The Journal of Systems and Software 133 (2017) 1-16

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

.
LI

il

Reliability and temperature constrained task scheduling for makespan
minimization on heterogeneous multi-core platforms™

@ CrossMark

Junlong Zhou®®, Kun Cao?, Peijin Cong? Tongquan Wei®*, Mingsong Chen,

Gongxuan Zhang®, Jianming Yan¢, Yue Ma®

2 Department of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
bSchool of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
¢Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, 200062, China

d Meituan.com Corporation, Beijing, 100102, China

¢ Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46656, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 21 January 2017
Revised 20 July 2017
Accepted 22 July 2017
Available online 29 July 2017

Keywords:

Makespan minimization
Reliability

Temperature

Task assignment and scheduling

We study the problem of scheduling tasks onto a heterogeneous multi-core processor platform for
makespan minimization, where each cluster on the platform has a probability of failure governed by
an exponential law and the processor platform has a thermal constraint specified by a peak temperature
threshold. The goal of our work is to design algorithms that optimize makespan under the constraints
of reliability and temperature. We first provide a mixed-integer linear programming (MILP) formulation
for assigning and scheduling independent tasks with reliability and temperature constraints on the het-
erogeneous platform to minimize the makespan. However, MILP takes exponential time to finish. We
then propose a two-stage heuristic that determines the assignment, replication, operating frequency, and
execution order of tasks to minimize the makespan while satisfying the real-time, reliability, and tem-
perature constraints based on the analysis of the effects of task assignment on makespan, reliability, and
temperature. We finally carry out extensive simulation experiments to validate our proposed MILP for-
mulation and two-stage heuristic. Simulation results demonstrate that the proposed MILP formulation
can achieve the best performance in reducing makespan among all the methods used in the comparison.
The results also show that the proposed two-stage heuristic has a close performance as the represen-
tative existing approach ESTS and a better performance when compared to the representative existing
approach RBSA, in terms of reducing makespan. In addition, the proposed two-stage heuristic has the
highest feasibility as compared to RBSA and ESTS.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

mance in terms of latency or throughput by minimizing task ex-
ecution makespan, i.e., the latest completion time of all tasks on

With the rapid advance in semiconductor manufacturing tech-
nology and the ever increasing demand for high performance,
multi-core processors have replaced single-core processors to be-
come the main design paradigm for modern processors (Vajda,
2011). In the meantime, parallel computing that executes multi-
ple operations or tasks on different processors simultaneously is
adopted to satisfy the growing computational requirements. Par-
allel computing on multi-core processors improves system perfor-

* This work was partially supported by Shanghai Municipal Natural Science Foun-
dation (Grant No. 16ZR1409000), Natural Science Foundation of China (Grant No.
61672230), and ECNU Outstanding Doctoral Dissertation Cultivation Plan of Action
(Grant No. PY2015047).

* Corresponding author.
E-mail address: tqwei@cs.ecnu.edu.cn (T. Wei).

http://dx.doi.org/10.1016/j.jss.2017.07.032
0164-1212/© 2017 Elsevier Inc. All rights reserved.

processors. However, this strategy results in excessive power den-
sities (Culler etal., 1999). Higher power densities elevate chip tem-
perature, which in turn downgrades system reliability and reduces
energy efficiency due to increased leakage power (Kim etal., 2003).
Although dynamic voltage and frequency scaling (DVFS) technique
can be utilized for thermal control and energy saving, scaling down
the speed of a processor increases the rate of cosmic ray-induced
transient faults (Zhu etal., 2004). The probability of system failure
due to transient fault increases exponentially, and this probability
cannot be neglected in modern complex heterogeneous multi-core
processor systems. Therefore, system performance, chip tempera-
ture and cosmic ray-induced transient faults interplay and need to
be jointly investigated. In this paper, we focus on designing mech-
anisms that minimize task execution makespan under constraints
of thermal and reliability target.

http://dx.doi.org/10.1016/j.jss.2017.07.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.07.032&domain=pdf
http://dx.doi.org/10.13039/100007219
http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100004106
mailto:tqwei@cs.ecnu.edu.cn
http://dx.doi.org/10.1016/j.jss.2017.07.032

2 J. Zhou et al./The Journal of Systems and Software 133 (2017) 1-16

Makespan minimization problem has been a subject of con-
tinuing interest for researchers and practitioners during the past
decades (Rajendran and Ziegler, 2004; Zhang etal., 2016; Li etal.,
2014; Zheng and Sakellariou, 2013; Albers and Hellwig, 2016).
Rajendran and Ziegler (2004) investigated the problem of per-
mutation flowshop scheduling with the goal of minimizing the
makespan, and proposed two ant-colony optimization based al-
gorithms to solve the problem. Zhang etal. (2016) studied the
problem of distributed workload dissemination for makespan min-
imization in disruption tolerant networks, and designed a central-
ized polynomial-time disseminating algorithm based on the short-
est delay tree. A heuristic algorithm (Li etal., 2014) that specifi-
cally considers the stochastic characteristic of task execution time
is presented to achieve a balance between schedule length (i.e.,
makespan) and energy consumption. A novel Monte Carlo based
DAG scheduling approach (Zheng and Sakellariou, 2013) is devel-
oped to generate a static schedule that can minimize the expected
makespan without incurring a prohibitively high time overhead.
Unlike the static approaches (Rajendran and Ziegler, 2004; Zhang
etal.,, 2016; Li etal, 2014; Zheng and Sakellariou, 2013) proposed
for makespan minimization, Albers and Hellwig (2016) introduced
an online algorithm that can dynamically minimize makespan with
parallel schedules. However, none of the above work considers re-
liability.

Reliability is of utmost importance in multi-core scheduling.
This is because the susceptibility of modern processors to soft er-
rors is dramatically increasing with the relentless scaling of fea-
ture size and operating voltage (Zhou etal., 2016a; Wei etal., 2012).
However, makespan-aware scheduling techniques themselves do
not address tolerance for system failure due to soft errors. There-
fore, reliability issues need to be specifically dealt with in ad-
dition to the execution time or makespan. Considerable research
efforts have been devoted to jointly handling makespan and re-
liability issues (Dongarra etal., 2007; Wang etal., 2011; Assayad
etal,, 2011; Aupy etal, 2012). Dongarra etal. (2007) studied the
problem of scheduling task graphs on a set of heterogeneous re-
sources with the bi-objective of minimizing makespan and max-
imizing reliability, and proposed an approach that can help the
user choose a suitable makespan/reliability trade-off. Wang etal.
(2011) improved the traditional genetic algorithm and developed
a look-ahead genetic algorithm to optimize both the makespan
and reliability of a workflow application in distributed computing
environments. Assayad etal. (2011) presented an off-line schedul-
ing heuristic to jointly optimize task schedule length, system re-
liability, and power consumption. Specifically, the heuristic uses
active replication to minimize makespan and ensure system re-
liability, and employs DVFS to reduce power consumption. Aupy
etal. (2012) solved the problem of energy minimization under the
constraints of a prescribed bound on makespan and a reliability
threshold by determining which task to re-execute and at which
speed each execution of a task should be operated.

Note that all of the aforementioned methods ignore the ef-
fects of elevated operating temperature caused by the soaring in-
crease in system power density on system. That is, a system will
fall into the predicament of functional incorrectness, low reliabil-
ity and even hardware failures if the operating temperature ex-
ceeds a certain threshold (Zhou etal., 2016b). Therefore, thermal
management to avoid temperature-induced failures is also a sig-
nificant and pressing research issue in modern computer systems,
especially for embedded systems with limited cooling techniques.
As far as we know, little investigation has been conducted in the
literature on thermal management for makespan-aware multi-core
systems. Recently, Hanumaiah and Vrudhula (2012) developed a
temperature-aware DVFS-based approach for multi-core systems to
optimize the makespan while satisfying timing and thermal con-
straints. They also provided a theoretical basis and analytical re-

lations between speed, voltage, power, and temperature. However,
reliability is not taken into account.

In this paper, we focus on designing a makespan-aware task
scheduling scheme for heterogeneous multi-core processor systems
under the reliability and temperature constraints. The scheme gen-
erates a makespan-optimum schedule that meets the design re-
quirements by wisely determining the task assignment, the oper-
ating frequency of assigned tasks, the number of replicas for every
task, and the execution order of tasks on the core. The major con-
tributions of this paper are summarized as follows.

o We presented a MILP formulation for assigning and schedul-
ing independent tasks with reliability and temperature con-
straints on a heterogeneous multi-core platform to minimize
the makespan.

We analyzed the effects of task assignment on makespan, reli-

ability, and temperature to guide the design of our task assign-

ment and scheduling heuristic.

o We proposed a static two-stage heuristic that first deter-
mines the assignment and replication of tasks for minimizing
makespan under the constraint of task reliability, then deter-
mines the schedule of assigned tasks on the cores to satisfy the
real-time and temperature constraint.

o We conducted extensive simulation experiments to validate the
proposed MILP formulation and heuristic. Simulation results
have demonstrated the efficacy of the proposed MILP formu-
lation and heuristic.

The rest of the paper is organized as follows. Section2 in-
troduces the system model and problem definition. Section3 de-
scribes the MILP formulation and Section4 presents the proposed
task assignment and scheduling scheme. Section 5 validates the ef-
fectiveness of the proposed scheme and Section6 discusses the
novelties of this paper when comparing with our previous works.
Concluding remarks are given in Section 7.

2. System model and problem definition

This section first presents system models including the applica-
tion model, the fault and reliability model, the architecture and ex-
ecution model, and the temperature model, then describes the reli-
ability and temperature constrained task assignment and schedul-
ing problem for makespan minimization.

2.1. Application model

Consider a bag-of-tasks (BoT) application model that has been
widely adopted in the literature (Braun etal., 2001; Gutierrez-
Garcia and Sim, 2013; Cirne etal., 2003) and assumes tasks in the
application are atomic, independent, and heterogeneous. Such ap-
plications can be found in the fields of astronomy, bioinformatics,
and high energy physics. Typical examples are data mining, tomo-
graphic reconstructions, fractal calculations, and Monte Carlo sim-
ulations (Li etal., 2014). Tasks are independent in the sense that
there is no precedence or communication among tasks. Due to the
various safety demand for tasks, different tasks have different re-
liability requirements (Huang etal., 2014b). In addition, task exe-
cutions must be finished before the deadline, which is commonly
regarded as an QoS parameter (Li etal., 2014; Kim etal., 2007; As-
sayad etal., 2004; Netto and Buyya, 2009), especially for service-
oriented systems. In such service-oriented systems, the system de-
signer needs to take into account the concerns of both users and
service provider. That is, from the perspective of users, all the ser-
vices (tasks) need to be finished before the deadline such that the
QoS requirement of users in terms of real time can be satisfied;
from the perspective of service provider, the services need to be

J. Zhou et al./ The Journal of Systems and Software 133 (2017) 1-16 3

completed as soon as possible such that more services can be pro-
vided (in other words, more profits can be gained).

Suppose a BoT application that consists of n tasks is denoted
by B = {11, T2, -, Ta}, and the characteristic of every task is de-
scribed by a quadruple t;: {u;, r;, we;, D} (1 <i<n). u; (ranging in
(0,1]) is the activity factor of task t;, which relates to task power
consumption and is utilized to capture how intensively functional
units are being used (Huang etal., 2014a). r; is the lowest reliability
requirement of task 7;. In other words, the reliability level of task
7; should be no less than r;. wc; denotes the worst-case execution
time of task 7; in cycles and D is the common deadline.

2.2. Fault and reliability model

Transient fault (resulting in soft error) is a type of failure that
appears for a short time and then disappears without damage to
the device, and is caused by electromagnetic interference or cosmic
radiation. Unlike permanent fault (resulting in hard error), tran-
sient fault is independent of temperature and would not lead to
the breakdown of hardware devices. It is indispensable for many
safety-related systems to have the capacity of providing a reliable
execution in the presence of soft errors. Soft errors are typically
modeled using an exponential distribution with an average arrival
rate A, which represents the expected number of failures that oc-
cur per second (Zhou and Wei, 2015; Zhao etal., 2009; Ejlali etal.,
2012; Casas etal., 2017). It has been shown that the average rate A
highly depends on the processor frequency and can be modeled as

aa-p
2(f) = ho10 7, (1)

where Aq is the average fault rate at processor maximal frequency
fmax, and d (> 0) is a hardware specific factor indicating the sen-
sitivity of fault rates to frequency scaling.

The reliability of a task is defined as the probability of its suc-
cessful execution without the occurrence of soft errors, and can be
determined by the exponential failure law. Therefore, using the ex-
ponential distribution assumption and given the fault arrival rate
A(f), then the reliability of task t; running at frequency f is ex-
pressed as

Ri(f) =e DT, 2)

where ¥4 is the worst-case execution time of t; at frequency f.

The replication technique has been widely used in improving
system reliability due to transient faults. In this paper, we consider
systems that use replication to tolerate up to one transient fault
since single-fault-tolerance is a common assumption (Aminzadeh
and Ejlali, 2011). Given a task t; with y; replicated tasks working
at the same frequency, the new reliability is then given by

RI() =1-(1-R(". 3

Ideally, different replicas of the same task can execute at different
frequencies. However, obtaining the frequency assignment for all
the replicas of all the tasks will be computationally prohibitive as
the increase in the number of replicas (Haque etal., 2016). There-
fore, to reduce the computational overhead, uniform frequency is
adopted for all replicas of a given task.

Note that there is a lower bound on the number of replicas
needed to achieve the requirement of a certain reliability level.
In addition, the more replicas used, the higher reliability level
achieved. Based on Eq. (3), the minimum number y; of replicas re-
quired to achieve the target reliability level r; of task t; at a given
frequency level f can be easily determined, that is,

log(1-r1;) —‘

=iy @

" Cortex-Al15 ‘ ‘ Cortex-Al5 ‘

‘/Cortex-Af‘ ‘/Cortex-A7\‘ ‘/Cortex-A7:
N VAN VAN

Core) C Core Core Core Core
i g G it T
IL?)) (L2
i i
(Cache Coherent Interface)

C DRAM D

Fig. 1. ARM big.LITTLE heterogeneous multi-core architecture.

2.3. Architecture and execution model

Heterogeneous multi-core architectures, such as ARM big.LITTLE
(i.e., Cortex-A15+Cortex-A7), TI DaVinci DM6000 (i.e., ARM9+DSP),
and Xilinx Zynq7000 (i.e., Cortex-A9+FPGA), are systems that gain
performance or energy efficiency not just by adding the same
type of processors, but by adding dissimilar coprocessors to han-
dle particular tasks. As the example of ARM big.LITTLE shown in
Fig. 1, the architecture is composed of pairs of high-performance
cores (i.e., Cortex-A15) and low-power cores (i.e., Cortex-A7)
(ARM, 2013). The heterogeneous multi-core platform used in
this work is based on a generalization of the ARM big.LITTLE
heterogeneous multi-core, which has been widely adopted in
the literature (Tan etal, 2015; Ma etal, 2017; Kriebel etal,
2014; Wang etal,, 2017). NvidiaOs variable symmetric multipro-
cessing (VSMP) also falls into this category Nvidia. The plat-
form P consists of m clusters Cy,Cy,---,Cm, Which are hetero-
geneous in the sense that they are diverse in processing capa-
bilities and fault arrival rates. Each cluster C, (1<k<m) con-
sists of a set of homogeneous cores, which are DVFS-enabled
and equipped with a set of discrete voltage/frequency pairs
(Uk.lﬂ fk,])a Tt (Uk,u fk,t)’ Tt (Vk.zkv fk,lk)» where Lk is the number
of voltage/frequency levels supported by cluster C, and 1<t¢<¢
holds. We assume that vy pip = Vg1 < Vg <+ < Vg, = Vk.max and
Semin=fi1 = fk2 =+ = frg, = fumax hold for the sake of easy
presentation. All the cores in a cluster need to run at the same
frequency level.

As mentioned above, replication is used to tolerate transient
faults. We assume that the original task and its replicas need to
be executed in the same cluster, which is based on the follow-
ing considerations. First, replication is a typical example of fault-
tolerant technique explicit output comparison (EOC) that relies on
explicit redundancy/replication: executing the same task multiple
times and comparing their outputs. Second, using EOC improves
the systems capability to tolerate soft errors, but also introduces
significant timing overhead (i.e., timing overhead of error detection
or output comparison) and may be detrimental to meeting real-
time constraints. Third, the output comparison cost when execut-
ing the original task and its replicas in the same cluster is much
smaller than that when executing in the different clusters. Benefit-
ing from the identical operation pattern of homogeneous cores in
the same cluster, this assumption can also guarantee the uniform
frequency setting for the original task and its replicas. Note that
the original task and its replicas should be executed on different
cores to support the detection and recovery of faults. Therefore,
for any cluster on the platform, we select one core from the clus-
ter as the primary core to execute the original tasks and the rest
cores as the secondary cores to execute the replicas. In addition,
a secondary core is only allowed to accommodate one replica of a
original task. Under this setting, the number of replicas for a task
may exceed the number of secondary cores in theory. However,
the number of replicas needed for a task is typically small in prac-
tice. Thus the setting is reasonable. For example, a task with a low

4 J. Zhou et al./The Journal of Systems and Software 133 (2017) 1-16

reliability of 0.7 could immediately have a high reliability of 0.91
if a replica is equipped.

2.4. Temperature model

Assume that there is negligible or no heat transfer among pro-
cessing units and among other different units. This assumption is
widely made for thermal-aware scheduling (Quan and Chaturvedi,
2010; Saha etal,, 2012; Huang etal., 2014a; Zhou and Wei, 2015;
Zhou etal., 2016¢). Based on the assumption, a lumped RC ther-
mal model HotSpot proposed by Skadron etal. (2004) is adopted
to characterize the chip thermal profiles, which is expressed by the
following system of ordinary differential equation.

CT' + GT =P + GT,,. (5)

This thermal model divides the chip into a number of thermal el-
ements. Heat capacities of these elements are captured in matrix
C. Thermal conductance values are captured in matrix G. In this
equation, T is the temperature vector, T is the first order deriva-
tive of the temperature, P contains the power consumption on all
thermal nodes, and T,,, is the die’s ambient temperature. In the
steady-state, Eq. (5) becomes

GTsteady =P+ GTambv (6)

where Tgieaqy cOntains the steady-state temperatures on all thermal
nodes.

The accuracy of the adopted HotSpot model in terms of temper-
ature prediction has been investigated. Huang etal. (2006) com-
pared the temperature sensor readings from real platforms with
values obtained from the corresponding HotSpot model. The re-
sults show that the temperatures predicted by the HotSpot model
differs by less than 0.2 °C on average from those obtained from the
sensors. Furthermore, they also compared the transient and steady
state temperature measurements with results from the HotSpot
model (Huang etal., 2004). The results show that the average abso-
lute error for transient temperatures and steady state temperatures
are 2.26% and 1.46%, respectively. As indicated from these results,
HotSpot is an accurate thermal model thus has been widely used
in the literature (Saha etal., 2012; Huang etal., 2014a; Quan and
Chaturvedi, 2010; Jayaseelan and Mitra, 2008; Zhou and Wei, 2015;
Zhou etal., 2016b; Ma etal., 2017; Chen etal., 2017).

2.5. Problem definition

Given the platform P consisting of m clusters, and the BoT ap-
plication B containing n independent tasks, determine an assign-
ment of tasks to clusters and a schedule of tasks on cores such
that the task reliability and peak temperature constraints and real-
time deadlines are satisfied and the makespan is minimized.

3. MILP formulation

In this section, we present our approach to solving the prob-
lem described above, and discuss limitations of the MILP-based ap-
proach at the end of the section. We define the following binary
variables for the sake of easy representation.

1 if task 7; is assigned to cluster Cy
and executed at frequency fy,, (7)
0 otherwise.

A, =

if task 7; starts before task t;,

Sii= 1
L2711 0 otherwise.

3.1. Objective

Let tstart (T;) and tgpisn (7;) denote the start time and finish time
of task t;, respectively. Then we have

m

tﬁnish(ri) = tstart(ri) + Z Z

k=1 1=1

WCiA

f’ ik,
k.t

As pointed out in Section 1, the makespan is defined as the latest
completion time of all tasks and replicas on cores. Since the repli-
cas on the secondary cores are operating the same pattern as the
n original tasks on the primary cores, the makespan of the whole
system can be calculated as

(9)

Uinish = . Mmax Linish (Ti)- (10)
i=1,2,--.,n

Consequently, the objective function of the MILP is expressed as

MiN thnisn, WHere tanish = MAx Leinish (7i)- (11)

3.2. Constraints

To guarantee that every task in the application B can be feasibly
scheduled, the following constraints must be satisfied.

1). Every task t; is assigned to exactly one cluster and executed at
one frequency level.

m ¢
ZiAl,kl:L Vi=1,2,---,n. (12)

k=1 1=1

2). Every task t; meets its deadline.

tanish (Ti) <D, Vi=1,2,---,n. (13)
3). Every task t; satisfies its reliability requirement.
RikAik, =1, Yi=1,2,---,n, (14)

where R; |, is the reliability achieved by task t; with replication
when the task is assigned to cluster C, and executed at frequency
fx, .- The reliability R; , , can be derived using Eq. (3).

4). The system peak temperature is below the temperature limit. To
avoid temperature-induced failures, the peak temperature of clus-
ters should be below a temperature limit (threshold) Tmax. The
value of Tpax is in general specified based on system design re-
quirements. Let T,e,(Cx) denote the peak temperature of cluster
Ck, wWhich is given by

Tpeak(ck) =max : {T(t) | Vt € [0, thnisn (C) 1}

Here T(t) is the instantaneous temperature during time interval
[0, thnish (Cx)] and can be obtained by Eq. (5). Then let T, denote
the on-chip peak temperature, which can be calculated as

Tpeak = k=¥123yfmTpeak (Cr)- (15)

5). Tasks have no overlapping executions in the same cluster. For
any tasks 7; and 7; in the application B and assigned to the same
cluster C, (actually the primary core of cluster Cy), the following
inequalities need to be satisfied in order to avoid their overlapping
executions.

V'L',‘, Tj e B
Sij+S;i=0, (16)
Si,]’ +Sj,,‘ <1, (17)
tstart (T;) < tstart(fj) +(1- Si.j) -A-D, (18)

J. Zhou et al./ The Journal of Systems and Software 133 (2017) 1-16 5

I'st::lrt('l—'j) < tstart (Ti) + Sij-A-D, (19)

V1, 7€B, ttell,] kell,m],
tinish (Ti) < Lstart (Tj) + 3 — Ajk, —Ajkr — Sij) - A - D, (20)

tﬁnish(fj) < tstart (T7) + (2 —Ajk,

where A is a constant number equal to or larger than 1. Eq.
(18) states that task t; must start before task t; if S;; =1. Eq.
(20) guarantees that task t; finishes before task t; starts if tasks
7; and 7; are executed in the same cluster and task t; start before
task 7;. Similar conditions hold for Egs. (19) and (21). Note that the
replicas would naturally meet these constraints if the original tasks
satisfy, which is due to the same operation pattern of the original
tasks and replicas. Therefore, the constraints of replicas are not in-
cluded in the formulation.

—Ajki+Sij)-A-D, (21)

3.3. Limitation of MILP-based approach

In fact, the problem modeled in this section is a problem of
determining the assignment of tasks to clusters, the operating fre-
quency of all assigned tasks, the execution order of tasks on cores,
and the number of replicas for every task. Considering that a
given set of n tasks can be partitioned into can be partitioned
into m subsets, the assigned tasks on the core can have n! exe-
cution orders in extreme case that all tasks are assigned to the
same core, every task can have ¢ operating frequencies at most,
and the number of replicas for n tasks all need to be determined,
the complexity of the modeled problem is O(m™-n!.¢".n), where
¢ =max{eq, ly,---,Lm} is the maximum of frequency levels sup-
ported by clusters. It is clear that the studied problem is a combi-
natorial optimization problem that is NP-hard (Korte etal., 2002).
The target of the problem is to find the optimum solution from all
feasible solutions. For systems with small number of clusters/cores
and applications with small number of tasks, the studied problem
can be optimally solved using an MILP solver. However, for systems
of a larger granularity, the MILP solver cannot be used to efficiently
solve the problem. Thus it is necessary to develop a polynomial-
time heuristic to schedule tasks to cores.

4. Makespan-aware task assignment and scheduling under
reliability and temperature constraints

The objective of this work is to generate a makespan-optimum
schedule without violating the reliability and thermal design con-
straints. We first propose an MILP-based approach to obtain the
optimum schedule, as described above. We then consider the limi-
tation of the MILP-based approach for systems of a larger granular-
ity and design a polynomial-time task assignment and scheduling
heuristic. The heuristic is carried out in two steps. In the first step,
the assignments of tasks to clusters for minimizing makespan and
the replication of the assigned tasks for satisfying reliability re-
quirements are determined. In the second step, the decisions on
how to execute the assigned tasks (in which sequence and us-
ing which frequency) on cores for meeting the peak temperature
constraint and task deadline are made. The heuristic is developed
based on some observations from analyzing the effects of task as-
signment on makespan, reliability, and temperature. Therefore, this
section first analyzes the effects of task assignment on makespan,
reliability, and temperature, then show the overview of the pro-
posed two-stage heuristic, and finally presents the details of the
task assignment and scheduling algorithms.

4.1. Effects of task assignment on makespan, reliability, and
temperature

Effects of Task Assignment on Makespan: Fig.2 shows that
different task-to-cluster assignments result in different makespan.
As shown in the figure, tasks 7y — 7¢ are assigned to clusters
C1 — C3, which operate at normalized frequencies f = 1.0, 0.8, and
0.6, respectively. The number of cores in every cluster is assumed
to be one for simplicity. The execution time of tasks 7; — 75 oper-
ating at normalized frequency f = 1.0 are 1, 2, 2, 5, 6, and 8 time
units, respectively. Fig.2(a) presents an example task assignment
with makespan of 31.7, which arranges tasks t4, T, to cluster Cq,
task T3 to cluster C,, and tasks 74, Ts, Tg to cluster Cs. Fig.2(b)
presents an example task assignment with makespan of 10, which
arranges tasks t,, Tg to cluster Cq, tasks T3, T5 to cluster Cp, and
tasks 71, 74 to cluster C3. Compared to Fig.2(b), the assignment
presented in Fig.2(a) can reduce the makespan by 68.5%. There-
fore, we can readily make an observation that the task-to-cluster
assignment has significant effect on makespan.

Effects of Task Assignment on Reliability: Unlike the assign-
ment of tasks to homogeneous processors, the assignment of tasks
to heterogeneous processors should consider the difference be-
tween soft error rates (SER) of processors. However, the previous
works either focus on homogeneous processors or ignore the SER
difference of heterogeneous processors. Therefore, we first intro-
duce how to calculate the SER of processors, then investigate the
SER difference of simulated heterogeneous processors using Monte
Carlo simulation.

Fig.3 shows that the failure rate of a processor can be estimated
as the sum of failure rates of components that constitute the pro-
cessor, where AVF, is the architecture vulnerability factor of com-
ponent ¢ and takes the value in the range (0, 1] (Li etal., 2007).
The AVF expresses the probability that a visible failure will occur,
given a raw error event in a component. Clearly, before calculat-
ing the processor failure rate, we need to derive the failure rates
of components. The following model can be utilized to predict
neutron-induced! SER at component level (Hazucha and Svensson,
2000):

— St
SERcomp = Const x Flux x Area x e %, (22)

where Const is a parameter depending on the process technology,
Flux is the flux of neutrons at the specific location (latitude and
longitude), Area is the area of the circuit sensitive to soft errors,
Qi is the critical charge, and Q. is the charge collection effi-
ciency. Using Eq. (22), the SER of components 6T SRAM cell, 8T
SRAM cell, Latch, and NAND2 can be calculated, and it also has
been shown that the SER of four components built with the same
technology are close when they are running at the same envi-
ronment and parameters like voltage and temperature (Riera etal.,
2016).

To investigate the effect of task assignment on reliability, we
build two simulated processors and compare their SER. Similar to
the literature (Riera etal., 2016), one simulated processor is as-
sumed to be made up of 6T SRAM cell, Latch, and NAND2 while
the other simulated processor is assumed to be made up of 8T
SRAM cell, Latch, and NAND2. For each of the two simulated pro-
cessors, the respective proportions of three components are de-
noted by oy, oy, a3 and hold for o1 + @y + @3 =1, and the re-
spective architecture vulnerability factors of three components are

1 Soft errors are radiation induced failures that are mainly produced by two types
of sources: alpha particles from the packaging and neutrons from the atmosphere.
Alpha particles are already well known and can be mitigated by changing the pack-
aging materials of the chip, while neutron strikes produce soft errors that are diffi-
cult to detect and have a high impact on the reliability (Riera etal., 2016). Therefore,
we focus on the soft error rates due to neutrons.

6 J. Zhou et al./The Journal of Systems and Software 133 (2017) 1-16

T, T, 7, 74 T,
=1.0 1 2 5 6 8
' 1
|
=1.0 I : | 7, | 7, Cy
IL -
0 3 Tt o 10, t
! .
=0.8 ¢ ! I T, | Co
0 25 Tt o 00 t
=06 § | 2 | 7, I 7 | [=1 T, | Cs
L -
0 317¢ 0 10t

(a) makespan=31.7

(b) makespan=10

Fig. 2. Two examples of assigning tasks 7; — 7 to clusters C; — Cs.

Processor failure rate

!

i

Component failure rate

AVF, AVF,

T

Component 1
soft error rate

o AVE,—»

Component §
soft error rate

Component 2
soft error rate

Fig. 3. The calculation of processor failure rate (Li etal., 2007).

denoted by AVF;, AVF,, AVF; and take the value from interval of
(0, 1]. Without loss of generality, Monte Carlo simulation is used to
produce samples by randomly setting the value of oy, a3, a3 and
AVFy, AVF,, AVF;. Two produced processors with the same a, a5,
o3, AVFq, AVF,, AVF3 constitute one sample of Monte Carlo simu-
lation. We take 10,000 Monte Carlo samples to compare the SER
of simulated processors, which are calculated by the method pre-
sented in Fig.3 and based on the SER of 6T SRAM cell, 8T SRAM
cell, Latch, and NAND2 derived in the literature (Riera etal., 2016).

Fig.4 shows the SER of two simulated processors and Fig.5
plots the ratio of SER variation to processor SER, where each data
in the figures is averaged over 100 Monte Carlo samples. It is clear
in the figure that the SER of two simulated processors are close
and all in the range of [4.04 x 10>, 5.07 x 10~>]. In addition, both
the ratio of SER variation to SER of simulated processor 1 and the
ratio of SER variation to SER of simulated processor 2 are low,
which are below 3.75% and 3.58%, respectively. These results in-
dicate that the SER of heterogeneous processors still be similar
if they are built with the same technology and working at the
same environment and parameters, thus we make an observation
that the assignment of tasks to clusters on the same chip has ne-
glectable impact on neutron-related reliability.

Effects of Task Assignment on Temperature: It has been
shown that the processor temperature profiles and peak temper-
ature strongly depends on task execution order and operating fre-
quency, both of which are determined in the scheduling step of
our proposed scheme (Zhou and Wei, 2015; Jayaseelan and Mitra,
2008; Zhou etal., 2016¢).

4.2. Overview of our two-stage scheme

Based on the above analysis that

» makespan minimization strongly depends on task assignment,

o effect of task assignment on reliability is neglectable,
o task temperature profiles and peak temperature mainly rely on
task execution order and frequency,

and the following consideration that

e reliability constraint can be ensured by replication,

o temperature profiles of processors can be improved by wisely
determining task execution order and operating frequency after
task assignment,

the proposed two-stage scheme operates as follows. In stage 1, the
scheme first assigns the tasks to the primary core of clusters in
a makespan-optimal manner that enables the resultant schedule
length of clusters are equal or nearly equal, and calculates the
number of replicas required to achieve the target reliability level
for every assigned task. During the calculation of the number of
replicas required for a given task, its operating frequency is as-
sumed to be the maximal frequency of its assigned cluster. This
is based on the consideration that high frequency results in short
execution time and low fault arrival rate, which in turn lead to
early completion time and high reliability. Afterwards, the scheme
determines the execution order of tasks assigned to the primary
cores of clusters using RM scheduling (Liu and Layland, 1973), and
creates replicas on the secondary cores in order to guarantee the
reliability constraint.

In stage 2, the scheme checks the real-time and peak tempera-
ture constraint of tasks. If all tasks can be finished before the dead-
line and their peak temperature is below the temperature limit,
the task schedule with optimized makespan is reported. If the
real-time constraint of tasks cannot be satisfied, the scheme ex-
its, which means that the input BoT application cannot be feasibly
scheduled on the platform. If the real-time constraint is met but
the peak temperature constraint is violated, the scheme then uti-
lizes thermal-aware task sequencing to reduce temperature with-
out incurring increase in makespan. Task sequencing is a technique
that classifies tasks into hot/cool tasks and alternates the execution
of hot and cool tasks (Zhou and Wei, 2015; Jayaseelan and Mitra,
2008). After the thermal profiles are improved by task sequencing,
the scheme verifies the peak temperature constraint again. If the
constraint is met, the scheme outputs the derived task schedule.
Otherwise, the available slack is exploited to reduce the temper-
ature by using frequency scaling that specifically scales down the
frequency of hot tasks. It is worth noting that the task reliability
still can be maintained by using more replicas when the task op-
erating frequency is scaled. This is because the same target reli-
ability can be achieved using a small number of replicas running
at high frequencies or a large number of replicas running at low
frequencies, as indicated in Eqs. (2) and (3).

J. Zhou et al./The Journal of Systems and Software 133 (2017) 1-16 7

K

x 10

52 T T T T

Il Simulated processor 1
5 Simulated processor 2

4.8

44

42

SERs of Two Simulated Processors

i

20 30 40

50 60

‘HIH\I
90

100

70

80

Samples of Monte Carlo Simulation

Fig. 4. The SER of two simulated processors.

0.04 T T T T

= Simulated Processor 1

0.038 = f —— Simulated Processor 2

0.036 —

0.034 -

0.032 —

0.03 -

SER variation/Processor SER

0.028 —

I

0.026 L
0 10 20 30 40

50 60 70 80 90 100

Samples of Monte Carlo Simulation

Fig. 5. The ratio of SER variation to processor SER.

Through the two stages, the assignment of tasks to clusters and
the scheduling of tasks on the primary cores are derived. In partic-
ular, due to the same operation pattern of original tasks and repli-
cas, the scheduling of replicas on the secondary cores can be also
derived once the scheduling of their original tasks is generated.
The overview of our proposed two-stage scheme is shown in Fig. 6
and the corresponding pseudo-code is described in Algorithm 1.

Before introducing the details of the algorithms of our scheme,
we discuss the novelty of the scheme as below.

o Unlike the previous methods (Dongarra etal., 2007; Braun etal.,
2001; Saha etal.,, 2012; Zhou etal., 2016¢) ignoring the fact that
the assignment of tasks to heterogeneous processors may affect
makespan, reliability, and temperature, our proposed two-stage
scheme is designed based on the observations from analyzing
the effects of task assignment on the concerned subjects.

The thermal-aware task sequencing technique adopted in the
scheme has been developed in our previous work (Zhou
and Wei, 2015). It is an improved version of the approach
(Jayaseelan and Mitra, 2008) and can achieve a lower peak tem-
perature by alternating the execution of tasks in the hot-cool
order.

Unlike the previous frequency scaling approaches (Wei etal.,
2012; Hanumaiah and Vrudhula, 2012; Zhou and Wei, 2015;
Jayaseelan and Mitra, 2008) that scale the operating frequency
of all tasks either for reducing energy consumption or improv-
ing thermal profiles, the proposed scheme only scales the oper-

ating frequency of hot tasks with two considerations. First, the
violation of peak temperature constraint is mostly incurred dur-
ing the execution of hot tasks. Second, less operations of task
frequency scaling result in earlier task completion time and less
task replications, thus less sacrifice of makespan optimality.

4.3. Algorithms of our two-stage scheme

The objective of our two-stage scheme is to generate a
makespan optimum schedule of independent tasks without violat-
ing the reliability and thermal design constraints. As introduced in
Section 4.2, the first stage of the scheme determines the task as-
signment and replication strategy with the purpose of minimizing
makespan under the constraint of task reliability, and the second
stage of the scheme determines the schedule of assigned tasks on
the core to satisfy the real-time and temperature constraint. The
pseudo-code of our scheme is given in Algorithm 1.

Algorithm 1 takes the BoT application B, the platform P, and
the temperature limit Tphax as input. Based on the consideration
that the makespan is minimized if the schedule length of all clus-
ters are equal or close, the algorithm first calculates the total work-
load Wi of n input tasks and computes the workloads assigned
to m clusters that result in a minimum makespan using W o, =

Jk
W X ,max
tot f1.max+f2. max+--+fm max

into m sets according to the computed workloads in a first-fit
manner and assigns the m task sets to clusters. Afterwards, the

. The algorithm then groups the n tasks

8 J. Zhou et al./The Journal of Systems and Software 133 (2017) 1-16

BoT Application

Reliability, Deadline,
Temperature

Makespan-Aware Task Assignment under
Reliability Constraint

Makespan-Optimal Task Assignment

+ classify tasks into hot/cool tasks
- alternates the execution of hot tasks and cool tasks

Check the Real-Time and Temperature Constraint

Meet Real-Time eet Temperature QG
Constraint? Constraint?

Task Sequencing to Reduce Temperature

n

' makespan of the primary core of m clusters

Reliability Constraints Guaranteed by Replicas
on the Secondary Cores

Slack is
Sufficient?

Frequency Scaling to Reduce
Temperature

log(1—r;
of replicas for task 7, : v; > og(1 — i)

> [t i)

- scale the frequency of hot tasks
+ update the available slack
- _re-decide the number of replicas

oasle] Siago 2

Output task assignment, task frequency, task execution order, and # of replicas for each task |

Fig. 6. The overview of our proposed two-stage scheme.

algorithm sets the operating frequency of individual tasks to the
maximal frequencies of their respective assigned clusters and cal-
culates the number of replicas for individual tasks under their re-
spective reliability constraints using Eq. (4). Since all the tasks and
their replicas are executed at the maximal frequencies supported
by their assigned clusters that lead to shortest execution time, the
tasks in the application are considered to be infeasibly scheduled
if a task violates its real-time constraint.

The algorithm derives the peak temperature using Eq. (15) to
verify if the current schedule can satisfy the thermal constraint.
Specifically, if the peak temperature Ty is higher than the pre-
defined temperature limit Tpax, the temperature of assigned tasks
in clusters are then reduced by using the thermal-aware task se-
quencing technique, the details of which are given in Algorithm 2.

Otherwise, the algorithm exits and outputs the current sched-
ule with optimized makespan. However, the peak temperature may
not be controlled below the temperature limit due to the maximal
frequencies adopted. Therefore, the algorithm trades the optimality
of makespan for further reducing the temperature of tasks by us-
ing the thermal-aware frequency scaling technique, the details of
which are given in Algorithm 3.

Unlike traditional cooling solutions, the thermal-aware task se-
quencing technique can reduce the peak temperature by exploiting
the thermal characteristics of tasks without degrading task relia-
bility and incurring increase in makespan. The technique is based
on the observation (Jayaseelan and Mitra, 2008) that the execution
order of a hot task and a cool task has non-negligible impact on
peak temperature, and the final temperature of tasks executing in
the hot-cool order is lower than that of tasks executing in the cool-

hot order. Therefore, we propose a static task sequencing scheme
based on hot-cool pairing to improve the temperature profiles of
tasks in the clusters. The pseudo-code of the proposed thermal-
aware task sequencing is given in Algorithm 2.

Before showing the details of Algorithm 2, we first define Ttart
as the start temperature of a hot task assuming the task ends its
execution at the maximum temperature limit Tmax and Tepq as the
end temperature of a cool task assuming the task starts its execu-
tion at the ambient temperature T,,. The Tsare and Topgq are key
characteristics of hot and cool tasks, respectively. A lower Tgare of
a task indicates that the task is hotter and a lower T,,q of a task
indicates that the task is cooler. Tasks in the hot queue Qy o are
sorted in the increasing order of Tt and tasks in the cool queue
Qk.cool are sorted in the increasing order of Tepg.

Given these, Algorithm2 can maintain a hot queue Qo With
the hottest task at the head and a cool queue Q.. With the
coolest task at the head, and takes a target queue Qy(, and the
set 7, of tasks assigned to cluster C; as input. The algorithm first
initializes the target queue Q (,; by pushing all the assigned tasks
of cluster C, into the queue. It then classifies a task t; into hot or
cool task category based on the steady state temperature Tyee,dy (7i)
of the task and inserts the task into the corresponding queue. More
specifically, if Tyeady (i) > Tmax, task 7; is considered as a hot task
and inserted into the hot queue Q. Otherwise, the task is a
cool task and inserted into the cool queue Qy o0- After obtaining
the hot queue and cool queue, the algorithm begins the iterative
paring and sequencing of tasks. In each round of the iteration, if
neither Qo nor Qoo are empty, the algorithm pairs the task at
the head of Qpo and the task at the head of Q. in the order of

J. Zhou et al./ The Journal of Systems and Software 133 (2017) 1-16 9

Algorithm 2: Thermal-aware task sequencing.

Algorithm 1: Makespan minimization under the constraints of
reliability, real-time, and temperature.

-

N

(3 I

10
1
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28

29
30
31
32
33

34
35
36
37
38
39
40
a1
42

Input: i) BoT application, B = {11, T2, --- , Tn};

i) platform, P = {C1,C5, - ,Cm};

iii) temperature limit, Tpax;

Output: i) the task assignment, 77,73, -+ , Tm;

ii) task operating frequency, f(t7), f(72),---, f(tn);
iii) task execution order in Qq tar, Q. tar, - - » Qm.tar;
iv) the number of replicas for tasks, y1, ¥2, -+, ¥n;
calculate the total workload Wi of n tasks using
Whot = weq +wey + -+ - + Wep;

for k=1 to m do

calculate the desired workload of cluster C, that leads to
the minimized makespan using

Sk
W, = Wiar % ,max .
k.opt tot f1.max+f2. max+--+fm.max’

end
while B # o and k < m do
initialize the set 7 of tasks assigned to the primary core
of cluster C, and the workload W, of cluster C; using
Te =2 and W, = 0;
for i =1 to B.size() do
if Wy, 4+ wc; < Wy o then
Te=Te+Tis
B=DB-T1;
Wk = Wk + WC;;
end
end
k=k+1;
end
for k=1 to m do
for i =1 to Ty.size() do
set the operating frequency of 7; by f(7;) = fi max;
derive the number y; of replicas for task 7; to satisfy
the reliability constraint r; using Eq. (4);
if tﬁnish(ri) > D then
\ exit with infeasible schedule;
end
end
end
derive the peak temperature Tpeqy using Eq. (15);
if Tpeak > Tmax then
for k=1 to m do
reduce the temperature of assigned tasks in set7, by
task sequencing given in Algorithm 2;
end
derive the peak temperature Tje, using Eq. (15);
if Tpeak > Tmax then
for k=1 to m do
reduce the temperature of assigned tasks in set 7y
by frequency scaling given in Algorithm™3;
end
end
else
| exit with Qutput;
end
end
else
| exit with Output;
end

Input: i) set 7, of tasks assigned to cluster Cy;

ii) maintain a hot queue Qy s with the hottest task at the
head, a cool queue Qy oo With the coolest task at the head,
and a target queue Qy

Output: target queue Qy (4

1 move all tasks in set 7 into the target queue Qy (,;

2 for i =1 to Q ,.size() do

3 | classify 7; into hot (cool) task based on Tyeaqy (7);

4 derive Tstart(7;) if hot and Tepq(7;) if cool;

5 | insert 7; into hot/cool queue Qy 1ot/Qk ool

6 end

7 while Q; o # NULL or Qj o0 # NULL do

8 | if Qpot # NULL and Qp (oo # NULL then

9 pair tasks at the head of Qp ot and Qy ool

10 sequence the two tasks in the newly formed pair in
the order of hot-cool;

1 push the pair into the target queue Qy (y;

12 update the Qp por and Qg ool

13 | end

1 | else

15 \ append tasks in non-empty queue to Q (a;;

16 | end

17 end

Algorithm 3: Thermal-aware frequency scaling.

Input: i) set 7, of tasks assigned to cluster Cy;
ii) frequency set {fy 1, fr2. -~ ’fk,zk} supported by cluster Cy,
where fk,min = fk,] and fk,max = fk.ek;
Output: operating frequency of tasks in set 7
1 derive the initial available slack S ,,, using

Te-size() we;
2 Sgava=D— Ziz(l Te m;x ;

3 for i=1 to T.size() do

4 | if task 7; is hot then

5 =4

6 while S;, .., > 0 do

7 f’xci - % < Sk.ava then

8 scale the operating frequency of task 7; using
f@) = fre-1s

9 update the available slack using
Sk.ava = Sk,ava — (f;:v;i] - %)v

10 re-decide the number y; of replicas for task t;
to meet reliability constraint r; by Eq. (4);

1 (=¢-1;

12 if £ ==1 then

13 | break;

14 end

15 end

16 end

17 end

18 end

hot-cool, and pushes the pair into the target queue Qtar. The Qpq
and Q.. are hence updated. Otherwise, the algorithm appends the
tasks in the non-empty queue to the tail of the target queue.

As pointed out earlier, task sequencing may not be able to
guarantee that the peak temperature is below the temperature
limit since all tasks are executed at the maximum frequencies of
their respectively assigned clusters. To handle this situation, the

10 J. Zhou et al./The Journal of Systems and Software 133 (2017) 1-16

Table 1
Parameters of the real-world benchmarks.

Application ~ Description Expected Task Execution Time Standard Deviation # of Tasks in the Application
toast GSM speech encoder 3.286 1.27 100

madplay MP3 audio decoder 2.253 1.01 130

tmndec H.263 video decoder 2.799 0.762 90

mpegplay MPEG video decoder 2.036 0.722 140

optimality of makespan needs to be traded for a lower peak tem-
perature by scaling down the operating frequencies of hot tasks.
The pseudo-code of the proposed thermal-aware frequency scal-
ing is given in Algorithm 3. The inputs of the algorithm are the
set 7, of tasks assigned to cluster C, and the frequency set sup-
ported by the cluster. The algorithm operates as follows. It first
derives the initial available slack for the input tasks by Sy .., =

D- Zii"fizeo f;:Ni It then utilizes the available slack in a greedy
- ,max

way to scale down the operating frequencies of hot tasks in set
Te- If the slack demand required to scale down the frequency is

not greater than the available slack, ie., i — ¥4 < Sk.ava» the
fk,(—l fk,{ ’

task operating frequency is then scaled by f(t;) = fy ;1. The avail-

able slack S .y, is hence updated to Sy 4y, — (fk"";"1 - ;"k—c;) and the

number y; of replicas for task t; to meet the reliability constraint
r; is re-determined by Eq. (4). This process repeats until all the
hot tasks in set 7, are examined once. The time complexity of
Algorithms 1-3 are O(nm), O(n), and O(n¢), where n is the number
of tasks in the application B, m is the number of clusters in the
platform P, and ¢ = max{¢q, £,,---,¢p} is the maximum of fre-
quency levels supported by clusters.

5. Evaluation

In this section, we first describe the simulation setups for vali-
dation, then present and analyze the simulation results.

5.1. Simulation setups

Extensive simulation experiments were carried out to validate
the effectiveness of the proposed schemes. We generated the syn-
thetic BoT applications by a random task generator to verify the
proposed schemes. The expected value and standard deviation of
every task worst-case execution cycles are specified in the inter-
vals of [4x 108, 8 x10°] and [2 x 108, 2 x 10°], respectively. The
common deadline is set to 1.5 times of the total task worst-case
execution cycles. Eleven task sets (applications) are created in this
way and the size of every task set is increased from 100 to 600,
with a step increase of 50. We also utilized real-world multimedia
applications (Li etal., 2014) toast, madplay, tmndec, and mpegplay
to validate the proposed schemes. The parameters of tasks in the
four practical applications, including the expected value and stan-
dard deviation of task execution time and the number of tasks in
each application, are shown in Table 1.

The same settings of reliability and temperature constraints are
adopted for the synthetic applications and real-world benchmarks.
That is, the reliability requirement of tasks are specified in the in-
terval of [0.7, 0.999] (Huang etal., 2014b). The ambient tempera-
ture and maximal temperature limit are set to 40°C and 70 °C, re-
spectively. The simulated processor is modeled based on the Ver-
satile Express Development Platform (Tan etal., 2015) that includes
a prototype version of the ARM big.LITTLE chip containing 3 Cortex
A7 cores and 2 Cortex A15 cores. The average arrival rates of Cor-
tex A7 and Cortex A15 operating at the maximal frequency are as-
sumed to be 4 x 1076 and 7 x 10-6, respectively. The frequency of
Cortex A7 core is varied from 1GHz to 1.2 GHz and the frequency
of Cortex A15 core is varied from 1.4 GHz to 2.5 GHz.

It is exceedingly difficult to find the related works that have
the same objective (i.e., makespan minimization) with the con-
sideration of same constraints (i.e., deadline, reliability, and peak
temperature limit). Therefore, we compared our proposed schemes
(i.e., the MILP approach and the two-stage heuristic) with two
representative existing approaches RBSA (Assayad etal., 2004) and
ESTS (Li etal, 2014) in the simulations. Because the two ap-
proaches have the most similar concerns and do the most similar
work with our proposed scheme among the previous literature as
far as we know. The MILP formulation is described in Section 3.
The two-stage heuristic attempts to achieve the makespan min-
imization under the constraints of reliability and peak tempera-
ture by exploiting the techniques of makespan-optimum task as-
signment, reliability-aware task replication, thermal-aware task se-
quencing and frequency scaling. RBSA is a list scheduling heuristics
(Assayad etal., 2004) that aims to minimize the schedule length
(i.e., makespan) as well as maximize the system reliability based
on a bi-criteria compromise function. It utilizes a parameter of the
compromise function to control the weight of two objectives, in
order to satisfy the reliability or the schedule length requirements.
ESTS is a stochastic task scheduling algorithm (Li etal., 2014) that
takes into account the variation of task execution time in differ-
ent task instances. It can maximize the probability of minimizing
makespan under the task deadline and energy consumption bud-
get constraints. All the algorithms were implemented in C++, and
the simulations were performed on a machine with Intel Dual-Core
3.0 GHz processor and 8GB memory. For the sake of fair compar-
ison, the same simulation setups are adopted for our proposed
heuristic and methods RBSA (Assayad etal., 2004) and ESTS (Li
etal., 2014).

5.2. MILP formulation performance

In this set of experiments, we used CPLEX with AMPL to solve
instances of the MILP formulation in Section3 for the optimal
makespan under the reliability and thermal constraints. As dis-
cussed in Section 3.3, the MILP solver cannot be used to efficiently
solve the problem for systems of a larger granularity. Typically,
MILP is able to produce the optimal makespan for small applica-
tions, and for most of the applications, MILP cannot find optimal
solutions in several hours. Therefore, unlike the simulation setups
above, we limited the size of task sets to be blow 100 for the
MILP experiments, and terminated the MILP solver after 12 hours
and used the best results that solver had. Since neither of RBSA
(Assayad etal., 2004) and ESTS (Li etal., 2014) used in the compar-
ison considers the temperature and reliability constraints simulta-
neously, the solutions generated by the two methods may violate
the constraints. However, the focus of this set of experiments is to
verify the performance of MILP in optimizing makespan under the
reliability and thermal constraints. Thus we removed these invalid
results of RBSA (Assayad etal., 2004) and ESTS (Li etal., 2014) in
the comparison.

Table 2 shows the comparison of makespan of eleven task sets
achieved by the MILP approach, the proposed two-stage heuris-
tic, RBSA (Assayad etal., 2004), and ESTS (Li etal, 2014). The
“MS” column represents the makespan of different approaches. The
“Reduc” column represents the makespan reduction of MILP, the

J. Zhou et al./The Journal of Systems and Software 133 (2017) 1-16 11

Table 2

Makespan of eleven task sets achieved by the MILP approach, the proposed two-stage heuristic, RBSA (Assayad

etal., 2004), and ESTS (Li etal., 2014).

Synthetic Random MILP Proposed-Heuristic =~ RBSA ESTS
Task Set MS MS Reduc MS Reduc MS Reduc MS Reduc
Set 1 132751 94978 285% 101693 23.4% 107.649 18.9% 110864 16.5%
Set 2 167.243 131224 215% 131702 21.3% 150460 10.0% 144.905 13.4%
Set 3 153.056 106.646 30.3% 112126 26.7% 129681 153% 129681 153%
Set 4 113.525 82945 269% 87944 22.5% 98.823 13.0% 93.036 18.0%
Set 5 101583 81304 20.0% 85164 16.2% 92985 8.5% 96306 5.2%
Set 6 88.003 69.211 214% 71476 18.8% 86.957 12% 81.023 7.9%
Set 7 123.297 102988 165% 99288 19.5% 114944 6.8% 108782 11.8%
Set 8 109.038 79612 27.0% 89.161 18.2% 97206 109% 95.881 121%
Set 9 133.655 95439 286% 100251 25.0% 112.045 162% 118235 115%
Set 10 98.494 75610 232% 77269 215% 84.351 144% 81728 17.0%
Set 11 92600 70428 239% 71065 23.3% 82012 114% 87945 5.0%
Avg. 119386 90.035 24.6% 93.376 21.8% 105.19 11.9% 104399 12.6%
600 task set. As shown in the figure, the average makespan of eleven
BRBSA EProposed-Heuristic ~OESTS task sets achieved by RBSA (Assayad etal., 2004), ESTS (Li etal,
500 2014), and the proposed heuristic are 339.3s, 295.6s, and 306.4s,
respectively. The results indicate that the makespan of the pro-
400 | posed heuristic is smaller than that of RBSA (Assayad etal., 2004).
=z For example, the proposed scheme can reduce the makespan of
5 the forth task set by 16.03% as compared to RBSA (Assayad etal.,
Ej 300 F 2004). This benefits from the makespan-aware task assignment in
= the proposed heuristic. The results also show that the makespan of
= 200 | the proposed heuristic is close to that of ESTS (Li etal., 2014). The
reason why ESTS (Li etal., 2014) outperforms the proposed heuris-
100 | tic is that ESTS (Li etal., 2014) ignores the reliability and tempera-
ture constraints, which are antagonistic to the objective of reducing
0 || makespan.

100 150 200 250 300 350 400 450 500 550 600
Task Number

Fig. 7. Makespan of eleven task sets achieved by methods RBSA (Assayad etal.,
2004), ESTS (Li etal., 2014), and the proposed heuristic.

proposed heuristic, RBSA (Assayad etal., 2004) and ESTS (Li etal.,
2014) over Random, which is a baseline method that generates the
assignment, operating frequency, execution order, and replicas of
tasks at random. As the simulation results in the table, the aver-
age makespan reduction achieved by MILP, the proposed heuris-
tic, RBSA (Assayad etal., 2004) and ESTS (Li etal., 2014) are 24.6%,
21.8%, 11.9%, and 12.6%, respectively. Moreover, MILP almost can
maximize the reduction of makespan for all task sets when com-
pared to the proposed heuristic, RBSA (Assayad etal., 2004) and
ESTS (Li etal., 2014). However, the MILP solver always finds the so-
lutions in several hours while heuristic algorithms in several min-
utes.

5.3. Performance of the two-stage heuristic

Two sets of simulation experiments are implemented to vali-
date the effectiveness of the proposed two-stage heuristic in terms
of reducing makespan, improving feasibility, and controlling peak
temperature. In the first set of simulations, synthetic BoT appli-
cations were generated by a random task generator while in the
second set of simulations, real-world multimedia applications were
utilized. The simulation results are described below in detail.

5.3.1. Simulation results of synthetic tasks

Fig.7 compares the makespan of eleven task sets achieved by
methods RBSA (Assayad etal., 2004), ESTS (Li etal, 2014), and
the proposed heuristic. Apparently, the makespan achieved by the
three algorithms are all growing with the increase of the size of

Table 3 compares the feasibility of eleven task sets achieved by
methods RBSA (Assayad etal., 2004), ESTS (Li etal., 2014), and the
proposed heuristic. From the results in the table, we can easily find
that the proposed heuristic achieves the highest feasibility as com-
pared to RBSA (Assayad etal., 2004) and ESTS (Li etal., 2014), no
matter when considering all the constraints, or either only consid-
ering the temperature constraint or only considering the reliability
constraint. For instance, when all the constraints are taken into ac-
count, the proposed heuristic can improve the feasibility by up to
28.1% and 33.8% as compared to RBSA (Assayad etal., 2004) and
ESTS (Li etal., 2014), respectively. The better performance with re-
spect to feasibility achieved by the proposed heuristic is due to
the effectiveness of the adopted temperature and reliability-aware
techniques.

Fig.8 compares the peak temperature of eleven task sets
achieved by methods RBSA (Assayad etal., 2004), ESTS (Li etal.,
2014), and the proposed heuristic. It has been shown in the fig-
ure that the proposed heuristic has the lowest peak temperature
among the three approaches. For example, the proposed heuris-
tic can lower the peak temperature of the fifth task set by 8.22°C
and 5.01 °C as compared to RBSA (Assayad etal., 2004) and ESTS (Li
etal., 2014), respectively. The reduction of peak temperature ben-
efits from the thermal-aware task sequencing and frequency scal-
ing adopted in the proposed heuristic, the effectiveness of which in
thermal management has been demonstrated in our previous work
(Zhou and Wei, 2015) thus is not discussed in this paper.

5.3.2. Simulation results of real-world benchmarks

Fig.9 compares the makespan of four benchmarks toast, mad-
play, tmndec, and mpegplay achieved by RBSA (Assayad etal.,
2004), ESTS (Li etal., 2014), and the proposed heuristic. Similar
to the results shown in Fig.7, the makespan of the four bench-
marks achieved by the proposed scheme is smaller (up to 11.75%)
than that of RBSA (Assayad etal., 2004), which is due to the

12

J. Zhou et al./The Journal of Systems and Software 133 (2017) 1-16

Table 3
Feasibility of eleven task sets achieved by methods RBSA (Assayad etal., 2004), ESTS (Li etal., 2014), and the proposed heuristic.
of tasks Feasibility when considering Feasibility when considering Feasibility when considering
all the constraints the temperature constraint the reliability constraint
RBSA Proposed-Heuristic ~ ESTS RBSA Proposed-Heuristic ~ ESTS RBSA Proposed-Heuristic ~ ESTS
100 100% 100% 98.0% 100% 100% 100% 100% 100% 98.0%
150 100% 100% 97.3% 100% 100% 100% 100% 100% 97.3%
200 100% 100% 96.5% 100% 100% 100% 100% 100% 96.5%
250 100% 100% 96.0% 100% 100% 100% 100% 100% 96.0%
300 100% 100% 95.0% 100% 100% 100% 100% 100% 95.0%
350 100% 100% 94.6% 100% 100% 100% 100% 100% 94.6%
400 100% 100% 93.0% 100% 100% 100% 100% 100% 93.0%
450 90.2% 100% 88.0% 90.2% 100% 92.0% 100% 100% 92.4%
500 87.0% 100% 82.0% 87.0% 100% 86.2% 100% 100% 93.0%
550 73.5% 100% 72.7% 73.5% 100% 76.2% 100% 100% 92.4%
600 71.9% 100% 66.2% 71.9% 100% 70.8% 100% 100% 90.9%
75 Table 4
BRBSA B Proposed-Heuristic DESTS Fea;ibility of toast, madplay, tmndec, and mpegplay
achieved by RBSA (Assayad etal., 2004), ESTS (Li etal,
70 2014), and the proposed heuristic.
~~
O Benchmarks RBSA Proposed-Heuristic ~ ESTS
% 65 |
£ toast 86.0% 100% 78.0%
= madplay 92.4% 100% 86.5%
5 60 | tmndec 90.0% 100% 78.0%
E‘ mpegplay 85.6% 100% 71.5%
>
H 55 -
El
& w0 | BERBSA BProposed-Heuristic TESTS
80
—~
45 = 8
100 150 200 250 300 350 400 450 500 550 600 @ 75 1
Task Number ‘3
St
Fig. 8. Peak temperature of eleven task sets achieved by RBSA (Assayad etal., 2004), & 70
ESTS (Li etal., 2014), and the proposed heuristic. £
]
=
'ﬁ 65
B RBSA EProposed-Heuristic DESTS A
195 60 1 1 1
185 toast madplay tmndec mpegplay
= 175 Benchmarks
g 165 Fig. 10. Peak temperature of toast, madplay, tmndec, and mpegplay achieved by
o RBSA (Assayad etal., 2004), ESTS (Li etal., 2014), and the proposed heuristic.
[}
é 155
145 algorithms. Taking the benchmark mpegplay as an example, the
135 feasibility can be improved by 14.4% and 28.5% using the proposed
heuristic as compared to RBSA (Assayad etal., 2004) and ESTS (Li
125 : : : etal,, 2014), respectively. Fig.10 compares the peak temperature
toast madplay tmndec mpegplay of the four benchmarks achieved by RBSA (Assayad etal., 2004),
Benchmarks ESTS (Li etal., 2014), and the proposed heuristic. The results in the

Fig. 9. Makespan of toast, madplay, tmndec, and mpegplay achieved by RBSA
(Assayad etal., 2004), ESTS (Li etal., 2014), and the proposed heuristic.

effectiveness of the proposed makespan-aware task assignment
heuristics. In addition, the makespan of the four benchmarks
achieved by the proposed heuristic is larger than that of ESTS
(Li etal., 2014), which is due to the trade of the optimality of
makespan made in the proposed heuristic for guaranteeing the
temperature and reliability constraints. Table4 compares the fea-
sibility of the four benchmarks in terms of satisfying temperature
and reliability constraints achieved by RBSA (Assayad etal., 2004),
ESTS (Li etal., 2014), and the proposed heuristic. As expected, the
feasibility of the proposed scheme is the highest among the three

figure clearly demonstrate that the peak temperature of the four
benchmarks can be greatly reduced by the thermal management
techniques used in the proposed heuristic. More specifically, the
peak temperature of the four benchmarks can be lowered by up
to 15.2°C and 10.9°C using the proposed heuristic as compared to
RBSA (Assayad etal., 2004) and ESTS (Li etal., 2014), respectively.

6. Discussion

This section discusses the novelties of this paper when compar-
ing with our previous works (Zhou etal., 2016a; Wei etal., 2012;
Zhou etal.,, 2016b; Zhou and Wei, 2015; Zhou etal., 2016c). Tra-
ditional reliability-aware task scheduling mechanisms can improve
or maintain the system reliability by using techniques such as

J. Zhou et al./ The Journal of Systems and Software 133 (2017) 1-16 13

rollback recovery, replication, and frequency elevation, which ei-
ther tolerate the occurred transient faults or lower the fault arrival
rate. However, these techniques would inevitably have the side ef-
fects of elevated energy consumption, increased makespan (thus
reduced throughput), and higher temperature (thus shortened de-
vice lifetime). It is most desirable if we can work out a new task
scheduling mechanism that is able to handle all these issues to-
gether. But unfortunately, this cannot be realized due to the con-
siderations below.

1. Energy minimization and makespan minimization are two op-
posite objectives, thus cannot be optimized simultaneously.
More specifically, if the operating frequencies of tasks are
scaled to reduce energy consumption, makespan is increased
because of the delayed task completions. Similarly, if high fre-
quencies are used to execute tasks for reducing makespan, en-
ergy consumption would be inevitably increased.

2. The research on temperature can be conducted from two as-
pects. On one hand, when the system thermal profile is not
very bad to cause hardware failures, temperature is typically
considered as a constraint and the focus of research is on opti-
mizing other objectives such as energy and makespan. In other
words, system peak temperature cannot exceed a safe thresh-
old. On the other hand, when the system thermal profile is very
bad to cause hardware failures, the focus of research is on re-
ducing the peak temperature to the utmost in the purpose of
avoiding thermal emergency (and hence hardware failures).

Based on the first consideration, we concentrate on optimizing
energy consumption in our published paper (Wei etal., 2012; Zhou
etal., 2016b; Zhou and Wei, 2015) while optimizing makespan in
this work. Based on the second consideration, we concentrate on
controlling system peak temperature below a safe threshold and
optimizing energy consumption or makespan in our published pa-
per (Wei etal.,, 2012; Zhou etal.,, 2016b; Zhou and Wei, 2015) and
this work, whereas we concentrate on minimizing system peak
temperature in our published paper (Zhou etal., 2016¢). Unlike this
work and our published paper (Wei etal.,, 2012; Zhou etal., 2016b;
Zhou and Wei, 2015; Zhou etal.,, 2016c), two types of faults are
jointly handled and the soft-error reliability and lifetime reliabil-
ity are balanced such that system availability is maximized (Zhou
etal.,, 2016a).

7. Conclusion

In this paper, we presented an assignment and scheduling tech-
nique that uses a mixed-integer linear program solver to opti-
mize the makespan under the constraints of deadline, reliability,
and peak temperature. To efficiently solve this NP-hard assignment
and scheduling problem, we also proposed a task assignment and
scheduling heuristic in which the assignment, replication, operat-
ing frequency, and execution order of tasks are determined. The
heuristic is developed based on the analysis of the effects of task
assignment on makespan, reliability, and temperature.

Extensive simulations were performed to validate the proposed
MILP formulation and the proposed heuristic. The results of exper-
iments for verifying the effectiveness of the proposed MILP formu-
lation in reducing makespan show that MILP has the best perfor-
mance. To be specific, the average makespan reduction achieved by
MILP, the proposed heuristic, RBSA and ESTS over baseline method
Random are 24.6%, 21.8%, 11.9%, and 12.6%, respectively. The re-
sults of experiments for verifying the effectiveness of the proposed
heuristic show that the heuristic can reduce the makespan by up
to 16.03% as compared to RBSA, improves the feasibility by up to
33.8% and lowers the peak temperature by up to 15.2°C as com-
pared to RBSA and ESTS.

References

Albers, S., Hellwig, M., 2016. Online makespan minimization with parallel schedules.
Algorithmica 1-29.

Aminzadeh, S., Ejlali, A., 2011. A comparative study of system-level energy manage-
ment methods for fault-tolerant hard real-time systems. IEEE Trans. Comput. 60
(9), 1288-1299.

ARM, big LITTLE technology: the future of mobile. [Online]. Available: https://www.
arm.com/files/pdf/big_LITTLE_Technology_the_Future_of_Mobile.pdf, 2013.

Assayad, I., Girault, A., Kalla, H., 2004. A bi-criteria scheduling heuristic for dis-
tributed embedded systems under reliability and real-time constraints. In: Pro-
ceedings of International Conference on Dependable Systems and Networks,
pp. 347-356.

Assayad, 1., Girault, A., Kalla, H., 2011. Tradeoff exploration between reliability power
consumption and execution time. In: Proceedings of International Conference
on Computer Safety, Reliability and Security, pp. 437-451.

Aupy, G., Benoit, A., Robert, Y., 2012. Energy-aware scheduling under reliability and
makespan constraints. In: Proceedings of International Conference on High Per-
formance Computing, pp. 1-10.

Braun, T., Hensgen, D., Freund, R., Siegel, H., et al., 2001. A comparison of eleven
static heuristics for mapping a class of independent tasks onto heteroge-
neous distributed computing systems.]. Parallel Distrib. Comput. 61 (6), 810-
837.

Casas, L, Taheri, ., Ranjan, R., Wang, L., Zomaya, A., 2017. A balanced scheduler with
data reuse and replication for scientific workflows in cloud computing systems.
Future Gen. Comput. Syst. 74, 168-178.

Chen, X., Huang, X., Xiang, Y., Zhang, D., Ranjan, R, Liao, C., 2017. A CPS framework
based perturbation constrained buffer planning approach in VLSI design.]. Par-
allel Distrib. Comput. 103, 3-10.

Cirne, W., Brasileiro, F, Sauve,], Andrade, N., Paranhos, D., Santos-Neto, E.,
Medeiros, R., 2003. Grid computing for bag of tasks applications. In: Proceed-
ings of International Conference on E-Commerce, E-Business and E-Government.

Culler, D., Singh,], Gupta, A, 1999. Parallel computer architecture: a hard-
ware/software approach.

Dongarra, J., Jeannot, E., Saule, E., Shi, Z., 2007. Bi-objective scheduling algorithms
for optimizing makespan and reliability on heterogeneous systems. In: Proceed-
ings of ACM Symposium on Parallel Algorithms and Architectures, pp. 280-288.

Ejlali, A., Al-Hashimi, B., Eles, P,, 2012. Low-energy stand by sparing for hard re-
al-time systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31 (3),
329-342.

Gutierrez-Garcia, J., Sim, K., 2013. A family of heuristics for agent-based elastic
cloud bag-of-tasks concurrent scheduling. Future Gen. Comput. Syst. 29 (7),
1682-1699.

Hanumaiah, V., Vrudhula, S., 2012. Temperature-aware DVFS for hard real-time ap-
plications on multicore processors. IEEE Trans. Comput. 61 (10), 1484-1494.
Haque, M., Aydin, H., Zhu, D., 2016. On reliability management of energy-aware re-
al-time systems through task replication. IEEE Transactions on Parallel and Dis-

tributed Systems.

Hazucha, P, Svensson, C., 2000. Impact of CMOS technology scaling on the atmo-
spheric neutron soft error rate. IEEE Trans Nucl Sci 47 (6), 2586-2594.

Huang, H., Chaturvedi, V., Quan, G., Fan, J., Qiu, M., 2014a. Throughput maximization
for periodic real-time systems under the maximal temperature constraint. ACM
Trans. Embedded Comput. Syst. 13 (2s), 1-22.

Huang, P, Yang, H., Thiele, L., 2014b. On the scheduling of fault-tolerant mixed-crit-
icality systems. In: Proceedings of International Conference on Design Automa-
tion, pp. 1-6.

Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K. Stan, M.,
2006. Hotspot: a compact thermal modeling methodology for early-stage VLSI
design. IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 14 (5), 501-513.

Huang, W., Stan, M., Skadron, K., Sankaranarayanan, K., Ghosh, S., Velusaml, S., 2004.
Compact thermal modeling for temperature-aware design. In: Proceedings of In-
ternational Conference on Design Automation, pp. 878-883.

Jayaseelan, R., Mitra, T., 2008. Temperature aware task sequencing and voltage scal-
ing. In: Proceedings of International Conference on Computer-Aided Design,
pp. 618-623.

Kim, K., Buyya, R., Kim, J., 2007. Power aware scheduling of bag-of-tasks applica-
tions with deadline constraints on DVS-enabled clusters. In: Proceedings of the
International Symposium on Cluster Computing and the Grid, pp. 541-548.

Kim, N., Austin, T., Baauw, D., Mudge, T., Flautner, K., Hu,]., Irwin, M., Kandemir, M.,
Narayanan, V., 2003. Leakage current: Moore's law meets static power. Com-
puter 36 (12), 68-75.

Korte, B., Vygen,]., Korye, B., Vygen,]., 2002. Combinatorial Optimization. Berlin.
Germany: Springer.

Kriebel, F, Rehman, S., Sun, D., Shafique, M., Henkel, J., 2014. ASER: adaptive soft
error resilience for reliability-heterogeneous processors in the dark silicon era.
In: Proceedings of International Conference on Design Automation, pp. 1-6.

Li, K., Tang, X., Li, K., 2014. Energy-efficient stochastic task scheduling on heteroge-
neous computing systems. IEEE Trans. Parallel Distrib. Syst. 25 (11), 2867-2876.

Li, X.,, P. Bose, S.V., River, J., 2007. Architecture-level soft error analysis: examining
the limits of common assumptions. In: Proceedings of International Conference
on Dependable Systems and Networks, pp. 266-275.

Liu, C, Layland, J., 1973. Scheduling algorithms for multiprogramming in a hard re-
al-time environment. J. ACM 20 (1), 46-61.

Ma, Y., Chantem, T., Dick, R., Wang, S., Hu, X., 2017. An on-line framework for im-
proving reliability of real-time systems on big-little type MPSoCs. In: Proceed-
ings of Design, Automation & Test in Europe.

http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0002
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Future_of_Mobile.pdf
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0028

14 J. Zhou et al./The Journal of Systems and Software 133 (2017) 1-16

Netto, M., Buyya, R, 2009. Offer-based scheduling of deadline-constrained bag-of-
tasks applications for utility computing systems. In: Proceedings of the Interna-
tional Symposium on Parallel & Distributed Processing, pp. 1-11.

Nvidia, Variable SMP (4-plus-1tm) a multi-core CPU architecture for low power
and high performance. [Online]. Available: https://www.nvidia.com/content/
PDF/tegra_white_papers.

Quan, G., Chaturvedi, V., 2010. Feasibility analysis for temperature constraint hard
real-time periodic tasks. IEEE Trans. Ind. Inf. 6 (3), 329-339.

Rajendran, C., Ziegler, H., 2004. Ant-colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs. Eur J Oper Res 155
(2), 426-438.

Riera, M., Canal, R., Abella,]., Gonzalez, A., 2016. A detailed methodology to com-
pute soft error rates in advanced technologies. In: Proceedings of Design, Au-
tomation & Test in Europe, pp. 212-222.

Saha, S., Lu, Y., Deogun, J., 2012. Thermal-constrained energy-aware partitioning for
heterogeneous multi-core multiprocessor real-time systems. In: Proceedings of
International Conference on Embedded and Real-Time Computing Systems and
Applications, pp. 41-50.

Skadron, K. Stan, M., Sankaranarayanan, K. Huang, W., Velusamy, S., Tarjan, D.,
2004. Temperature-aware microarchitecture: modeling and implementation.
ACM Trans. Archit. Code Optim. 1 (1), 94-125.

Tan, C., Muthukaruppan, T., Mitra, T., Ju, L., 2015. Approximation-aware scheduling
on heterogeneous multi-core architectures. In: Proceedings of Asia and South
Pacific Design Automation Conference, pp. 618-623.

Vajda, A., 2011. Multi-Core and Many-Core Processor Architectures. Springer US,
pp. 9-43.

Wang, X., Yeo, C, Buyya, R, Su, J.,, 2011. Optimizing the makespan and reliability
for workflow applications with reputation and a look-ahead genetic algorithm.
Future Gen. Comput. Syst. 27 (8), 1124-1134.

Wang, Y., Jiang, J., Zhang, H., Dong, X., Wang, L., Ranjan, R., Zomaya, A., 2017. A scal-
able parallel algorithm for atmospheric general circulation models on a multi-
core cluster. Future Gen. Comput. Syst. 72, 1-10.

Wei, T, Mishra, P, Wu, K, Zhou,], 2012. Quasi-static fault-tolerant scheduling
schemes for energy-efficient hard real-time systems.]J. Syst. Software 85 (6),
1386-1399.

Zhang, S., Wu, J., Ly, S., 2016. Distributed workload dissemination for makespan
minimization in disruption tolerant networks. IEEE Trans. Mob. Comput. 15 (7),
1661-1673.

Zhao, B., Aydin, H., Zhu, D., 2009. Enhanced Reliability-aware Power Management
through Shared Recovery Technique. In: Proceedings of International Conference
on Computer-Aided Design, pp. 63-70.

Zheng, W., Sakellariou, R., 2013. Stochastic DAG scheduling using a monte carlo ap-
proach. J. Parallel Distrib. Comput. 73 (12), 1673-1689.

Zhou, J., Hu, X., Ma, Y., Wei, T,, 2016a. Balancing lifetime and soft-error reliability
to improve system availability. In: Proceedings of Asia and South Pacific Design
Automation Conference, pp. 685-690.

Zhou, J., Wei, T., 2015. Stochastic thermal-aware real-time task scheduling with con-
siderations of soft errors. J. Syst. Softw. 102, 123-133.

Zhou, J., Wei, T., Chen, M,, Yan, J., Hy, X., Ma, Y., 2016b. Thermal-aware task schedul-
ing for energy minimization in heterogeneous real-time MPSoc systems. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 35 (8), 1269-1282.

Zhou, J., Yan, J., Chen, J., Wei, T., 2016¢. Peak temperature minimization via task al-
location and splitting for heterogeneous MPSoc real-time systems.]. Signal Pro-
cess. Syst. 84, 111-121.

Zhu, D., Melhem, R., Mosse, D., 2004. The effects of energy management on reliabil-
ity in real-time embedded systems. In: Proceedings of International Conference
on Computer-Aided Design, pp. 35-40.

http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0029
https://www.nvidia.com/content/PDF/tegra_white_papers
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30160-7/sbref0047

J. Zhou et al./ The Journal of Systems and Software 133 (2017) 1-16 15

Junlong Zhou received the Ph.D. degree in Computer Science from East China Normal University, Shanghai, China, in 2017. He was a Research Visitor
with the University of Notre Dame, Notre Dame, IN, USA, during 2014-2015. He is currently an Assistant Professor with the School of Computer
Science and Engineering, Nanjing University of Science and Technology, Nanjing, China. His research interests include real-time embedded systems,
cyber physical systems, and cloud computing. He has published a dozen of papers in referred journals and conferences. Dr. Zhou is an Active
Reviewer of several international journals, including IEEE Transactions on Computers, IEEE Transactions on CAD of Integrated Circuits and Systems,
and IEEE Transactions on Industrial Informatics. He received the Reviewer Award from Journal of Circuits, Systems, and Computers, in 2016. Dr.
Zhou has been an Associate Editor for the Journal of Circuits, Systems, and Computers since 2017. He is a member of the IEEE.

Kun Cao is currently pursuing the Ph.D. degree with the Department of Computer Science and Technology, East China Normal University, Shanghai,
China. His current research interests are in the areas of high performance computing, multiprocessor systems-on-chip and cyber physical systems.

Peijin Cong received the B.S. degree from the Department of Computer Science and Technology, East China Normal University, Shanghai, China,
in 2016. She is currently pursuing the master degree with the Department of Computer Science and Technology, East China Normal University,
Shanghai, China. Her current research interest is in the area of power management in mobile devices.

Tongquan Wei received the Ph.D. degree in electrical engineering from Michigan Technological University, Houghton, MI, USA, in 2009. He is cur-
rently an Associate Professor with the Department of Computer Science and Technology, East China Normal University, Shanghai, China. His current
research interests include real-time embedded systems, green and reliable computing, parallel and distributed systems, and cloud computing. Dr.
Wei has been a Regional Editor for the Journal of Circuits, Systems, and Computers since 2012. He served as a Guest Editor for several special
sections of the IEEE Transactions on Industrial Informatics and ACM Transactions on Embedded Computing Systems. He is a member of the IEEE.

Mingsong Chen received the B.S. and M.E. degrees from the Department of Computer Science and Technology, Nanjing University, Nanjing, China,
in 2003 and 2006, respectively, and the Ph.D. degree in Computer Engineering from the University of Florida, Gainesville, FL, USA, in 2010. He
is currently a full Professor with the Department of Embedded Software and Systems, East China Normal University, Shanghai, China. His current
research interests include design automation of cyber-physical systems, formal verification techniques, and mobile cloud computing. He is a member
of the IEEE.

Gongxuan Zhang received the BEng degree in Computing from Tianjin University and the MEng and PhD degrees in Computer Application from
the Nanjing University of Science and Technology. Also, he was a Senior Visiting Scholar in Royal Melbourne Institute of Technology from 2001.9 to
2002.3. Since 1991, he has been with the Nanjing University of Science and Technology, where he is currently a professor in the School of Computer
Science and Engineering. He is a senior member of the IEEE.

16

J. Zhou et al./The Journal of Systems and Software 133 (2017) 1-16

Jianming Yan received the master’s degree from the Department of Computer Science and Technology, East China Normal University, Shanghai,
China, in 2016. He is currently a senior software engineer with Meituan.com Corporation, Beijing, China. His research interests include task alloca-
tion and scheduling techniques in heterogeneous real-time MPSoC systems.

Yue Ma received the bachelor’s degree from Chengdu University of Technology, Chengdu, China, in 2010. He received the master’s degree from
the University of Electronic Science and Technology of China, Chengdu, China, in 2013. He is currently working toward the Ph.D. degree with the
University of Notre Dame, Notre Dame, IN, USA. His current research interests are in the areas of high performance computing, multiprocessor

systems-on-chip and cyber physical systems. He has authored or coauthored over 20 research papers in the related areas. He is a student member
of the IEEE.

	Reliability and temperature constrained task scheduling for makespan minimization on heterogeneous multi-core platforms
	1 Introduction
	2 System model and problem definition
	2.1 Application model
	2.2 Fault and reliability model
	2.3 Architecture and execution model
	2.4 Temperature model
	2.5 Problem definition

	3 MILP formulation
	3.1 Objective
	3.2 Constraints
	3.3 Limitation of MILP-based approach

	4 Makespan-aware task assignment and scheduling under reliability and temperature constraints
	4.1 Effects of task assignment on makespan, reliability, and temperature
	4.2 Overview of our two-stage scheme
	4.3 Algorithms of our two-stage scheme

	5 Evaluation
	5.1 Simulation setups
	5.2 MILP formulation performance
	5.3 Performance of the two-stage heuristic
	5.3.1 Simulation results of synthetic tasks
	5.3.2 Simulation results of real-world benchmarks

	6 Discussion
	7 Conclusion
	 References

