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Abstract—Since Internet of Things (IoT) applications are
deployed within open physical environments, their executions
suffer from a wide spectrum of uncertain factors (e.g., network
delay, sensor inputs). Although ThingML is a promising IoT
modeling and specification language which enables the fast
development of resource-constrained IoT applications, it lacks
the capability to model such uncertainties and quantify their
effects. Consequently, within uncertain environments the
quality and performance of IoT applications generated from
ThingML designs cannot be guaranteed. To explore the overall
runtime performance variations caused by environmental
uncertainties, this paper proposes a quantitative uncertainty
evaluation framework for ThingML-based IoT designs. By
adopting network of priced timed automata as the model of
computation and statistical model checking as the evaluation
engine, our approach can model uncertainties caused by
external environments as well as support various kinds of
performance queries on the extended ThingML designs.
Experimental results of two comprehensive case studies
demonstrate the efficacy of our approach.

Keywords—Quantitative Analysis; Internet of Things; Un-
certainty Modeling; ThingML

I. INTRODUCTION

Due to the capability of bringing billions of online devices
in a vast ecosystem, the Internet of Things (IoT) has been
identified as a rapidly thriving paradigm of network-of-
networks merging both the physical and cyber worlds [1],
[2]. It can be expected that IoT will have a high impact
on every aspect of daily life. In the near future people can
exploit, interact and rely on a wide range of things (e.g.,
sensors, actuators), which will frequently respond to the
surrounding environment and cooperate with their peers to
reach specified goals.

To enable rapid and efficient application development,
model-driven engineering has been widely used in the IoT
domain. As a domain-specific modeling language, ThingML
[3] enables the model-driven IoT software development, es-
pecially for resource constrained IoT applications. ThingML
is a combination of architecture models, state machines and
an imperative action language. It can be used to describe
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both software components and communication protocols of
IoT applications. Besides modeling, the toolset of ThingML
supports automatic code generation from ThingML mod-
els to platform-specific implementations (e.g., C, Java).
Therefore, the IoT application implementation time and
deployment time can be dramatically reduced. By using
ThingML, IoT application developers simply focus on the
design of high-level models regardless of the heterogeneity
of individual things and underlying networks.

With the increasing complexity, one major challenge to
make the IoT vision a reality is the development of de-
pendable IoT software applications which will be deployed
in the real world. IoT devices are deployed in a varying
physical environment. There exist various uncertain factors
(e.g., network delay, temperature) that cause the execu-
tion performance variations of IoT applications. However,
ThingML modeling does not take the real-world uncertainty
into consideration. Consequently, it is hard to guarantee the
QoS (Quality of Service) of IoT applications. Since differ-
ent high-level ThingML designs within the same physical
environment can exhibit very different performance, proper
quantitative analysis of ThingML designs within uncertain
environments is becoming an important issue to guarantee
the QoS of IoT applications.

In order to achieve specified QoS requirements, quan-
titative analysis of ThingML designs needs to address
the two following problems: i) How to accurately model
uncertainties caused by external environments in existing
ThingML models? ii) How to effectively reason and evaluate
the QoS of ThingML models in the presence of such
uncertainties? Although probability-based approaches [4],
[5] are promising in modeling various kinds of perfor-
mance variations, few of them can accurately model the
concurrent execution of things. Moreover, traditional formal
model checking approaches [6] are widely used in checking
whether a design can satisfy a given property. However,
few of them can reason why QoS cannot be achieved
and answer how to improve the QoS. As an alternative,
Statistical Model Checking (SMC) [7], [8] is devoted to
the quantitative evaluation of system-level designs [9], [10]
under variations. By monitoring random simulation runs of
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systems, SMC can estimate the satisfaction probability of
specified properties (i.e., QoS requirements) based on the
simulation results using statistical methods (i.e., sequential
hypothesis testing or Monte Carlo simulation). Unlike other
exhaustive model checking approaches, SMC enables check-
ing a wide spectrum of properties with far less time and
memory. Therefore, it is suitable for the quantitative analysis
of complex ThingML designs under uncertain environments.

Based on model checker UPPAAL-SMC [11], [12], this
paper makes three major contributions as follows:
• We extend the syntax and semantics of the ThingML

modeling language, which enables the accurate mod-
eling of performance variations caused by the external
uncertain environments.

• We adopt the Network of Priced Timed Automata
(NPTA) [8] as the model of computation of our ex-
tended ThingML modeling language. Using our pro-
posed mapping rules, extended ThingML designs can
be automatically transformed into NPTA models for the
quantitative analysis.

• Based on the generated NPTA models, we presented
a novel framework that can effectively evaluate the
QoS of IoT applications against specified performance
queries.

The rest of this paper is organized as follows. After
introducing the related work on ThingML and SMC-based
evaluation in Section II, Section III provides the background
on NPTA and UPPAAL-SMC. Section IV presents the
details of our proposed approach. Based on two illustrative
case studies, Section V shows that our proposed approach
can be effectively applied in the quantitative analysis of
extended ThingML designs. Section VI concludes the paper.

II. RELATED WORK

With the rapid advancement in the domain of networking,
control, and embedded systems, IoT has established itself as
an enabling technology in sensing and controlling the physi-
cal world [13]. To facilitate automated analysis and synthesis
of IoT systems, model-driven engineering methodologies
and platforms [14], [15] are widely used in the top-down
design flow of IoT systems. For example, Yang and Pan
[16] proposed a novel modeling and analysis approach for
real-time IoT designs based on Timing-constraint Petri-nets.
The proposed method can be used for the temporal behavior
analysis and verification, which can detect and eliminate
the timing constraint conflicts from local and global view-
points. Based on state-machine like semantics, ThingML
[17] provides a modeling and code generation platform for
resource-constrained IoT applications. Although more and
more model-driven approaches are investigated to facilitate
the construction of IoT systems, most of them focus on the
functional correctness of the design. Few of them consider
the performance variations caused by the uncertain envi-
ronments at the level of design models. Since IoT systems

are deployed in an uncertain physical environment, if the
variations caused by the environment cannot be reflected at
the system-level models and the impact of such variations
cannot be estimated, the QoS of the derived target systems
cannot be guaranteed.

Unlike traditional model checking approaches [6] which
can only answer yes or no for a given design and safety-
properties, quantitative analysis using SMC is a process
of measuring the probability of a whole execution satis-
fying certain temporal properties [18]. Due to the efficacy
in evaluating performance-related metrics and user-friendly
interface, UPPAAL-SMC [11], [12] is becoming one of the
mostly used tools for the quantitative analysis of system-
level designs. For example, David et al. [11] extended
the semantics of UPPAAL-SMC in order to facilitate the
modeling and evaluation of hybrid systems in various do-
mains (e.g., biology systems, energy-aware buildings). In
[19], Du et al. adopted UPPAAL-SMC to quantitatively
evaluate project schedules. Their approach supports various
performance queries, which can be used to compare different
aspects of project schedules. Based on UPPAAL-SMC, Chen
et al. [9] proposed a novel framework that supports the
modeling and evaluation of resource allocation strategies
in Cloud computing. By using their approach, Software as
a Service(SaaS) providers can not only filter out inferior
resource allocation solutions under variations in an efficient
manner, but also can tune requirement parameters to achieve
better profit. Similarly, in [10], Chen et al. introduced an
UPPAAL-SMC-based approach for the quantitative evalua-
tion of task allocation and scheduling in the MPSoC domain
considering both time and power variations.

Although there are dozens of model-driven approaches
that can benefit IoT design, most of them focus on the
functional issues. To the best of our knowledge, there are
no existing methodologies and tools that investigate the
impact of uncertain environments on the IoT designs and
allow the optimization of IoT design performance under
variations. Our proposed approach is the first attempt that
not only supports the variation modeling of ThingML, but
also allows the quantitative evaluation and comparison of
variation-aware IoT designs from a performance perspective.

III. PRELIMINARY KNOWLEDGE OF SMC

Unlike traditional timed automata whose clock rate is
always 1, the clocks in a Priced Timed Automaton (PTA)
can evolve with different clock rates. Let X be a clock set.
A clock valuation is a mapping function v : X → R>=0

from the set of clocks X to the set of non-negative reals
R>=0. Let v0(c) = 0 for all c ∈ X , where v0 indicates the
initial valuation. Let B(X) be a set of finite conjunctions
of clock expressions in the form of x ∼ k or x− y ∼ k,
where x,y ∈ X , k ∈ R, and ∼∈ {<,≤,==,>,≥}. Assuming
g ∈ B(X), v(X) |= g indicates that valuation v(X) satisfies
the constraint g. To simplify the formal modeling, we focus
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on the key components of PTAs while skipping the richer
flavors of PTAs supported by UPPAAL-SMC, e.g., urgent
locations [7]. The PTA [7] can be formally defined as
follows.

Definition 1. A PTA is a 8-tuple (L, l0,Σ,X ,τ,F, I,E) where:
• L is a finite set of locations.
• l0 denotes the initial location.
• Σ is a finite set of exclusive input and output actions.
• X is a finite set of clocks.
• τ is the system clock which will not be reset.
• F : L→ f X assigns a clock rate vector to each location,
where f (x) specifies the rate of clock x.

• I : L→ B(X) assigns an invariant to each location.
• E ⊆ L×B(X)× Σ× 2X × L denotes the finite set of
transition edges, where B(X) indicates transition guard
set and 2X denotes the set of reset clocks.

Since PTAs can communicate with each other through
broadcast channels and shared variables [8], a set of corre-
lated PTAs can be composed as a network, named Network
of Priced Timed Automata (NPTA). Assume that (l,v) ∈
L×RX

>=0 is a state of an NPTA where v |= I(l). Let v[Y ]
be the reset operation on the clock set Y . In other words, if
x ∈ Y , v(x) will be reset to 0, otherwise the value of v(x)
does not change. The semantics of NPTA is mainly based
on the following two kinds of transitions: i) A transition in
the form of (l,v)

a
−→ (l′,v′) is a discrete transition iff there

is a transition (l,g,a,Y, l′) in current state, where v |= g and

v′ = v[Y ]. ii) A transition in the form of (l,v)
d
−→ (l,v′)

is a delay transition iff v′ = v+
∫ v(τ)+d
v(τ) F(l)dτ, where v(τ)

indicates the system time of entering state (l,v) and both
v |= I(l) and v′ |= I(l).

Figure 1. An NPTA (A | B)

Figure 1 shows an NPTA with two PTAs A (id=ida)
and B (id=idb). The locations marked with “U” are urgent
locations. All the urgent locations freeze time, i.e. time is
not allowed to pass when a PTA is in an urgent location
[8]. Each PTA has four locations and two clocks (e.g., Ca
and c1 for A), where c1 and c2 are system clocks. Note
that in different locations, clocks can evolve with different
rates (i.e., unit price) determined by the specific clock rate
vector. By default, the rate of a clock is 1. To change the
rate of a clock in some location, we need to specify the

new rate to the primed version of the clock. For example,
Ca′ == 2 in location A2 indicates the clock rate in A2 is
2. Since the clock rate can be considered as a specific kind
of unit price, the value of the clock can be considered as
the corresponding cost. If we stay there for 2 seconds, then
the cost of staying there for 2 seconds is 4. In this example,
assume that the values of two variables t1 and t2 follow the
normal distribution N(2,12) and N(4,22), respectively. The
action t1 = norm(ida) on the outgoing transition edge of
A0 assigns t1 with a random value following the normal
distribution N(2,12), which indicates the mean value is 2 and
its standard deviation is 1. Since the invariant of A2 contains
c1≤ t1 and the guard on the outgoing edge of A2 is c1≥ t1,
PTA A will stay at location A2 for a time of t1. In this
way, if PTA A runs for large number of times, the sojourn
time at location A2 will follow the specified distribution.
In this example, the PTAs A and B are synchronized by
two complementary actions “a!” and “a?” via an urgent
broadcast channel a.

((A0,B0), [c1 = 0,c2 = 0,Ca = 0,Cb = 0])
0
−→

((A1,B1), [c1 = 0,c2 = 0,Ca = 0,Cb = 0])
0
−→

((A2,B1), [c1 = 0,c2 = 0,Ca = 0,Cb = 0])
2.3
−→

((A2,B1), [c1 = 2.3,c2 = 2.3,Ca = 4.6,Cb = 0])
a
−→

((A3,B2), [c1 = 2.3,c2 = 0,Ca = 4.6,Cb = 0])
4.1
−→

((A3,B3), [c1 = 6.4,c2 = 4.1,Ca = 4.6,Cb = 12.3])
...
−→

The above example shows a random feasible execution of
NPTA (A|B). It shows that the composite location (A3,B3)
can be reachable within 6.4 time units with a total cost of
Ca = 4.6, Cb = 12.3. To enable the evaluation, UPPAAL-
SMC will generate a large quantity of random runs to
estimate the overall performance of the NPTA. Since the
execution of A2 and B2 of NPTA A|B is independent and
both of them start from time 0, the arriving time at composite
location (A3,B3) follows the distribution N(6,12 +22). Note
that since UPPAAL-SMC supports the programming of
distributions based on the built-in function random() and C-
like programming constructs for NPTA, by using the above
variation modeling template, arbitrarily complex stochastic
behaviors can be modeled.

Based on the statistical approaches, SMC enables the
quantitative evaluation of NPTA-based designs using cost-
constrained temporal logic [11] based properties in the form
of Pr[cost <= bound](<> expr). Here, bound is a constant
value, the bound information [cost <= bound] restricts the
maximum value of cost. By default, the cost denotes the
system clock if it is not specified explicitly. In the property,
the expression <> expr asserts that the predicate expr will
hold eventually. According to the specified probability of
false negatives (i.e., α) and probability uncertainty (i.e., ε),
UPPAAL-SMC will generate a set of stochastic runs which
are terminated when either cost <= bound or <> expr
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holds. By monitoring the results of randomly generated runs,
the probability range of each property (i.e., [p− ε, p+ ε])
with a specified confidence (i.e., 1−α) will be reported,
where p indicates the success ratio of the given property.

IV. OUR APPROACH

Figure 2 shows an overview of our approach. Unlike tra-
ditional qualitative analysis approaches, within an uncertain
environment ThingML designers would like to query “how
much a design requirement can be fulfilled by a specific
ThingML design?” To enable such quantitative evaluation of
ThingML designs with variation information, our approach
has two inputs: i) design requirements indicating user-
expected performance metrics, and ii) extended ThingML
designs coupled with the variation information (e.g., network
delay, sensor inputs). In our approach, the design require-
ments are translated into performance queries in the form
of cost-constrained temporal logic based properties. The
extended ThingML designs and variation information are
firstly parsed and saved as ThingML meta models. Then,
based on our proposed transformation rules, the meta models
are transformed into NPTA models. By using the model
checker UPPAAL-SMC [8], our approach can conduct the
quantitative analysis and report the evaluation results. The
following subsections will describe the details.

A. Modeling of Variation-Aware ThingML

A typical ThingML design usually consists of three parts:
i) state charts that model the behaviors of individual things
and communications between things; ii) functions that sup-
port the programming of functional procedures using an
imperative action language; and iii) architecture models that
elaborate the interconnection and hierarchy of things. Based
on the above modeling constructs, various IoT functionality
can be modeled. However, due to the lack of performance
modeling mechanisms in the current ThingML version, it is
hard to verify the performance metrics of corresponding IoT
implementations. The situation becomes even worse when
IoT applications are deployed within an uncertain environ-
ment. For example, IoT things deployed within uncertain
environments often suffer from the input uncertainty. This
kind of uncertainty may come from a variety of resources,
including sensors and human activities. For example, the
input value of a temperature sensor varies along with the
unpredictable weather. As another example, communication
uncertainty strongly affects the system performance during
the data transmission among things. Usually, it is hard
to guarantee the data transmission time due to the lack
of predictability for network congestion, payload size of
transmitted messages, routing failures, etc.

The current version of ThingML assumes that all the
things are working within an ideal environment. For exam-
ple, in ThingML the event-based communication is assumed
to be instantaneous, which cannot reflect real interconnection

dynamics between things in practice. Since the designers
have no knowledge about the impacts of performance varia-
tions in system-level design, the QoS of IoT implementations
cannot be optimized or guaranteed. To enable the perfor-
mance evaluation of ThingML designs under variations in
an early stage, this paper extends the syntax and semantics of
ThingML to support the modeling of performance variations.

Definition 2. A variation-aware Thing design is a 12-tuple
(S,s0,T,A,E,G,ME ,MT ,Cond,P,Σ,MΣ), where:
• S is a finite set of states.
• s0 is the initial state.
• T ⊆ S×S denotes the finite transition set.
• A is a finite set of actions.
• E is a finite set of events.
• G is a finite set of guard conditions.
• ME : E → T maps events to its corresponding transi-
tions.

• MT : T →DIST assigns each transition with a distribu-
tion of action execution time on that transition, where
DIST is a set of distributions.

• Cond : G→ T maps guard conditions to their corre-
sponding transitions.

• P is a finite set of ports, where a port supports multiple
message send and message receive operations.

• Σ is a finite set of Thing properties, where each property
specifies a variable with specific data type and initial
value.

• MΣ : Σ → DIST assigns each property with a value
distribution, where DIST is a set of distributions.

Definition 2 gives the formal definition of variation-aware
things. A thing instance is created to accomplish some task
by itself or collaborate with other things to accomplish a
more complex task. By adopting the syntax and semantics
similar to state machines, a thing can sense the external
environment and save its value in variables defined as prop-
erties, conduct the calculation in actions using an imperative
language provided by ThingML, make the control decision
based on the guards of the underlying state machine (defined
as a “statechart”), and communicate with other things via
ports.

As the underlying model of computation, a statechart
mainly consists of states, transitions, actions, guards and
events. The states indicate different statuses of things. The
transitions specify the updates between states when spe-
cific events happen and corresponding guards hold. The
complementary events (e.g., “e!” and “e?”) on the paired
transitions of different statecharts are used for the purpose of
synchronization. They are used to denote the communication
between things. In ThingML, actions can be statements for
variable assignment or functional calls. When a transition
is triggered, some calculation will be conducted to reflect
the effect of corresponding transition actions. Originally,
the ThingML statechart does not support the modeling of
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Figure 2. The workflow of our approach

timing behaviors of IoT systems. It is assumed that all the
transitions are triggered instantaneously and the action cal-
culation has no delay. To consider the varying environments
and enable the modeling of timing behaviors, we extend
ThingML statecharts for the purpose of quantitative analysis.
To model the uncertain execution time of combined actions
on a transition, we assign the transition with an execution
time distribution for all actions. By default, the execution
time of a transition is 0 if there is no action time distribution
associated with that transition. In order to hold values for a
specific state and its inputs/outputs, properties are introduced
to define and initialize corresponding variables and constants
(with a prefix “readonly”). Note that since properties can be
used to sense the uncertain environments or human activities,
the value of such properties cannot be pre-determined. To
model the value of such properties during the stochastic
execution, we assign each property with a value distribution.
The port plays an important role in the communication
between things. As an interface for communication, a port
allows for grouping multiple messages together.

Definition 3. A variation-aware ThingML design is a 4-tuple
(Th,C,Arch,MC), where:
• Th is a finite set of correlated things.
• C is a finite set of communication channels (messages)
between things.

• Arch is an architecture model consisting of a set of
rules, which instantiates the things in Th and specifies
the connectors (channels) between ports of things.

• MC :C→ DIST assigns each message with a distribu-
tion of network transmission time, where DIST is a set
of user-defined distributions.

Definition 3 gives the formal definition of a variation
aware ThingML design. An IoT application involves a large
set of collaborating things. All these things communicate
with each other via messages on top of channels, which

are bidirectional links that connect to different Thing ports.
To elaborate an executable ThingML application, we need
to define an architecture model, which instantiates all the
things and establishes physical connection between things
using connectors. Since there exist various uncertain factors
that can affect the communication between things, to model
the transmission variation, we assume that the message
latency/delay time follows some distribution. Therefore, we
assign a transmission time distribution to each message
(channel). To enable quantitative performance analysis of
ThingML designs, our approach supports the variation mod-
eling for properties, action execution time and message
transmission time. Note that in the same way other kinds
of variations can be easily integrated into ThingML.

B. NPTA Model Generation

Listing 1 shows an extended ThingML design of
PingPong example (see details in Section V-A). The design
includes two state machines (i.e, a Client and a Server)
and an architecture model. In this example, the Thing
fragment PingPongMsgs defines the message information.
Since both messages ping and pong are used in both the
client and server, with the keyword includes the fragment
PingPongMsgs is incorporated into both things Client and
Server. The Thing Client has two properties, i.e., a constant
count max which indicates the limit (i.e., 100) of PingPong
interactions between the two things, and a variable count
which denotes the index of the current PingPong interaction.
The port definition ping service indicates that the port
only allows the messages ping and pong. The function
counterInc() is an action which increases the property count
by 1. The statechart specifies the underlying state machine
for the corresponding Thing. For the Client, we assume
that the ping message is triggered instantaneously and the
action counterInc() lasts for 1 second. In this example,
we assign the transition from Waiting to Running with a
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time distribution denoted by “follow constant(1.0)” in its
comment. Here, constant(1.0) means a constant of 1 second.
The architecture model at the bottom shows the elaboration
of the instantiated things. In this example, we assume
that the transmission time of the pong message follows
the normal distribution N(1.0,0.22). Here, connectors in
the architecture model specify the channels between ports.
Therefore, in the comment of the second connector in the
example, the transmission time distribution is denoted by
“follow Normal(1.0,0.2)”. Note that in this example, we
do not consider the distributions for input variations. If
needed, such distribution information can be denoted in the
comments using the keywords follow.

1 thing fragment PingPongMsgs{
2 message ping();
3 message pong();
4 }
5 thing Client includes PingPongMsgs {
6 readonly property count_max : Integer = 99
7 property count: Integer = 0
8 provided port ping_service {
9 sends pong

10 receives ping
11 }
12 function counterInc():Void do
13 count = count + 1
14 end
15 statechart PingClientMachine init Running {
16 state Waiting {
17 transition -> Running //follow constant(1.0)
18 event ping_service?pong
19 action counterInc()
20 }
21 state Running{
22 transition -> Finish
23 guard count > count_max
24 transition -> Waiting
25 action ping_service!ping
26 }
27 }
28 thing Server includes PingPongMsgs{
29 provided port pong_service {
30 receives pong
31 sends ping
32 }
33 statechart PingServerMachine init Waiting{
34 state Waiting{
35 transition -> Pong
36 event ping_service?ping
37 }
38 state Pong{
39 transition -> Waiting
40 action ping_service!pong
41 }
42 }
43 //architecture model
44 configuration PingPongCfg
45 @arduino_stdout "Serial" {
46 instance thing1: Client
47 instance thing2: Server
48 connector thing1.ping_service
49 => thing2.ping_service
50 connector thing2.pong_service
51 => thing1.pong_service //follow Normal(1.0,0.2)
52 }

Listing 1. An extended ThingML design for PingPong example

To parse both structure and variation information from
extended ThingML designs, ThingML toolset provides a set
of EMOF (Eclipse Model Driven Framework)-based APIs,

which can extract the abstract syntax tree of ThingML
based on meta models. Listing 2 shows a snippet of the
hierarchical meta model definition for ThingML designs. In
the definition, List denotes the data structure list, whereas
EList is an extension of List which supports the movement
of its elements. For example, the state machine Client in
Listing 1 has a list of two states (Running and Waiting) and
has a list of two properties (count and count max). To enable
the parsing of variation information saved in comments, we
slightly modified the existing EMOF-based APIs. According
to the ThingML meta models, the variation information
can be captured and saved as string-based annotations.
For example, when the parsing process reaches line 17 of
Listing 1, the comment “follow constant(1.0)” will be parsed
together with the transition information and the action time
distribution will be saved as an annotation of the transition.

1 Thing{
2 String name;
3 EList<Property> properties;
4 Elist<Function> functions;
5 EList<StateMachine> stateMachines;
6 ...
7 }
8 StateMachine{
9 Sting Name;

10 List<State> states;
11 List<Property> properties;
12 ...
13 }
14 State{
15 String Name;
16 EList<Transition> outgoingTransitions;
17 EList<Transition> ingoingTransitions;
18 ...
19 }
20 Transition{
21 State target;
22 EList<Event> event;
23 Action action;
24 String Annotations;
25 ...
26 }

Listing 2. A snippet of ThingML meta model

To enable automated quantitative analysis, all the ex-
tracted information from ThingML designs needs to be
transformed into NPTA models. Based on the meta model,
we classify the ThingML constructs into four categories,
i.e., data structure, state machine, architecture model and
procedure call. The data structure mainly deals with the
variable declaration and initialization. While the state ma-
chine outlines the behavior of a single thing, the architecture
model elaborates the network of collaborating things. The
procedure call programs action details or operations in the
form functions. Table I presents an overview of the mappings
of these four kinds of constructs between ThingML designs
and NPTA models. For example, in the category archi-
tecture model, the connectors extended with transmission
time variation information will be converted into its NPTA
counterparts in the form of actions, location invariants and
transition guards.
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In our approach, the target NPTA model consists of two
parts: i) front-end models which are used to describe the
behaviors of PTAs, and ii) back-end configurations which
are used to declare necessary data structures (e.g., variables,
channels) and functions to support the stochastic execution
of the NPTA. During the transformation, we assign each
thing with a front-end model and a local back-end config-
uration. Besides local configurations of PTAs, the NPTA
itself has two global back-end configurations, i.e., system
declaration which is used to instantiate PTAs and elaborate
the NPTA, and global declaration which is used to define
global data structures and functions shared by all PTAs.

Table I
MAPPINGS OF CONSTRUCTS BETWEEN ThingML AND NPTA

Category ThingML Constructs NPTA Constructs

Data Property Variable
Structure Message Channel Declaration

State Location
Extended Transition, Action,

State Transition Invariant, Guard
Machine Guard Guard

Event Channel?
Action Channel!, Update

Architecture Port -
Model Extended Connector Action, Invariant, Guard

Procedure Function Function
Call Operator Function

Back-end Configuration Generation: Listing 3 shows
the skeleton of back-end configurations of the PingPong
example. To save the space, we put the system declaration,
global declaration and local configuration for PTAs together
within a listing. All these configurations are generated from
the ThingML design shown in Listing 1.

The first part of Listing 3 shows the details of system
declaration configuration. From the ThingML architecture
model, we can figure out the details of things (i.e., name and
type). For each thing, we will instantiate one instance of the
corresponding front-end model. With the keyword system,
we can construct the NPTA of all the interconnected things.

The second part of Listing 3 presents the global declara-
tion configuration for the PingPong example. To enable the
communication between things, ThingML adopts a message-
based approach, where a message can be considered as an
encapsulation of data values. In NPTA, PTAs communicate
each other through channels and shared variables, where
channels are used for the synchronization and share vari-
ables are used to hold data values. Therefore, during the
transformation, for each message in ThingML we need to
create an urgent broadcast channel and a data structure of
multiple variables to hold the data values. For example, the
ThingML statement “message pong();” (line 3 in Listing 1)
is converted to its NPTA counterpart “urgent broadcast
channel pong”. Since the pong message has no associated
data, we do not create the corresponding variables in the

back-end configuration. Since our approach supports the
variation-aware IoT designs, to enable stochastic modeling
the global declaration configuration includes a library of
various commonly used distributions.

1 //system declarations
2 thing1 = Client();
3 thing2 = Server();
4 system thing1, thing2;
5 //------------------------------------------------
6 //global declarations & distribution function lib.
7 urgent broadcast channel ping;
8 urgent broadcast channel pong;
9 double Normal(double mean, double deviation){

10 // BoxMuller method
11 ...
12 }
13 double Uniform(double min, double max){
14 ...
15 }
16 ...
17 //------------------------------------------------
18 //local configuration for thing1.
19 const int count_max = 99;
20 clock Cl_clk;
21 int count;
22 double t1;
23 void initialize(){
24 count = 0;
25 }
26 void counterInc(){
27 count = count + 1;
28 }
29 //------------------------------------------------
30 //local configuration for thing2.
31 ...

Listing 3. Back-end configuration of PingPong

For each thing, we create one local back-end configura-
tion, which defines the data structures and functions required
by the corresponding PTA. Different from the properties
of UPPAAL-SMC (see details in Section IV-C) which are
used for performance checking, property is an important
construct in ThingML which defines variables and constants.
For example, “readonly property count max : Integer =
99” is a declaration in the PingPong example, which in-
dicates the total number of PingPong interactions. Due to
the keyword readonly, the statement will be transformed
into a constant declaration “const int count max = 99” in
the back-end configuration (line 19 in Listing 3). Without
the keyword readonly, the ThingML properties will be
transformed into variables in local configurations, and its
value will be initialized in the local function initialize() of
the thing. For example, the ThingML property count (line 7
in Listing 1) is translated as a variable in the local back-end
configuration (line 21 in Listing 3) whose value should be
initialized. Note that each PTA has its own local function
initialize() to conduct the initialization of local variables and
clocks. ThingML supports two kinds of functions which are
specified using the keywords function or operator. Similar
to ThingML functions, ThingML operators can be used as
actions of things. The only difference is that the return
values of operators should be of boolean type. Since NPTA
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functions can be used as actions to update the input/output
variables, they can be directly derived from their ThingML
counterparts, though the format is slightly different. For
example, the function block in lines 12-14 of Listing 1 can
be translated into the a C-like function (see lines 26-28 in
Listing 3) defined in the local configuration of thing1.
Front-end Model Generation: In our approach, a front-

end PTA model is used to describe the stochastic behavior of
a thing. The structure of a front-end models mainly comes
from statechart definitions in ThingML designs. To illustrate
the our front-end model generation, Figure 3 shows two
front-end models (i.e., client and server) for the PingPong
example generated from Listing 1.

Client

Server

Figure 3. NPTA of PingPong example

As shown in Table 1, during the transformation, all the
states, transitions, and guards of a ThingML statechart can
be directly mapped to their PTA counterparts. To enable the
initialization of local variables, one extra location named
start is introduced for each PTA. The start is an urgent
location that has no delay. The function initialize() on the
outgoing edge of start can be considered as an action which
is used to initialize values of variables and clocks. In the
PingPong example, we only consider two kinds of variations,
i.e., the action execution time variation for counterInc() and
the transmission time variation for message pong. For the
extended transition “transition→Running” with variation
information “follow constant(1.0)” in line 17 of Listing 1,
to model the stochastic execution, the transformation in-
volves three NPTA constructs: i) the action on the incoming
transition of the location, ii) the invariant of the location,
and iii) the guard of the outgoing transition of the location.
In this example, Cl clock and t1 are temporary clocks or
variables defined in the local back-end configuration of PTA
Client. We reset the clock Cl clock and initialize the value
of variable t1 on the incoming transition of location Waiting.
Here, t1 indicates the stochastic execution time of the action.

We set the location invariant of Waiting to Cl clk≤t1, and
set the outgoing transition guard of Waiting to Cl clk≥t1.
Since const(1.0) denotes a constant of 1.0, there is no need
to explicitly call some function in the distribution function
library. Similar to the template introduced in Figure 1, all
these three mapping settings can guarantee the stochastic
action execution time follows the given distribution.

For both ThingML and NPTA, the communication be-
tween things or PTAs are based on synchronization of
events. In ThingML, the communication is conducted using
messages. The sender of the message firstly initiates a
message using action msg!. In the same time if there is a
receiver waiting for the message using the event msg?, the
communication will succeed. Note that the sending action of
a ThingML message can be considered as a special event.
For example, the statement “action ping service!ping” is
an event initiated by the Client, and the statement “event
ping service?ping” is the matching event triggered by the
Server. In NPTA, the communication between PTA is
based on the channels. Assume that ch is a channel. The
complementary events ch! and ch? denote the sending
and receiving events, respectively. In our approach, the
channels are all globally defined in the global declaration
configuration. Therefore, the transformation from message-
based communication to the channel-based communication
is quite straightforward in front-end models. For example,
the ThingML ping message events aforementioned can be
transformed as complementary events ping! and pong? in
corresponding PTAs. During the transformation, since a
ThingML port has no concrete meaning,we do not specify
any rules for its transformation. In our approach, we use
the connectors defined in ThingML architecture models to
specify the data transmission time variation. For example,
the lines 50-51 in Listing 1 assigns a normal distribution
Normal(1.0,0.2) to the corresponding pong message. To
enable the stochastic modeling, we create a clock Se clk
and a variable t1 in the local configuration of Server. By
using the same transformation rules for extended transitions,
we can specify the data transmission time variation on the
generated NPTA model.

C. Property Generation for Quantitative Analysis

The cost and responsiveness are two major issues in
ThingML design under variations. During the system-level
design, ThingML designers would like to ask the questions
like ‘‘what is the probability that a specific function scenario
can happen within a given time limit?” or ‘‘what is the
probability that the system consumes more resources than
required within a given time limit?”. To evaluate such QoS
requirements, our approach mainly investigates the following
two kinds of queries for IoT designs: i) status query in
the form of property Pr[<= T ](<> instance.state) which
evaluates whether the state of an IoT instance can be reached
within a time limit T; and ii) cost query in the form of
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property Pr[<= T ](<> cost >=K) which evaluates whether
the cost (i.e., the value of clocks or variables) can exceed
K within a time limit T . Note that these queries are by no
means the “golden” queries rather they are representative
ones for common purposes. ThingML designers can improve
or modify these queries for their special applications.

1 requirement PingPongReq{
2 squery Q1{
3 bound: <= 500
4 thing: thing1
5 state: Finish
6 }
7 cquery Q2{
8 bound: <= 500
9 resource: thing1.count

10 cost: 80
11 }
12 }

Listing 4. A design requirement example

Since ThingML does not support the description of per-
formance queries, we adopt a separate file to specify perfor-
mance queries for IoT designs. Note that the requirements
are parsed and transformed by our own transformation
tool. Listing 4 shows a design requirement example with
two performance queries. In this example, the keywords
squery and cquery denote the status query and cost query,
respectively. The keywords bound, thing and state within
status queries specify the time bound, device and expected
state, respectively. Based on the provided performance pa-
rameters, the query Q1 will be converted into a property
Pr[<= 500](<> thing1.Finish) to check whether the Client
in the PingPong example can finish within 500 time units.
Similarly, the cost query Q2 will be converted into a property
Pr[<= 500](<> thing1.count >= 80) to check whether the
number of PingPong interactions can be greater than or equal
to 80 within 500 time units.

V. CASE STUDY

To show the efficacy of our approach, this section presents
the experimental results of two ThingML designs which are
collected from the HEADS projects. The first design is the
PingPong [20] which describes the interactions of things
within a client-server architecture. In this example, we focus
on the impact of uncertain network delay during the data
transmission. The second design is a heating control system
[21] where we put emphasis on the energy consumption
variations caused by ambient temperature and human ac-
tivities. To enable quantitative evaluation of variation-aware
ThingML designs, we developed a tool chain that integrates
ThingML, UPPAAL-SMC (version 4.1.19) and our NPTA
model generator (implemented in Java). In the experiments,
we set both ε and α of UPPAAL-SMC to 0.02. All the
experiment results were obtained on a desktop with 3.10
GHz Intel i5 CPU and 8 GB RAM.

A. Case Study 1 - PingPong Design

The PingPong design was used through Section IV to
illustrate the workflow of our approach. The design consists
of two things, i.e., a client and a server. The client period-
ically sends a ping message to the server. Once receiving
the message, the server will send pong as a reply. Figure 3
shows the NPTA generated from our extended PingPong
design from [20], named design1. To enable the perfor-
mance comparison under variations, we slightly modified
the original version and got an alternative design for the
PingPong example whose NPTA is shown in Figure 4,
named design2. In both designs, we assume that each ping
action is triggered instantly followed by a pause of 1 second,
while the pong actions suffer from the network delay. In
design1, we assume that the transmission time of Pong
messages follows the normal distribution N(1.0,0.22). Since
counterInc() increases the counter by 1 in each iteration,
there are a total of 100 iterations before reaching the location
Finish. Unlike design1, design2 merges two consecutive
pong replies into one combined reply. In design2, we assume
that the transmission time of each combined reply follows
the normal distribution N(2.0,0.362). Since the counter is
increased by 2 in each iteration, design2 needs 50 iterations
to reach the location Finish.

Client

Server

Figure 4. NPTA of design2

Without considering the transmission variations for pong,
both design1 and design2 should have the same performance,
since the average mean time for ping and pong messages are
the same. However, within uncertain environments, different
designs show different performance. Since both design1 and
design2 only consider the variation of transmission time, we
use the status query to evaluate the performance of different
designs. Assume that the designers want to check “what
is the probability that a client can perform 100 PingPong
interactions with the server within 500 unit times?”. Based
on the user-defined queries in the ThingML configuration as
shown in Listing 4, our tool can automatically generate the
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status query Pr[<= 500](<> thing1.Finish).
Figure 5 presents the Cumulative Probability Distribution

(CPD) results for the query on the two different designs. The
x-axis denotes the time limit, and the y-axis indicates the
success rate of the given query with variations. By running
113 simulation runs, both queries can obtain a success ratio
within range [0.96,1] with a confidence of 98%. When
checking use UPPAAL-SMC, both queries consume around
30 seconds for the quantitative analysis. From this figure,
we can observe that both designs can finish 100 pingpong
interactions within the given time limit (i.e., 500 seconds).
However, design2 outperforms design1 since design2 needs
less execution time to achieve the same success ratio. To
achieve the highest success ratio, design2 only needs an
execution time of 288 seconds for the pingpong interactions
while design1 needs 309 seconds.
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Figure 5. Performance comparison between design1 and design2

To demonstrate that high-level ThingML designs with
better evaluation results will lead to corresponding IoT
implementations with better performance, we checked the
performance of IoT implementations (in C++) which are
automatically generated from the two ThingML designs. It is
important to note that ThingML only uses the message-based
communication, which cannot fully reflect the performance
in practice. To consider more details of the real network
environment, we adopted the network simulation platform
OMNeT++ [22] and deployed the two IoT implementations
on it. To simplify the comparison, we used the default
routing protocol provided by OMNeT++. Since we fo-
cused on the transmission time variation of pong messages,
we employed the same transmission time distributions for
the OMNeT++ simulation as the one used in high-level
ThingML designs. Similar to UPPAAL-SMC, we conducted
113 stochastic simulations for the two alternative PingPong
designs, respectively. For each simulation, we recorded the
overall transmission time of 100 PingPong interactions (or
50 combined interactions).

Figure 6 and Figure 7 show the probability distributions
of the transmission time for design1 and design2 simulated
using OMNeT++, respectively. From these two figures, we
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Figure 6. Simulation results of design1 using OMNeT++

can find that design2 has a better performance than design1,
since it require less average transmission time. Moreover,
compared with the OMNeT++ based approach which costs
a simulation time of around 3 minutes, our UPPAAL-SMC
based approach only needs a simulation time of around 30
seconds. In other words, our approach enables the quick
exploration of optimized variation-aware IoT designs in an
early stage with much fewer evaluation efforts.
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Figure 7. Simulation results of design2 using OMNeT++

B. Case Study 2 - Heating Control System

As a typical IoT system, the heating control system
[21] consists of multiple kinds of interconnected things
including timers, indoor temperature sensors, outdoor tem-
perature sensors, person detectors, alert components, and air
conditioners. To simplify the modeling, the ThingML design
contains only one instance for each category of things. Due
to the space limit, we do not present the details of ThingML
design and corresponding generated NPTA models for the
heating control system. Table II only presents an overview
of the heating control system. In the table, the first column
denotes the PTA instance. The second and third columns
indicates the number of locations and transitions of the
design, respectively. The last column describes the function
of each PTA. In this case study, we focused on the energy
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Table II
AN OVERVIEW OF HEATING CONTROL SYSTEM

PTAs # of Locations # of Transitions Functionality

Timer 3 4 Trigger timing events periodically
Person Detector 2 2 Detect the presence of people in a room

Alarm Component 4 5 Ring the alarm when meeting some condition
Indoor Temperature Sensor 3 3 Sense indoor temperature

Outdoor Temperature Sensor 3 3 Sense outdoor temperature
Air Conditioner 4 11 Turn on (with different modes) or turn off the air conditioner

consumption of the air conditioner influenced by the uncer-
tain factors including ambient temperature, human activities
and specific events. To enable the performance evaluation
and comparison, we extended the original ThingML design
to incorporate corresponding variation-related information.

The air conditioner plays a central role in the heating
control system. It has four locations (i.e., start, off, fullon
and halfon) and 11 transitions. The start is an initial location
which is marked with urgent. It is used to initialize environ-
ment parameters. The off location indicates that the current
power is 0. The air conditioner can stay in the off location
only when one of the following conditions holds: i) there is
no person in the room; ii) the indoor temperature (monitored
by the indoor temperature sensor) is higher than 12◦C; or
iii) the alarm event is taking effect. To save energy, the air
conditioner has two locations (i.e., fullon and halfon) which
provides different levels of power consumption. If the differ-
ence between indoor temperature and outdoor temperature
is smaller than 2◦C, the air conditioner will work at a higher
power level in the location fullon. If the difference between
indoor temperature and outdoor temperature is equal to or
smaller than 2◦C and none of the off conditions holds, the
air conditioner will work at a lower power level in the
location halfon. To model the uncertain ambient temperature
monitored by the outdoor temperature sensor, we use the
formula (−1)× 6× cos(π · globalClock/720) + base. The
value of the base indicates the initial room temperature at
the beginning of a day. It follows the uniform distribution
within range [0◦C,7◦C]. Besides the outdoor temperature, the
human activities strongly affect the energy consumption. To
model uncertain human activities, we use the person detector
to periodically check whether a person is in the office during
the office hours (i.e., from 8:00 AM to 5:00 PM). In this
experiment, we assume that the presence probability of a
person is 70% during the office hours, while the presence
probability of person near the office hours (i.e., from 7:00
AM to 8:00 PM, or from 5:00 PM to 6:00 PM) is 20%.
Otherwise, the presence probability of a person in the office
is 0. During the office time, for each hour there is a 70%
chance that the window can be opened automatically to air
the room, and the window will be kept open for ten minutes.
If the alert component detects that the window is open, it
will shut down the air conditioner to save energy.

In the ThingML design, all the sensors (i.e., indoor

temperature sensor, outdoor temperature sensor, alarm com-
ponent) are triggered by a timer periodically. Note that dif-
ferent timer-based interruptions will lead to different sensor
sampling rates, which in turn affect the overall performance
of the heating control system. In this example, we restricted
the evaluation time of the heating control system to 10
days (i.e., 14400 minutes). To compare the performance
of different timers for the heating control system under
uncertain environments, we adopted a cost query in the form
of Pr[<= 14400](<> energy > 15000) to check “ what is
the probability that the heating control system consumes
more than 15000 units of energy within 10 days?”

 0

 0.2

 0.4

 0.6

 0.8

 1

 9000  9500  10000  10500  11000

S
u

cc
es

s 
R

at
e

Execution Time

Cumulative Probability Distribution

rate 10
rate  6

rate 16

Figure 8. Quantitative analysis results with different sampling rates

Based on the same design, we conducted the experiments
using three timers with different sampling times (i.e., 6, 10,
and 16 minutes). Figure 8 compares the performance of the
three design alternatives. By simulating 166 stochastic runs,
UPPAAL-SMC can achieve a success ratio within range
[0.95,0.99] with a confidence of 98%. The UPPAAL-SMC
based evaluation takes 1756 seconds to get the quantitative
analysis results. From this figure, we can observe that the
design with a sampling time of 10 minutes achieves the
best performance, since under the same energy constraint
(i.e., 15000 energy units) the design with the 10-minute
sampling rate has longer lasting time than the other two
alternatives. Interestingly, we can note that the best sampling
time here is neither the smallest one (i.e., 6 minutes) nor the
largest one (i.e., 16 minutes). This is because if the sampling
rate is higher, the system will become more sensitive to the
uncertain environments. The frequent control state switches
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may result in a waste of energy. Conversely, if the sampling
rate is lower, the system reaction to environmental changes
will become slower. As a result, overheating of the air
conditioner will not be detected in time and therefore more
energy will be consumed.

VI. CONCLUSIONS

As a promising modeling language, ThingML can sig-
nificantly facilitate the model-driven development of IoT
applications. However, since the current version of ThingML
does not consider the impact of the surrounding uncertain
environment, it is hard for designers to guarantee the QoS
of IoT applications generated from ThingML design models.
To address this problem, this paper presents a comprehen-
sive system-level approach that enables the variation-aware
modeling and quantitative analysis of ThingML designs.
It introduces a set of newly defined modeling constructs
for ThingML to enable the description of variation infor-
mation. By using our proposed transformation rules, ex-
tended ThingML designs can be automatically transformed
into NPTA models to conduct the quantitative evaluation
against specified performance queries. Experimental results
using two case studies demonstrate that our approach can
effectively conduct the QoS evaluation and comparison
for variation-based ThingML designs, which significantly
facilitate the decision making of IoT designers.
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