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Abstract—In-situ server systems are deployed in very special operating
environment to handle in-situ workloads that are normally generated
from environmentally sensitive areas or remote places that lack estab-
lished utility infrastructure. This very special operating environment of
in-situ servers urges such systems to be 100 percent powered by renewable
energy. However, existing energy management schemes assume a hybrid
supply of grid and renewable energy, hence are not well suited for
100 percent renewable powered in-situ server systems. In this paper,
we tackle the problem of allocating harvested energy to 100 percent
renewable powered server systems for optimizing both the overall system
throughput and throughput of individual servers. From a game theoretic
perspective, we model the energy allocation problem as a cooperative
game among multiple servers and derive a Nash bargaining solution.
Based on the Nash bargaining solution, we then propose a heuristic
algorithm that determines the energy allocation strategies according to
system energy states. Experimental results show that our proposed game
theoretic approach achieves a high throughput from perspectives of both
the overall system and individual servers.

Index Terms—Renewable energy allocation, In-situ server, Game the-
ory, Nash bargaining solution

I. INTRODUCTION

As the essential infrastructures for large-scale computing, server
clusters that attract considerable attention in both academia and
industry in past decades have been used in delivering various
computing and information technology (IT) services. These cluster-
enabling services consume a tremendous amount of energy and
incur a huge electricity bill. Consequently, renewable energy powered
server clusters have become promising alternatives to conventional
server clusters, and are expected to partially tackle the dual challenges
of energy shortage and environmental issues. It has been reported that
major IT companies like Google, Apple, and Facebook are reaching
100 percent renewable across all data centers [1].

In this paper we concentrate on energy management for in-situ
server systems running on 100 percent renewable energy. Examples of
in-situ server systems can be found in many data-driven applications
such as oil/gas exploration [2], rural geographical surveying [3],
astronomy observing in remote area [4], and video surveillance for
wildlife behavioral studies [5]. In these in-situ applications, a group
of inexpensive commodity servers are placed near data source for
pre-processing collected data sets. In particular, these applications do
not have hard real-time requirements, hence 100 percent intermittent
renewable energy can be used to process delay-tolerant data sets [6].

Most existing works on renewable energy-aware power manage-
ment concentrate on improving overall system energy utilization
and/or throughput for data centers. Li et al. [7] have investigated the
optimal solar power allocation on multi-core systems for maximally
harvesting the solar energy and improving the overall throughput.
Sharma et al. [8] designed a mechanism called blinking to manage
server clusters running on intermittent power. A fast power state
switching is utilized to match server power demand to intermittent
power budget and a performance tradeoff between distributed cache’s
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hit rate and access fairness is obtained. Goiri et al. [9]–[11] designed
job scheduling schemes for data centers partially powered by solar
energy. The presented schemes select the energy source to use,
maximize the use of green energy, limit grid electricity costs, and
avoid deadline violations. The major concern in these works is that
intermittent renewable energy fluctuates with time and thus various
designs need to be tailored such that the system energy demand
matches the renewable energy budget. A fundamentally different
design is presented in [12] that enables the renewable energy supply
to follow the data center power demand by using the load following
power provisioning technique.

Although the aforementioned proposals improve overall system en-
ergy efficiency from different perspectives, they make a common as-
sumption that both renewable energy and grid electricity are adopted
to maintain system functionalities. Thus, these energy management
schemes are not well suited for data centers 100 percent powered
by renewable energy. Image a scenario at a fine granularity level
where 100 percent green powered remote servers host application
software accessed by users. In such a scenario, user requests or
workloads are distributed to application servers by a load balancer of
the service provider. When the renewable energy is scarce, individual
application servers play a game to compete for the energy available,
aiming to enhance the probability of finishing their own workloads
in time. Meanwhile, the service provider anticipates a high system
throughput in the sense that as many overall workloads as possible
can be executed using the limited renewable energy. It is clear to
see that allocating scarce renewable energy to multiple servers is
essentially a resource sharing problem, which can often be solved
using Nash bargaining approach.

Nash bargaining is a powerful game theoretic technique that has
been widely used for resource sharing problems [13], [14]. A number
of recent works have investigated the application of game theoretic
techniques to model the problems of data center bandwidth sharing
[15], QoS-guided task allocation [16], energy-aware task scheduling
[17], and service reservation [18]. Specifically, the bandwidth sharing
problem [15], the QoS-guided task allocation problem [16], and the
energy consumption scheduling problem [17] are all modeled as a
cooperative game and the Nash bargaining solution to each game is
derived. Based on the derived solutions, algorithms are then designed
to realize corresponding optimization objectives. Unlike [15]–[17],
the service reservation problem studied in [18] is formulated into a
non-cooperative game among multiple users. The problem is solved
by using the variational inequality theory and a Nash equilibrium
solution to the formulated game is generated by using a proximal
algorithm. Ge et al. [19] proposed a game-theoretic approach to
minimize the overall energy consumption of a mobile computing
system and developed an efficient algorithm that can achieve the
Nash equilibrium in polynomial time. However, none of these works
deal with the intermittent energy allocation in a system harvesting
energy from ambient environments.

In this paper, we propose a game theoretic approach to tackle the
energy allocation problem for in-situ servers systems powered by
100 percent renewable energy. In particular, we model the allocation
problem as a cooperative game among multiple servers and derive a
Nash bargaining solution to allocating the shared renewable sources.
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Figure 1: Architecture of a renewable energy powered system.

Finally, we propose a heuristic algorithm that determines the energy
allocation strategies according to system energy states. Extensive
simulation experiments validate the efficacy of our scheme.

The remainder of the paper is organized as follows. Section II
presents the models and problem definition, Section III introduces the
cooperative game framework, and Section IV describes the proposed
energy allocation scheme. Section V verifies the effectiveness of the
proposed scheme and Section VI concludes the paper.

II. MODELS AND PROBLEM DEFINITION

Consider a renewable energy powered in-situ system that consists
of three key modules, that is, energy source module, energy storage
module, and energy dissipation module. As shown in Fig. 1, the
energy source module automatically scavenges renewable energy
from external environments, and converts the renewable generation
(i.e., solar energy) to electrical energy. The energy storage module,
which is typically in the form of a super capacitor or a battery,
serves as a buffer against the uncertainty in harvested energy. A
server cluster consisting of a scheduler and M heterogeneous in-situ
servers is considered as the energy dissipation module. Since most
of current in-situ systems are micro data centers processing none-
critical data, the system energy consumption would not be high and
the temporary system halt is allowed [6]. Therefore, we can achieve
an almost sustainable running of such in-situ systems when no solar
energy is harvested (e.g., at night) by assuming an energy storage of
large capacity. As part of future work, we will extend our work to
in-situ systems where critical data sets are supposed to be processed
in real-time and temporary system halt is not allowed.

A. Energy Supply Model
Let Pharv(t) denote the harvesting power and Eharv(∆t) denote the

energy harvested from the environments during time interval [t, t+∆t],
then Eharv(∆t) is expressed as

Eharv(∆t) =

∫ t+∆t

t

Pharv(t)dt. (1)

The harvested energy supports the computing system to satisfy the
requests made by customers. If the harvested energy exceeds the
energy demands of the system to provide a required service level,
the energy surplus is stored in the energy storage module. Otherwise,
there is no energy surplus and all harvested energy is allocated by
the scheduler to individual servers. Thus, the energy available for
allocation in the system during a time interval ∆t is the sum of the
energy harvested by energy source module during the current time
interval and the energy surplus of previous time intervals stored in
energy storage module. Specifically, let Eavl(∆t) denote the system
available supply energy during time interval [t, t + ∆t], E(t) denote
the energy stored in the battery at time instance t, and Ealloc,i (1 ≤
i ≤M) denote the energy allocated to server i, then we have

Eavl(∆t) = Eharv(∆t) + E(t) (2)

Ealloc,1 + Ealloc,2 + · · ·+ Ealloc,M = Eavl(∆t). (3)

𝝀𝒊 𝒔𝒊
Figure 2: The M/M/1 queue of server i.

Table I: Parameters of two heterogeneous processors [25].

Processor Psta Ceff v s

1 65.2 2.15 × 10−8 0.89 1.8 × 109

2 37.2 4.08 × 10−8 0.98 2.0 × 109

B. Task Model

We assume the arrival of tasks at each server as a Poisson process
and the service times of servers have exponential distribution. Such
assumption is based on other studies [20], [21] and verified by
real-trace studies as in [22], [23]. Tasks considered in this model
are independent, which means no dependency or communication
among tasks. Let λi represent the average task arrival rate of server
i and si represent the processing speed of server i, respectively.
The task processing procedure of a server is thus described by an
M/M/1 queuing model [24], as illustrated in Fig. 2. External tasks
arrive with a rate λi at server i, wait in a queue with an infinite
capacity, and get processed with a speed si. A task is denoted by
τ . Execution requirements of tasks are quantified by the number
of cycles to be executed, which are independent and approximately
follow normal distributions [25]. Thus we let N(ci, σ

2
i ) represent the

normal distribution of execution cycles of tasks on server i, where ci
is the expected value and σi is the standard variance.

Since the computing system considered in this paper is powered
by renewable energy sources, the energy available may not meet
the energy demands for task execution. Thus, the number of tasks
executing on a server is the smaller value between the number of
arrival tasks and the number of tasks that can be processed by the
server. Let Ni(∆t) be the number of tasks executing on server i during
∆t, and it is given by

Ni(∆t) = min(

∫ t+∆t

t

λidt,
si∆t

ci
), (4)

where
∫ t+∆t

t
λidt is the number of arrival tasks during ∆t and si∆t

ci

is the number of tasks that could be handled by server i during ∆t

at processing speed si.

C. Energy Dissipation Model

A typical example of energy dissipation is the execution of tasks
on the server processor. The server processor is an CMOS device,
and the power consumption of an CMOS device can be modeled
as the sum of static power consumption Psta and dynamic power
consumption Pdyn [26], that is,

Pcons = Psta + Pdyn. (5)

Psta is independent of switching activity and maintains the circuit
basic state. Pdyn is related to processor switching activity and can be
formulated as a function of supply voltage v and processing speed
s, that is, Pdyn ∝ v2s. Since v ∝ s, the overall processor power
consumption of server i is

Pcons,i = Psta,i + Pdyn,i = Psta,i + Ceff,is
3
i , (6)

where the static power dissipation Psta,i is a constant and Ceff,i

is the processor effective capacitance. Parameters of two example
heterogeneous processors are shown in Table I.

The energy consumed by processor of server i when executing a
task instance τ at processing speed si, denoted by Econs(τ, si), is the
product of power consumption and task execution time, and can be
approximately estimated as

Econs(τ, si) = (Psta,i + Ceff,is
3
i )×

ci

si
=
Psta,ici

si
+ Ceff,is

2
i ci. (7)
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Then the processor energy consumption of server i during time
interval ∆t is given by

Econs,i(∆t) = Ni(∆t)× Econs(τ, si), (8)

and the energy demand of M servers is formulated as

Edem(∆t) =
∑M

i=1

Econs,i(∆t). (9)

Due to the intermittent nature of renewable energy sources, the
energy available to support system operation varies in a predefined
time domain (i.e., ∆t). To analyze the system at a fine granularity,
the operation of the system with respect to energy is divided into
two states: high energy state and low energy state. Specifically, if the
energy available during the scheduling horizon is plentiful for the
system to finish the workloads of all servers, that is,

Eavl(∆t) ≥ Edem(∆t), (10)

the system is deemed to be in high energy state; otherwise, in low
energy state. Accordingly, the scheduler needs two energy allocation
strategies to handle the uncertainty in energy availability. Designing
an energy allocation strategy for high energy state is easy since the
scheduler only needs to assign the amount of energy to individual
servers as they require. However, designing an energy allocation
strategy for low energy state is challenging. This is because individual
servers compete for insufficient energy to maximize their respective
throughput. Meanwhile, from the perspective of the system, it is
desirable for servers to cooperate to maximize the overall system
throughput. Therefore, our goal is to design an efficient energy
allocation strategy for low energy state to cope with competition and
cooperation among servers.

D. Problem Definition
As explained above, we focus on designing an energy allocation

strategy for 100 percent renewable powered server system. We
assume a scenario that users have access to application software
deployed on 100 percent green powered remote servers, and user
requests or workloads have been distributed to application servers
by a load balancer of the service provider. When the system is in
low energy state, that is, the renewable energy is scarce, individual
application servers play a game to compete for the energy available,
expecting to acquire enough energy and timely complete their own
workloads. Simultaneously, the service provider also anticipates a
high system throughput under the limited renewable energy, which
can be achieved via cooperation among multiple application servers.
Therefore, to satisfy the requirements of both service provider and
users, an energy allocation strategy that optimizes both the system
overall throughput and throughput of individual servers is needed.

Problem Definition: Given a server system that is 100 percent powered
by renewable energy and assuming that user requests or workloads
have been distributed to application servers by a load balancer,
maximize both the system overall throughput and throughput of
individual servers when renewable energy is insufficient.

III. OUR COOPERATIVE GAME FRAMEWORK

The problem of allocating harvested energy to multiple servers can
be modeled as a cooperative game. Nash bargaining is a powerful
technique that has been widely used for resource sharing problems
[13]. In this work, we propose a game theoretic framework to address
the energy allocation problem, as described in Section II-D. Below,
we first introduce the concepts of cooperative game theory, then
model the energy allocation game among multiple servers, and finally
derive the optimal Nash bargaining solution to the cooperative game.

A. Cooperative Game Theory Concepts
In this subsection, we briefly summarize basic definitions and

concepts of cooperative game theory and Nash bargaining solution

which are used in the sequel. For further details, readers are suggested
to refer to [27] and [28].

A cooperative game consists of: (i) M players. (ii) A nonempty, closed,
and convex set, denoted by X ⊂ RM , which is the set of strategies
of the M players. (iii) A performance function fi of each player i,
where fi is a function from X to R and is upper-bounded. (iv) A
minimum value of fi, denoted by µ0

i , is the minimal performance
required for the player to enter the game without any cooperation.
The vector µ0 = (µ0

1, µ
0
2, · · · , µ

0
M ) is called the initial agreement point.

In the context of our allocation of shared energy supply, X repre-
sents the vector space of allocated energy. The initial performance of
each server (player) is a minimum guarantee that the system must pro-
vide the server to enable a predictable quality of service. Therefore,
we will assume that each server involved in the game can achieve its
initial performance. In other words, there exists at least one vector
x ∈ X , whose performance vector f(x) = (f1(x), f2(x), · · · , fM (x)) is
superior or equal to the initial performance vector µ0. Let U ⊂ RM be
a nonempty convex closed and upper-bounded set, which is the set of
achievable performance in our context, and let µ0 ∈ RM . Since it is
assumed that each player involved in the game can achieve its initial
performance at least, we have U0 = {µ ∈ U | µ ≥ µ0} = ∅, where
U0 is the set of performance vectors that is no less than the initial
agreement point. The above cooperative game is in general resolved
by Nash bargaining, and the generated solutions to the cooperative
game are called Nash bargaining solutions.

Nash bargaining solution (NBS) [27]: A mapping S : (U, µ0) → RM is
an NBS if S(U, µ0) ∈ U0, and S(U, µ0) is Pareto optimal and satisfies
the fairness axioms [28].

After giving the definition of NBS, we now introduce how to
derive the NBS. Let X0 = {x ∈ X | f(x) ≥ µ0} represent the set
of strategies enabling the players to achieve at least their initial
performance, which corresponds to the performance set U0. Let
J = {j ∈ {1, 2, · · · ,M} | x ∈ X0, fj(x) > µ0

j} represent the set of
players who are able to achieve a performance strictly superior to
their initial performance. In addition, suppose that for each j ∈ J ,
fj is one-to-one on X0. Under these definitions and assumption,
there exists a unique Nash bargaining solution µ∗ with its strategy
x∗ = f−1(µ∗), which is derived by solving the following optimization
problem [13]:

PJ : max
x

∏
j∈J

(fj(x)− µ0
j ) x ∈ X0. (11)

In the Nash bargaining problem, multiple players (typically no less
than two) enter the game with an initial performance requirement
and a performance function. The players cooperate in the game to
achieve a win-win solution, which maximizes the performance gains
given in (11) and leads to a relative fairness among players. The
game also ensures a minimum service guarantee by complying with
the constraint of initial performance agreement. This corresponds
to design requirements of the concerned system, where the overall
system throughput is maximized and throughput of individual servers
is lower-bounded. By taking the logarithm of the objective function,
an equivalent optimization problem can be derived and is

P
′
J : max

x

∑
j∈J

ln(fj(x)− µ0
j ) x ∈ X0. (12)

P ′J is a convex optimization problem and has a unique solution. The
unique solution of (P ′J ) is the bargaining solution.

B. Energy Allocation as a Cooperative Game

We consider a cooperative game in which each server is a player
and the M servers are competing for the shared available energy
Eavl(∆t) in the system. In the context of energy allocation to
maximize the overall system throughput and throughput of individual
servers, and satisfy the throughput requirement of individual servers,
we define the performance function of server i as the throughput of
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the server under the budget of its allocated energy Ealloc,i, which is
the number of tasks on the server and formulated as

f(Ealloc,i) =
Ealloc,i

Econs(τ, si)
=

Ealloc,i
Psta,ici

si
+ Ceff,is2i ci

, (13)

where Econs(τ, si) is the energy consumed by executing task τ at
processing speed si. Suppose that each server i has an initial perfor-
mance requirement µ0

i , which corresponds to the lowest throughput
of server i that needs to be guaranteed. We also assume that the
M servers are able to achieve performance strictly higher than their
initial performance.

Associated with the above cooperative game, the problem of max-
imizing the throughout of the system and satisfying the throughout
requirement of individual servers can be described as follows. Given
the shared available energy Eavl(∆t) in a time interval of ∆t and the
base throughput requirement (µ0

1, µ
0
2, · · · , µ

0
M ) of M servers, the M

servers cooperate in the game to obtain a maximized overall system
throughput by agreeing with an optimal point of energy allocation
(Ealloc,1, Ealloc,2, · · · , Ealloc,M ). In other words, the optimization
problem can be formulated as

P1 : max
∏M

i=1

(
Ealloc,i

Psta,ici
si

+ Ceff,is2i ci

− µ0
i ) (14)

s.t.
∑M

i=1

Ealloc,i = Eavl(∆t), (15)

Ealloc,i
Psta,ici

si
+ Ceff,is2i ci

≤ Ni(∆t), (16)

µ
0
i ≤

Ealloc,i
Psta,ici

si
+ Ceff,is2i ci

, (17)

where (15) indicates all of the available energy can be allocated to
servers for task execution, (16) indicates the energy allocated to each
server cannot exceed the energy of executing tasks on the server
processor, and (17) indicates the throughput achieved by each server
is higher than its base requirement.

In the above formulation, max
∏M

i=1
(

Ealloc,i
Psta,ici

si
+Ceff,is

2
i
ci

− µ0
i ) is

selected as the objective rather than max
∑M

i=1
(

Ealloc,i
Psta,ici

si
+Ceff,is

2
i
ci

−

µ0
i ). This is because the former not only demonstrates the capability of

the scheduler for maximizing system throughput, but also shows the
expectation of the M servers for maximizing their respective through-
put. According to the analysis given in the end of Section III-A, the
objective in (14) is equivalent to max

∑M

i=1
ln(

Ealloc,i
Psta,ici

si
+Ceff,is

2
i
ci

−

µ0
i ), which can be converted into

− min
∑M

i=1

ln(
Ealloc,i

Psta,ici
si

+ Ceff,is2i ci

− µ0
i ). (18)

P1 is an optimization problem that attempts to maximize a function
subject to multiple constraints, and many methods can be used to
solve the problem. Since Lagrange multiplier is powerful for solving
this type of problem with low computation complexity, we adopt it
to obtain the best solution to the problem. The Lagrangian of P1
problem is expressed as

L(Ealloc,i, α, βi, γi) = −
∑M

i=1

ln(
Ealloc,i

Psta,ici
si

+ Ceff,is2i ci

− µ0
i )

+ α(
∑M

i=1

Ealloc,i − Eavl(∆t)) +
∑M

i=1

βi(
Ealloc,i

Psta,ici
si

+ Ceff,is2i ci

−Ni(∆t)) +
∑M

i=1

γi(µ
0
i −

Ealloc,i
Psta,ici

si
+ Ceff,is2i ci

), (19)

where α ∈ R, and βi, γi ≥ 0 hold for ∀i = 1, 2, · · · ,M . They are the
Lagrange multipliers associated with the constraints given in (15),
(16), and (17).

It is clear that the optimal solution is derived when the derivative

of L(Ealloc,i, α, βi, γi) with respect to Ealloc,i equals to zero. In this
case, the expression

OL(E
∗
aloc,i, α

∗
, β
∗
i , γ
∗
i ) = 0⇐⇒ −

1

E∗
alloc,i

− E0
alloc,i

+ α
∗

+
β∗i

Psta,ici
si

+ Ceff,is2i ci

−
γ∗i

Psta,ici
si

+ Ceff,is2i ci

= 0, (20)

and the Karush-Kuhn-Tucker (KKT) conditions [29]

α
∗
(
∑M

i=1

Ealloc,i − Eavl(∆t)) = 0, α
∗ ∈ R, (21)

β
∗
i (

E∗alloc,i
Psta,ici

si
+ Ceff,is2i ci

−Ni(∆t)) = 0, β
∗
i ≥ 0, (22)

γ
∗
i (µ

0
i −

Ealloc,i
Psta,ici

si
+ Ceff,is2i ci

) = 0, γ
∗
i ≥ 0, (23)

hold. Therefore, the best solution to P1 problem can be derived from
(20), and it is given by

E
∗
alloc,i =

Psta,ici
si

+ Ceff,is
2
i ci

α∗(
Psta,ici

si
+ Ceff,is2i ci) + β∗

i
− γ∗

i

+ E
0
alloc,i, (24)

where α∗, β∗i , γ∗i are the optimal Lagrange multipliers and E0
alloc,i

is the energy required to achieve initial performance µ0
i . The best

solution E∗alloc,i is in fact the optimal energy allocated to server i
and can be calculated once the optimal Lagrange multipliers given
in (21), (22), (23) are obtained. Note that µ0

i =
Ealloc,i

Psta,ici
si

+Ceff,is
2
i
ci

is a special case of (23) that the performance of server i equals to its
initial value µ0

i . Since this paper focuses on a general situation that
µ0
i <

Ealloc,i
Psta,ici

si
+Ceff,is

2
i
ci

, then we have γ∗i = 0 from (23).

As indicated in (24), the key of obtaining the best solution is
to derive the optimal Lagrange multipliers of each server, which is
generally achieved by converting the optimization problem into its
dual problem and solving the dual problem via gradient projection.

C. Derive the Optimal Nash Bargaining Solution

The original optimization problem P1 is a typical convex opti-
mization problem that can be deemed as a primal problem and has
a corresponding dual problem. The solution to the dual problem
provides a lower bound to the solution of the primal problem, and the
difference between two solutions is called the duality gap. Especially,
when the duality gap equals to zero, the optimal solution of the primal
problem is given by the dual problem. Hence, we first derive the
Lagrange dual problem that corresponds to the primal problem with
no duality gap, then solve the dual problem using gradient project.

The Dual Lagrangian function is defined as the minimum value of
Lagrangian over argument Ealloc,i, that is,

d(α, βi, γi) = inf
Ealloc,i

L(Ealloc,i, α, βi, γi). (25)

It yields lower bounds on each optimal E∗alloc,i of Lagrangian, which
solves (18). Since the infimum of Lagrangian occurs where the
gradient equals to zero, we have (24). Then, substituting (24) and
γ∗i = 0 into (19), the formulation of dual function can be obtained
and is expressed as

d(α, βi) =
∑M

i=1

ln(α(
Psta,ici

si
+ Ceff,is

2
i ci) + βi)−

αEavl(∆t)−
∑M

i=1

βiNi(∆t) +
∑M

i=1

αE
0
alloc,i

+
∑M

i=1

βiE
0
alloc,i

Psta,ici
si

+ Ceff,is2i ci

+M. (26)

It is obvious that there exists such Ealloc,i that the equalities
Ealloc,i

Psta,ici
si

+Ceff,is
2
i
ci

< Ni(∆t) and µiniti <
Ealloc,i

Psta,ici
si

+Ceff,is
2
i
ci

hold

for ∀i = 1, 2, · · · ,M . This indicates that constraints (16) and (17)



5

hold with strict inequalities, which implies that the Slater’s condition
holds. Since the P1 problem is convex and the Slater’s condition holds,
the KKT saddle point conditions are satisfied and become sufficient
and necessary for strong duality [29]. Thus, there is no duality gap
and the dual problem has at least one optimal solution.

In summary, the dual problem corresponding to the primal problem
P1 with no duality gap is depicted as

min d(α, βi)
∗

= −
∑M

i=1

ln(α(
Psta,ici

si
+ Ceff,is

2
i ci) + βi)

+ αEavl(∆t) +
∑M

i=1

βiNi(∆t)−
∑M

i=1

αE
0
alloc,i

−
∑M

i=1

βiE
0
alloc,i

Psta,ici
si

+ Ceff,is2i ci

−M (27)

s.t. βi ≥ 0, (28)
Psta,ici

si
+ Ceff,is

2
i ci

α(
Psta,ici

si
+ Ceff,is2i ci) + βi

+ E
0
alloc,i

≤ (
Psta,ici

si
+ Ceff,is

2
i ci)Ni(∆t), (29)

where d(α, βi)
∗ = −d(α, βi), and (29) indicates the constraint that

the energy assigned to server i can’t exceed the maximum energy it
requires. Note that the dual problem is an optimization problem with
liner constraints, which motivates us to address the dual problem by
using gradient project.

Gradient project [29] is widely used to solve the optimization
problem with linear constraints. However, due to the greedy search
used in gradient project to find the optimal solution, the generated
solution may fall into local optimality. Thus, the analysis to verify
the solution derived by gradient project is global optimal becomes
a necessity. Considering the property that a local optimal solution
of a convex optimization function is globally optimal, we only need
to check whether the dual function is convex or not. A function is
convex iff the domain of the function is convex and the Hessian
matrix of the function is positive semi-definite [29]. Obviously, the
domain of our dual function d(α, βi)

∗ is convex. The Hessian matrix
of d(α, βi)

∗ is positive semi-definite since all elements in the matrix
are no less than zero, as shown below.

∂d∗2
∂α2 =

(
Psta,ici

si
+Ceff,is

2
i
ci)

2

(α(
Psta,ici

si
+Ceff,is

2
i
ci)+βi)

2
≥ 0, ∀i = 1, · · · ,M

∂d∗2
∂α∂βi

=

Psta,ici
si

+Ceff,is
2
i
ci

(α(
Psta,ici

si
+Ceff,is

2
i
ci)+βi)

2
> 0, ∀i = 1, · · · ,M

∂d∗2
∂βi∂α

=

Psta,ici
si

+Ceff,is
2
i
ci

(α(
Psta,ici

si
+Ceff,is

2
i
ci)+βi)

2
> 0, ∀i = 1, · · · ,M

∂d∗2
∂β2
i

= 1

(α(
Psta,ici

si
+Ceff,is

2
i
ci)+βi)

2
> 0, ∀i = 1, · · · ,M

∂d∗2
∂βi∂βj

= 0. ∀i, j = 1, · · · ,M

As analyzed above, the dual function d(α, βi)
∗ is convex. Thus, its

solution produced by gradient project is globally optimal, which is
also the optimal Nash bargaining solution to the primal problem.

IV. OUR PROPOSED ENERGY ALLOCATION

As described in Section III, a cooperative game is utilized to
model the energy allocation problem for renewable energy powered
computing systems in low energy state, and a Nash bargaining
solution is derived to develop our proposed energy allocation scheme.
Since our energy allocation scheme is supposed to run at discrete time
instances, we first calculate the scheduling interval, then present our
scheme in detail.

A. The Calculation of Schedule Interval

Before presenting our energy allocation scheme, the schedule
interval of the scheme is derived at first. Since harvesting power

and external task arrivals are not constant, system state including
energy state and task state is varying over time. It is rational to adjust
energy allocation scheme according to system state, which inspires
us to adopt the duration of system stable state as the time interval of
energy allocation.

Suppose ∆t is the duration of stable state of system from present
moment, the energy of the whole system collected in ∆t is calculated
as Eharv(∆t) =

∫ t+∆t

t
Pharv(t)dt, where Pharv(t) is the curve of

harvesting power. Let Emin(∆t) = M ×min{(
Psta,ici

si
+Ceff,is

2
i ci)×

Ni(∆t) | i = 1, 2, · · · ,M} and Emax(∆t) = M × max{(
Psta,ici

si
+

Ceff,is
2
i ci)×Ni(∆t) | i = 1, 2, · · · ,M}, where Ni(∆t) is the number

of tasks executing on server i, as given in (4). Obviously, Eharv(∆t)

must be between Emin(∆t) and Emax(∆t) when the system exactly
consumes up all the harvested energy for task execution. Given
these, we define the system is stable when Eharv(∆t) is between
Emin(∆t) and Emax(∆t). Accordingly, the duration of stable state is
the time interval before Eharv(∆t) beyond the range from Emin(∆t)

to Emax(∆t), which is given by

{∆t | Eharv(t+ ∆t) ∈ (Emin(t+ ∆t), Emax(t+ ∆t))}. (30)

The ∆t derived in such a way could neither be too small nor too large,
which ensures the overhead of invoking the algorithm wouldn’t be
high and the estimation of energy harvested wouldn’t be imprecise.

Algorithm 1: Assign System Available Energy to Servers
Input: λ1, λ2, · · · , λM & s1, s2, · · · , sM & Pharv(t)
Output: Ealloc,1, Ealloc,2, · · · , Ealloc,M

1 calculate the system available energy Eavl(∆t) using (1), (2), (30);
2 initialize the system demand energy Edem to 0;
3 for i = 1 to M do
4 derive the number Ni(∆t) of tasks arrived at server i based on ∆t,

λi, si, ci, and (4);
5 compute the energy Econs,i(∆t) consumed by server i based on

Ni(∆t), si, ci, and (8);
6 update the Edem by Edem = Edem + Econs,i(∆t);
7 end
8 if Edem ≤ Eavl(∆t) then

/* system is in high energy state */
9 for i = 1 to M do

10 Ealloc,i = Econs,i(∆t);
11 end
12 end
13 else

/* system is in low energy state */
14 for i = 1 to M do
15 obtain the optimal energy E∗

alloc,i allocated to server i by (24);
16 Ealloc,i = E∗

alloc,i;
17 end
18 end

B. The Assignment of System Available Energy

As modeled in Section II, the multiserver system has two energy
states: high energy state and low energy state. When the system is
in high energy state, the scheduler assigns the amount of energy to
servers as they require. When the system is in low energy state,
the scheduler assigns the amount of energy to servers, which is
determined through a cooperative Nash bargaining game. In order to
address the energy allocation issue in two states, we first compare the
system energy available and the system energy requested to identify
which state the system is in, then derive the energy assigned to each
server as described above.

Our proposed energy allocation scheme given in Alg. 1 operates
as follows. It takes as input task arrival rates λ1, λ2, · · · , λM and
processing speed s1, s2, · · · , sM of M servers, and harvesting power
Pharv(t). Lines 1-2 of the algorithm calculate the system available
energy Eavl(∆t) using (1), (2), (30), and initialize the system energy
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consumption Econs to 0. Lines 3-7 estimate the energy consumed
by M servers to complete their workloads. When the system en-
ergy demand is no greater than the system energy available (i.e.,
Edem ≤ Eavl(∆t)), indicating the system energy is in high energy
state, the scheduler can satisfy the energy requirements of M servers
by Ealloc,i = Econs,i(∆t) (lines 8-12). When the system energy
demand exceeds the system energy available (i.e., Edem > Eavl(∆t)),
indicating the system is in low energy state, the M servers compete
for the shared supply energy as a cooperative Nash bargaining game.
The energy Ealloc,i assigned to each server is set to E∗alloc,i, which
is the optimal solution generated by the game (lines 13-18).

V. NUMERICAL RESULTS

A. Experimental Settings
Extensive simulations have been implemented to validate the

effectiveness of the proposed energy allocation scheme. The objective
of the proposed scheme is to optimize both the system overall
throughput and throughput of individual servers when renewable
energy is insufficient. We have demonstrated in Section III that
the proposed energy allocation scheme leads to a relatively fair
renewable distribution among application servers. For the sake of easy
presentation, we use efficiency to show the requirement of optimizing
the system overall throughput via a cooperative game, while use
fairness to indicate the requirement of maximizing the throughput
of individual servers via a competitive game. Obviously, the higher
the system throughput, the more efficient the proposed scheme, and
the smaller the variance of throughput achieved by individual servers,
the more fair the proposed scheme. Give these, we define a metric
that jointly takes into account efficiency and fairness to quantify the
performance of the proposed scheme, which is formulated as

MetricP =
MetricE

MetricF
, (31)

where the efficiency metric MetricE is calculated as the throughput
achieved by the whole system and the fairness metric MetricF is
calculated as the variance of throughput achieved by servers. From
(31), it is clear that larger MetricP indicates better efficiency and
fairness.

Three sets of simulations are carried out to validate the effective-
ness of the proposed scheme, including

1) Uniqueness Verification of NBS: we conduct the simulation
under varying system setups and initial values of gradient
projection to show the solutions derived by our algorithm can
converge to a global optimal solution, that is, the unique NBS
generated by the cooperative game.

2) Performance Evaluation of the Propose Scheme: we compare
the performance of the proposed scheme with that of a bench-
marking method, referred to as Naive, under a fixed workload
and varying energy supplies, or under varying workloads and
a fixed energy supply.

3) Validation of Efficiency and Fairness: we compare the ef-
ficiency and fairness of the proposed scheme with that of
two benchmarking methods MT (Max Throughput) and AVG
(Average).

As mentioned above, three benchmarking schemes are used in
the second and third sets of simulations. In the first benchmarking
scheme, the system energy supply is prorated to servers according to
the ratio of the energy required by each server to the energy required
by the whole system. This is a simple proportionate allocation
scheme, thus we call it Naive. In the second benchmarking scheme,
the server consuming less energy for completing a given workload
has a higher priority to receive energy from the scheduler. If energy
allocation is performed in this way, the system throughput under a
limited energy budget is maximized, thus we call it MT. Obviously,
this scheme only pursues high efficiency without considering fairness
among servers. On the contrary, the third benchmarking scheme that

Table II: Task parameters of benchmarks

Benchmark Expected execution time Standard derivation
Mpegplay 113.4 38.9
Madplay 43.1 34.8
Tmndec 89.5 34.7

Toast 5.6 4.7

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
0
2
4
6
8

1 0

P h
arv

(t)

t  ( m i n u t e )

 

 

Figure 3: Example of the obtained solar power trace [31].

only strives for fairness without considering efficiency equally assigns
the system available energy to servers, thus we call it AVG.

Three simulated systems that respectively consist of 5 servers
(M = 5), 10 servers (M = 10), and 15 servers (M = 15) are utilized in
the experiments. The simulated processors in the three systems are
modeled based on the following cores: Intel Core Duo, Intel Xeon,
AMD Athlon, TI DSP, and SPARC64. Four practical benchmarks
Mpegplay, Madplay, Tmndec, and Toast are employed to generate
tasks for evaluations, and their task parameters including expected
execution time and standard derivation are shown in Table II. The
workload of the three systems, quantified by the number N of tasks
on the processor, are in the range of [200, 300], [600, 1100], [2000, 3000],
respectively. We adopt the task assignment [25] to model the arrival
of tasks at servers. The most common and accessible energy, solar
energy, is selected as the renewable generation, and the trace of
harvesting power Pharv(t) is generated according to [30], [31]

Pharv(t) =
10 ·Θ(t) · cos(

t

70π
) · cos(

t

100π
)
, (32)

where Θ(t) is a random variable with variance of 1 and mean of 0.
Fig. 3 demonstrates the obtained power trace in a frame of about
4500 time units.

B. Simulation Results
1) Validate the Uniqueness of NBS: If the OPT problem has a

global optimal solution, the energy allocation cooperative game can
obtain a unique Nash bargaining solution. Since a greedy approach

Table III: The number of iterations taken by the proposed scheme to
reach a converged solution.

System setup
Initial value 1 2 3 4 5 6 7 8

M = 5, Eavl = 2.0e5 6 8 6 6 7 3 4 2
M = 10, Eavl = 5.0e5 23 25 28 13 8 6 6 6
M = 15, Eavl = 1.2e6 25 26 34 29 19 20 14 14

30000
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90000

 1   2   3   4   5   1   2   3   4   5   6   7   8    9  10  1   2   3   4   5   6   7   8    9  10 11  12 13 14 15  
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Figure 4: Energy allocation scheme of three systems under the energy
supply Eavl of 2× 105, 5× 105, and 1.2× 106.
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(c) 𝑀 = 15, Workload = 2000 

Figure 5: Compare the proposed energy allocation scheme with the benchmarking algorithm Naive in performance MetricP under a fix
workload and varying energy supplies Eavl.
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Figure 6: Compare the proposed energy allocation scheme with the benchmarking algorithm Naive in performance MetricP under a fix
energy supply Eavl and varying workloads.

(i.e., gradient projection) is used in the proposed algorithm to solve
the OPT problem, we need to verify if the solutions generated by
the proposed algorithm can converge to a global optimal solution.
The verification can be readily achieved by checking if the algorithm
can stop and derive a converged solution after a number of iterations
regardless of the initial value of gradient projection adopted.

To have a comprehensive study, we investigate the iteration number
of the proposed algorithm when using eight initial values and three
system settings. Since the selection of initial value has no effect on
gradient projection, the eight initial values are casually set to 1, 2,
3, 4, 5, 6, 7, and 8. The three system settings used in the simulation
are (M = 5, Eavl = 2× 105), (M = 10, Eavl = 5× 105), and (M = 15,
Eavl = 1.2 × 106). Table III demonstrates the number of iterations
taken by the proposed algorithm to reach a converged solution. As
shown in the table, for any given initial value and system setting, a
converged solution can be obtained by the proposed algorithm after
a number of iterations. The converged solution is exactly the optimal
energy allocation scheme. As an example, Fig. 4 presents the energy
allocation scheme for three systems under the energy supply Eavl of
2× 105, 5× 105, and 1.2× 106.

2) Evaluate the Performance: Two comparisons are performed to
evaluate the performance of the proposed scheme. We first compare

the proposed scheme with the benchmarking method Naive under a
fixed workload and varying energy supplies. Specifically, when the
system consists of 5 servers and the workload is 200, the system
energy supply is varied as 2 × 105, 2.3 × 105, 2.6 × 105, 2.9 × 105,
3.2× 105, and 3.4× 105. When the system consists of 10 servers and
the workload is 600, the system energy supply is varied as 7.8× 105,
8.0 × 105, 8.2 × 105, 8.4 × 105, 8.6 × 105, and 8.8 × 105. When the
system consists of 15 servers and the workload is 2000, the system
energy supply is varied as 1.2× 106, 1.22× 106, 1.24× 106, 1.26× 106,
1.28× 106, and 1.30× 106.

The performance characterized by MetricP of the proposed scheme
and Naive method under a fixed workload and varying energy
supplies are demonstrated in Fig. 5. It has been shown in the
figure that the proposed scheme outperforms the Naive method. The
performance of the proposed scheme can be up to 126.3%, 443.4%,
and 280.6% better than that of the Naive method for 5-server system,
10-server system, and 15-server system, respectively. For example,
when M = 10 and Eavl = 8.8 × 105, the MetricP of the proposed
scheme and Naive method are 21.838 and 4.019, thus the performance
upgradation is 21.838−4.019

4.019 × 100% = 443.4%.

We then compare the proposed scheme with the benchmarking
method Naive under a fix energy supply and varying workloads. For
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Figure 7: Compare the proposed scheme with benchmarking algo-
rithms MT and AVG in efficiency and fairness.

5-server system, the energy supply Eavl is set to 2 × 105, and the
workload is varied as 200, 220, 240, 260, 280, and 300. For 10-server
system, the energy supply Eavl is set to 5 × 105, and the workload
is varied as 600, 700, 800, 900, 1000, and 1100. For 15-server system,
the energy supply Eavl is set to 1.2× 106, and the workload is varied
as 2000, 2200, 2400, 2600, 2800, and 3000.

Fig. 6 presents the performance MetricP of the proposed scheme
and Naive method under a fixed energy supply and varying work-
loads. As can be seen in the figure, the proposed scheme has a
better performance than the Naive method. In the simulated 5-server,
10-server, and 15-server system, the performance of the proposed
scheme can be up to 127%, 200%, and 299.5% better than that of the
Naive method. For instance, when M = 15 and workload is 2800,
the MetricP of the proposed scheme and Naive method are 6.880

and 1.722, thus the performance upgradation is 6.880−1.722
1.722 × 100% =

299.5%

3) Validate the Efficiency and Fairness: We compare the efficiency
and fairness of the proposed scheme with that of two benchmarking
methods MT and AVG under a fixed workload and varying energy
supplies. As introduced in Section V-A, the efficiency is characterized
by MetricE and holds for that the higher the MetricE , the more
efficient the scheme. The fairness is characterized by MetricF and
holds for that the lower the MetricF , the more fair the scheme. In
this simulation, the server number M is set to 5, the workload is set
to 200, and the energy supply is varied as 2×105, 2.3×105, 2.6×105,
2.9× 105, and 3.2× 105.

The efficiency and fairness of the proposed scheme and two
benchmarking methods MT and AVG for the 5-server system under
a fixed workload and varying energy supplies are demonstrated in
Fig. 7. As shown in the figure, unlike the two methods MT and AVG
that only concern one side of efficiency and fairness, the proposed
scheme can achieve a balance between efficiency and fairness. This
benefits from its consideration of both sides. The same conclusion
can be drawn for the 10-server and 15-server system, whose results
are not shown in the paper due to page limit.

VI. CONCLUSIONS

In this paper, we investigate the problem of throughput-aware
energy allocation for heterogeneous cluster servers with renewable
generation. The objectives of energy allocation are to achieve high
system overall throughput and throughput of individual servers. To
achieve the objectives, we take a first step towards using game
theoretic approaches to shared renewable energy powered server
clusters, by applying cooperative game framework and designing
a heuristic algorithm that generates the Nash bargaining solution.

Based on the generated Nash bargaining solution, an efficient and
fair energy allocation scheme is derived. Extensive simulations are
carried out to validate the uniqueness of the Nash bargaining solution
and the effectiveness of our scheme. Simulation results show that our
theoretic scheme can achieve a high throughput for both of the overall
system and individual servers.
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