task executes, the higher QoS the task generates.
Thus, similar to [6], we quantitatively define a simple yet
effective QoS function for a system, which is the sum of the
executed CPU cycles of optional parts of all the real-time tasks
in the system. It is denoted by Q and is expressed as

Q =
∑N

i=1
oi, (7)

where oi is the executed optional cycles of task τi.

Problem Definition: Given a set Γ of N imprecise computa-
tion real-time tasks and a set Θ of M processors, design an
energy-efficient task assignment that adapts to the uncertainty
of system available energy, and a QoS-aware task schedul-
ing scheme that determines the cycles of assigned tasks on
individual processors to maximize system QoS. The system
energy consumption cannot exceed the energy supply, and
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the mandatory parts of all tasks must be finished before the
deadline. In other words, the problem is formulated as

Maximize: Q =
∑N

i=1
oi

Subject to: 0 ≤ oi ≤ Oi

Edem ≤ Esup∑
τi∈Γr

Mi

f(τi)
≤ D,

where f(τi) is the operating frequency of task τi.

IV. ENERGY-ADAPTIVE TASK ALLOCATION

Our scheme first assumes deterministic energy sources and
minimizes the energy consumption by intelligently assigning
tasks to individual processors, then iteratively adapts the task
allocation to the uncertainty in energy availability.

A. Deterministic Task Allocation (DTA)
We designed a task allocation heuristics for deterministic

energy powered systems in [10] to minimize the energy
consumption by utilizing heterogeneities of both processors
and tasks, as briefly summarized in the following. The system
energy consumption given in (6) can be written as

Edem =
∑M

r=1
Psta,rD +

∑M

r=1
Ceff

r v2r
∑

τi∈Γr

μili, (8)

where the first item is the static energy consumption and the
second item is the dynamic energy consumption. The static
energy consumption is independent of task allocation. As a
result, the system energy consumption Edem is minimal if
the dynamic energy consumption given by the second item
of (8) is optimized via task allocation. Let Edyn represent the
dynamic energy consumption, which can be formulated into
the product of two vectors, that is,

Edyn(A,B) = A× B = A1b1 + · · ·+Arbr + · · ·+AMbM , (9)

where A = [A1,A2, · · · ,AM ] captures hardware dependent
parameters and is constant for a given MPSoC system. Ar =

Ceff
r v2r ∈ A is referred to as the power dissipation factor of

processor θr. B = [b1, b2, · · · , bM ]T captures task related pa-
rameters, where br =

∑
τi∈Γr

κi =
∑

τi∈Γr
μili ∈ B is referred

to as the power dissipation factor of subset Γr and κi = μili is
referred to as the power dissipation factor of task τi. It is clear
that B is not constant since it depends on the task assignment
strategy. For a given set Γ of real-time tasks, the sum of power
dissipation factors of all tasks in the set is a constant and can
be calculated as

∑N
i=1 κi =

∑M
r=1

∑
τi∈Γr

μili =
∑M

r=1 br = Y.
According to the above formulation, the power dissipa-

tion of processor set Θ can be characterized by A =

[A1,A2, · · · ,AM ]. For the sake of easy presentation, it is
assumed that A1 ≤ A2 ≤ · · · ≤ AM holds. Similarly, the
optimum power dissipation of subsets assigned to processors
can be characterized by B = [B1,B2, · · · ,BM ]T , indicating the
optimum task allocation solution can minimize the dynamic
energy consumption by correlating the task assignment with
processor power dissipation factors. Given these, we presented
and proved the theorem below [10], which shows that the
dynamic energy consumption is minimized when the processor
with smaller power dissipation factor ends up with the subset
of its allocated tasks having a larger power dissipation factor.

Theorem 1: If A1 ≤ A2 ≤ · · · ≤ AM holds for A =

[A1,A2, · · · ,AM ], and B1 + B2 + · · · + BM is fixed for B =

[B1,B2, · · · ,BM ]T , then dynamic energy consumption Edyn(A,B)
is minimized if B1 ≥ B2 ≥ · · · ≥ BM holds.

The DTA [10] is developed based on the above theorem. It
first sorts the processors in ascending order of processor power
dissipation factors and sorts the tasks in descending order
of task power dissipation factors. It then iteratively assigns
tasks with larger power dissipation factors to processors with
smaller power dissipation factors under the processor capacity
limitation and timing constraint, and constructs task subsets
assigned to individual processors in a first-fit manner.

B. Adaptive Task Allocation (ATA)

The DTA is designing for the systems of deterministic
power supply. However, for the systems of intermittent power
supply, it is imperative to tackle the uncertainty in energy
sources. In this work, based on the aforementioned DTA, we
handle the uncertainty by adapting the execution of imprecise
computation tasks to the energy availability. Specifically, we
introduce a variable α to denote the ratio of the number of
executed optional cycles to the maximum optional cycles of
a task, which is named as task optional execution factor and
falls within the range of [0, 1]. Using the α, the total execution
cycles li of task τi given in (1) can also be written as

li = Mi + α ·Oi. (10)

The key issue in dealing with the energy uncertainty is
to derive the relationship between task optional execution
factors and energy demand of the system. In other words,
the optional execution factor of a task is expected to serve
as a coarse adjustment knob to control the degree of match
between system energy demand and supply. To this end, we
first show that the energy demand of a system increases
when the optional execution factor of a task in the given set
increases, as described in Theorem 2. The proof of the theorem
by construction is omitted due to page limit.

Theorem 2: Given a task τi ∈ Γ, its two different optional
execution factors α and α′, and the task allocation scheme in DTA,
Edem > E′

dem holds if α > α′, where Edem and E′
dem are the

energy demand of the generated task schedule corresponding to α

and α′ of task τi, respectively.
Since the optional execution factor of a task is positively

related to system energy demand, we can decide the task
optional execution factor for given energy demand using a
simple yet effective binary search-based approach. We assume
the optional execution factor of every task is the same such
that the adaptive task allocation is conducted at a coarse
granularity. We then decide the own optional execution cycles
of every task in the task scheduling at a fine granularity. To
handle the uncertainty in energy availability, we adapt system
energy demand to renewable energy supply using the task
optional execution factor as a coarse-grain control knob to
adjust the system energy consumption. The energy-adaptive
task allocation algorithm is described in Alg. 1. It takes as
input task set Γ, processor set Θ, a sufficiently small positive
number ε, and outputs M subsets. It first forecasts the energy
Esup available to support system operation, then compares
Esup with Elow and Ehigh to demarcate system energy state.
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Elow represents energy consumption of the schedule that is
generated by DTA only for mandatory parts of all tasks in set
Γ, while Ehigh denotes energy consumption of the schedule
that is generated by DTA for both mandatory and complete
optional parts of all tasks in Γ. The system is deemed in
low energy state if Esup ≤ Elow, and in high energy state
if Esup ≥ Ehigh holds. The task optional execution factors are
reset to 0 for low energy state and set to 1 for high energy state.

The system is deemed to be in medium energy state when
it is neither in high energy state nor in low energy state. A
binary search-based approach is used to derive a common
task optional execution factor α for all tasks. Based on α,
Alg. 1 calculates task execution cycles using (10), calls DTA
to allocate tasks, and computes energy demand Edem using
(6). Once energy demand Edem of the task allocation is
derived, Alg. 1 iteratively adapts the energy demand to the
fluctuating supply of renewable energy Esup according to
|Esup−Edem| > ε. The binary search-based method is also used
in each iteration. The algorithm stops when energy demand of
the generated schedule closely matches to the energy supply.

V. QOS-DRIVEN TASK SCHEDULING

We focus on a system the available energy of which varies
in the range from Elow to Ehigh. In such a system, the energy
available is enough to finish all mandatory parts but not
sufficient to finish both mandatory and optional parts of all
tasks. Thus, after tasks are assigned to processors, the goal
becomes to maximize system QoS under the energy constraint
by selecting tasks whose optional parts should be executed.

A. Task Selection (TS) for QoS Optimization

As given in (7), the QoS of a system is defined as the sum of
executed CPU cycles of optional parts of all tasks in the given
set. To maximize the system QoS under the energy constraint,
we propose to develop a task selection scheme that chooses
certain tasks and executes the optional parts of these tasks. Let
Er denote the energy consumed by tasks in subset Γr allocated
to processor θr, then Er is given by

Er =
∑

τi∈Γr

[Pcons(τi, θr) · oi +Mi

fr
] (11)

where Pcons(τi, θr) is the power consumption of task τi on
processor θr. The energy demand or consumption of the
system can be expressed as the sum of energy consumed by
individual processors. It approximates closely to the system
energy supply by a parameter ε > 0 since tasks are assigned
to individual processors using Alg. 1. Thus, we have

Esup ≈ Edem =
∑M

r=1
Er =

∑M

r=1

∑
τi∈Γr

[
Pcons(τi, θr)

fr
· oi]

+
∑M

r=1

∑
τi∈Γr

[
Pcons(τi, θr)

fr
·Mi], (12)

where the first item denoted by Eoptl, is the energy con-
sumption of optional parts while the second item denoted by
Emand, is the energy consumption of mandatory parts. When
a scheduling decision is made at the start of the scheduling
horizon, the estimated energy supply Esup is a fixed value.
In addition, the second item Emand shows that the energy
consumed by all allocated mandatory parts during the horizon

Algorithm 1: Energy-Adaptive Task Allocation

Input: Task set Γ, processor set Θ, sufficiently small positive number ε
Output: Task-to-processor assignment Γ1,Γ2, · · · ,ΓM

1 estimate the energy Esup available during the scheduling horizon
[t, t+D] by (3);

2 if Esup ≤ Elow then
3 α = 0, call DTA to allocate tasks; // In low energy state
4 end
5 else if Esup ≥ Ehigh then
6 α = 1, call DTA to allocate tasks; // In high energy state
7 end
8 else // In medium energy state
9 min = 0,max = 1, α = (min+max)/2;

10 compute execution cycles for all tasks by (10) based on α, call
DTA to allocate tasks, and compute energy demand Edem by (6);

11 while |Esup − Edem| > ε do
12 if Edem > Esup then
13 max = α, α = (min+max)/2;
14 end
15 else
16 min = α, α = (min+max)/2;
17 end
18 update li using (10) based on α, allocate tasks using DTA

based on li, and update Edem of the task schedule using (6);
19 end
20 end

is invariable. As a result, the total energy consumption of
optional parts given by the first item Eoptl is fixed.

The task selection problem for QoS optimization is hence
refined into finding the optimal optional cycles for all allocated
tasks under the constraint of a fixed energy budget Eoptl. Let

ECr,i =
Pcons(τi, θr)

fr
(13)

be an energy metric that gives the energy consumption of task
τi on processor θr per execution cycle. Since every task is only
allowed to bind with one processor, ECi can be used to instead
of ECr,i after task assignment is determined. In addition, we
sort all tasks allocated to processors in the ascending order
of ECi for the sake of easy presentation. Thus, the energy
consumed by optional parts of all tasks can be written as

Eoptl = EC1 · o1 + EC2 · o2 + · · ·+ ECN · oN , (14)

where EC1 < EC2 < · · · < ECN holds. In (14), the metric ECi

and task executed optional cycles oi = α ·Oi are determined
once tasks are bound to individual processors. However, the
α is derived in the task allocation for maximizing energy
efficiency. Now we aim to maximize system QoS in the
task scheduling under the energy budget by re-determining
the executed optional cycles oi of tasks using an individual
optional execution factor αi.

As mentioned above, ECi is determined once tasks are
bound to individual processors. Moreover, the LHS of (14) is
determined after task allocation. Thus, our goal of optimizing
system QoS, which is given in (7) as the sum of executed
optional cycles of all tasks, becomes maximizing the sum of
oi for 1 ≤ i ≤ N under the constraint of (14). This can be
achieved by developing a task selection scheme that wisely
chooses certain tasks and executes their optional cycles. Given
these, we present and prove a theorem below, which shows that
system QoS is maximized if the tasks having smaller energy
metric are selected to execute optional parts. The theorem can
be proved by construction. We omit the proof due to page limit.

Theorem 3: Given the energy budget Eoptl of optional parts of
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Algorithm 2: Determine Task Optional Execution Cycles

Input: Subsets Γ1,Γ2, · · · ,ΓM produced by Alg. 1
Output: Tasks with updated optional execution cycles

1 for r = 1 to M do
2 for i = 1 to size(Γr) do
3 calculate the energy metric ECr,i;
4 end
5 sort the tasks allocated to θr in ascending order of ECr,i;
6 end
7 Eoptl = Esup − Emand;
8 for r = 1 to M do
9 for i = 1 to size(Γr) do

10 if Eoptl > 0 then
11 if ECr,i × Oi ≤ Eoptl then
12 oi = Oi, αi = 1;
13 end
14 else
15 oi =

Eoptl

ECr,i
, αi =

Eoptl

ECr,i×Oi
;

16 end
17 Eoptl− = ECr,i × oi;
18 end
19 else
20 oi = 0, αi = 0;
21 end
22 i ← i+ 1;
23 end
24 end

task set Γ as defined in (14), the system QoS as defined in (7) is
maximized if the tasks having smaller energy metric EC are selected
to execute optional parts.

Based on Theorem 3, we conclude that executing optional
parts of tasks with smaller energy metric can improve system
QoS. A heuristic is thus designed to determine the execution
cycles of optional parts of all the tasks, as shown in Alg. 2.
The algorithm first calculates EC, the energy metric that gives
the energy consumption per execution cycle of a task and sorts
the tasks allocated to individual processors in the ascending
order of the metric, then calculates the energy budget Eoptl for
optional parts of all tasks. It derives optional execution cycles
for each task based on the analysis that executing optional
parts of tasks with smaller energy metric can improve the
system QoS. If energy budget Eoptl for optional parts is large
enough, maximum optional cycles of task τi can be executed
by oi = Oi; otherwise, only oi = Eoptl/ECr,i optional cycles
can be executed. No optional execution cycles will be executed
if the energy budget is exhausted. After task τi is examined, the
energy budget is updated accordingly and the process moves
to the next task. The algorithm outputs all the tasks once their
optional execution cycles oi are updated.

VI. EVALUATION

To evaluate the effectiveness of our proposed scheme in
reducing energy consumption and improving QoS, we have
performed extensive simulation-based studies. To be specific,
we first compare the energy consumption of our adaptive task
allocation (ATA) with that of HWGA [15] to validate the
efficiency of our scheme in reducing energy consumption. We
then compare the QoS of our ATA with that of DTA [10] under
varying energy supply to validate the efficiency of our scheme
in improving QoS at the task allocation stage. We finally
compare our task selection (TS) strategy with baseline method
Rand and Reve, and benchmarking algorithm critical-task-first
(CTF) [8] to validate the efficiency of our scheme in improving
QoS at the task scheduling stage. The algorithms used in the
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Fig. 2: Energy consumption of 30 task sets using our ATA scheme
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comparison are described as follows. HWGA [15] integrates
a worst-fit based partition heuristic with the genetic algorithm
to generate a task allocation that reduces energy consumption
while satisfying all system constraints. DTA [10] is a task
allocation that reduces the dynamic energy consumption by
assigning the subset having a larger power dissipation factor to
the processor having a smaller power dissipation factor. Rand
is a baseline method that randomly selects tasks to complete
their optional cycles under the energy budget. Contrary to our
TS, Reve chooses tasks having larger metric EC to execute
their optional parts. CTF [8] assigns QoS-critical jobs higher
priorities to complete their optional cycles, where QoS-critical
jobs are defined as tasks with larger maximum optional cycles.

We perform our simulations based on a 2×3 MPSoC system
(M = 6). Our processor model is built on 65nm technology
[16]. The task activity factors μ are uniformly distributed in
[0.4, 1], which demonstrates the heterogeneous nature of tasks
[13]. The size N of task set Γ is set to 100. The worst case
execution cycles (WCEC) of tasks are assumed to be in the
range [4 × 107, 6 × 108] [17]. Each task τi is instantiated by
randomly picking two WCECs from the range, one is for
the mandatory part Mi and the other is for the maximum
optional part Oi. The common deadline D is assumed to
be 1.5

∑N
i=1Mi/fmax, where fmax is the maximum processor

frequency. 30 task sets are constructed in the simulation.
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Fig. 4: Normalized QoS of 30 task sets using TS, Reve, Rand, and CTF under varying energy supply. (a) Esup = 0.75Ehigh, (b)
Esup = 0.8Ehigh, (c) Esup = 0.85Ehigh, (d) Esup = 0.9Ehigh.

The energy consumption of 30 task sets using our ATA
scheme and benchmarking algorithm HWGA [15] are shown
in Fig. 2. It has been demonstrated in the figure that our ATA
scheme consumes less energy (33.7% on average) than that of
HWGA. Furthermore, the improvement of energy savings by
our scheme over HWGA can be up to 47.5%. For instance,
the energy consumed by executing task set 4 using ATA and
HWGA are 101.5J and 193.2J, respectively.

Fig. 3 presents the normalized QoS achieved by the system
when executing the optional cycles of tasks in 30 sets using the
proposed DTA and ATA scheme under varying energy supply.
The results given in the figure show that better performance in
improving QoS can be achieved by ATA as compared to DTA,
especially when the energy supply is low. To be specific, the
QoS of ATA is 9.1%, 8.2%, 6.1%, and 4.2% higher than that
of DTA on average when Esup = 0.75, 0.8, 0.85, and 0.9Ehigh,
respectively. The highest improvement achieved by ATA over
DTA is 16.3%. For example, in the case of Esup = 0.75Ehigh

and task set 15, the normalized QoS achieved by ATA and
DTA are 0.749 and 0.644, respectively.

Fig. 4 shows the normalized QoS achieved by the system
when executing the optional cycles of tasks in 30 sets using
the proposed TS, and benchmarking methods Reve, Rand, and
CTF [8] under varying energy supply. The results in Fig. 4
show that our TS has the best performance in improving QoS
among the four methods. Specifically, when Esup = 0.75Ehigh,
the QoS of TS is 100.3%, 97.1%, and 65.7% higher than that
of Reve, Rand, and CTF [8] on average, respectively; when
Esup = 0.8Ehigh, the QoS of TS is 71.7%, 61.7%, and 36.3%

higher than that of Reve, Rand, and CTF [8] on average,
respectively; when Esup = 0.85Ehigh, the QoS of TS is 68.8%,
40.3%, and 15.2% higher than that of Reve, Rand, and CTF
[8] on average, respectively; when Esup = 0.9Ehigh, the QoS
of TS is 71.8%, 24.3%, and 3% higher than that of Reve, Rand,
and CTF [8] on average, respectively. Moreover, the highest
improvement achieved by TS is up to 147.8%. For instance, in
the case of Esup = 0.75Ehigh and task set 22, the normalized
QoS of TS and Reve are 0.741 and 0.299, respectively.

VII. CONCLUSION

In this paper, we proposed to utilize the characteristic of
imprecise computation to intelligently handle the uncertainty
in renewable energy powered real-time embedded systems.
We designed an energy-adaptive task allocation scheme and a
QoS-driven task scheduling scheme that can not only reduce
the energy consumption but also improve the QoS of the
system. We conducted extensive simulations to validate the
effectiveness of our schemes. Our algorithms were shown
to reduce energy consumption by up to 47.5% and improve
system QoS by up to 147.8% compared to existing schemes.
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