The Journal of Systems and Software 102 (2015) 123-133

The Journal of Systems and Software

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jss

Stochastic thermal-aware real-time task scheduling with considerations

of soft errors

Junlong Zhou, Tongquan Wei'*

@ CrossMark

Shanghai Key Laboratory of Multidimensional Information Processing, and the Department of Computer Science and Technology, East China Normal University,

Shanghai 200241, China

ARTICLE INFO

ABSTRACT

Article history:

Received 7 August 2014
Revised 19 October 2014
Accepted 4 December 2014
Available online 8 January 2015

Keywords:
Fault-tolerance
Real-time systems
Thermal-aware

With the continued scaling of the CMOS devices, the exponential increase in power density has strikingly
elevated the temperature of on-chip systems. Dynamic voltage/frequency scaling is a widely utilized system
level power management technique to reduce the energy consumption and lower the on-chip temperature.
However, scaling the voltage or frequency for thermal management leads to an increase in soft error rates,
thus has adverse impact on system reliability. In this paper, the authors propose a stochastic thermal-aware
task scheduling algorithm that considers soft errors in real-time embedded systems. For the given customer-
defined soft error related target reliability and the maximum peak temperature, the proposed scheduling
algorithm generates an energy-efficient task schedule by selecting the energy efficient operating frequency
for each task and alternating the execution of hot tasks and cool tasks at the scaled operating frequency.
The proposed stochastic scheduling algorithm features the consideration of uncertainty in transient fault
occurrences. To handle the uncertainty, a fault adaptation variable « is introduced to adapt task execution
to the stochastic property of fault occurrences. An energy efficiency factor § is also introduced to facilitate
the enhancement of energy efficiency by maximizing the energy saved per unit slack. Extensive simulations
of synthetic real-time tasks and real-life benchmarking tasks were performed to validate the effectiveness of
the proposed algorithm. Experimental results show that the proposed algorithm consumes up to 17.8% less
energy as compared to the benchmarking schemes, and the peak temperature of the proposed algorithm is
always below the maximum temperature limit and can be up to 9.6 °C lower than that of the benchmarking
schemes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

consumption and lower chip temperature by dynamically scaling
down the processor speed. Considerable research effort has been

As technology advances toward the deep submicron region, the
chip power density has increased exponentially, which in turn leads
to huge energy consumption and elevated chip temperature. A sys-
tem will fall into the predicament of functional incorrectness, low
reliability and even hardware failures if the operating temperature
exceeds a certain threshold. Thus, energy and thermal management
has been a significant and pressing research issue in computing sys-
tems, especially for real-time embedded systems with limited cooling
techniques.

The dynamic voltage and frequency scaling (DVES) is a widely used
system level power management technique that exploits technolog-
ical advances in power supply circuits to reduce processor power

* Corresponding author. Tel.: +86 2154345184, fax: +86 2154345184.
E-mail addresses: joe@ecnu.cn (]. Zhou), tqwei@cs.ecnu.edu.cn (T. Wei).
1 Member, IEEE.

http://dx.doi.org/10.1016/j.jss.2014.12.009
0164-1212/© 2015 Elsevier Inc. All rights reserved.

devoted to the design of energy-efficient thermal-aware real-time
systems by using DVFS in the past decades (Bao et al., 2009; Chen
etal., 2011, 2012; Coronel and Simo, 2012; Terzopoulos and Karatza,
2012; Wang et al., 2009). These works are originally motivated to ad-
dress the issues of high energy consumption and high temperature
due to high power density. However, they ignore the fact that the
transient fault rate increases dramatically when a system is running
in the low power state. It has been shown that scaling down the pro-
cessor speed increases the transient fault rates, especially for those
induced by cosmic ray radiations, and thus degrades system reliabil-
ity (Zhu et al., 2004). Thus soft errors need to be tolerated to provide
temporal and logical correctness for real-time tasks when DVES is op-
erated to reduce energy consumption and temperature. In this paper,
the checkpointing technique is utilized to tolerate soft errors while
a DVFS-based scheme is designed to minimize energy consumption
under the thermal constraint. Checkpointing with rollback-recovery
is a popular fault-tolerant technique deployed in real-time embedded

http://dx.doi.org/10.1016/j.jss.2014.12.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.12.009&domain=pdf
mailto:joe@ecnu.cn
mailto:tqwei@cs.ecnu.edu.cn
http://dx.doi.org/10.1016/j.jss.2014.12.009

124 J. Zhou, T. Wei/ The Journal of Systems and Software 102 (2015) 123-133

systems to maintain the system reliability (Zhang and Chakrabarty,
2006). In checkpointing, the state of the system is saved on a stable
storage at each checkpoint. When a transient fault occurs, the system
rolls back to the most recent checkpoint and resumes the execution.

Most existing studies (Li et al., 2013; Terzopoulos and Karatza,
2014; Wei et al., 2011, 2006, 2008, 2012; Xu et al., 2014; Zhu and
Aydin, 2006) on the fault-tolerance real-time scheduling exploit all
the slack generated due to early completion of real-time tasks to save
energy under the reliability constraint. The slack available is utilized
for both energy savings and fault tolerance, in which temperature op-
timization is ignored. However, this is not suitable for real-time sys-
tems deployed certain safety-critical applications (e.g. implantable
cardioverters in medical applications) where energy, reliability and
thermal control are all crucial for the correct operation of systems.
Thus, in this paper the generated slack is utilized to provide fault tol-
erance, save energy, and reduce the temperature. The existing works
(Li et al,, 2013; Wei et al., 2011, 2006, 2008, 2012; Xu et al., 2014;
Zhu and Aydin, 2006) also adopt an imprecise power model which
considers dynamic power the main source of power dissipation, or
assumes that static/leakage power is a constant. These claims are in-
accurate since it is known that leakage power can contribute as much
as 50% of the total power dissipation of modern microprocessor cir-
cuits (Chandrakasan et al., 2000). In addition, temperature-dependent
leakage powerisignored in these works. The proposed thermal-aware
fault-tolerance task scheduling scheme takes into account the tem-
perature’s dependency of leakage power. It trades energy for thermal
control by maximizing the energy efficiency with respect to slack and
exploiting the remaining slack for thermal management.

Little research has been conducted on the management of
reliability for thermal-aware real-time systems. In Ukhov et al.(2012),
the authors proposed a fast and accurate technique for the steady
state dynamic temperature profile (SSDTP) calculation, and pro-
vided an analytical solution for the steady state dynamic tempera-
ture analysis (SSDTA) of embedded multiprocessor systems. Based
on the temperature-aware reliability model and the thermal cycling
failure mechanism, the presented approach efficiently performs a
temperature-aware reliability optimization for embedded multipro-
cessor systems. The lifetime of an embedded system can be improved
significantly by considering the steady state dynamic temperature
profile of the system during the design stage. However, instead of
transient faults, the technique focuses on the thermal cycling failure.
The authors are interested in transient faults in this study. Further-
more, the technique does not consider energy as an optimization
constraint.

Recently, a novel thermal management technique, referred to as
the thermal-aware task sequencing combined with dynamic volt-
age/frequency scaling, has attracted considerable research attention.
It utilizes temperature characteristics of tasks to reduce the peak
temperature of processors at a scaled operating frequency without
incurring extra monetary expenses (Jayaseelan and Mitra, 2008; Yang
et al., 2008; Zhang and Chatha, 2010). The slack available is allocated
for voltage/frequency scaling and tasks are paired and alternatively
executed at the scaled frequency in the order of being cool-hot. Un-
like Jayaseelan and Mitra (2008) and Zhang and Chatha (2010) that
alternate the execution of tasks in the order of being cool-hot, the
proposed algorithm alternates the execution of a hot task and a cool
task in the order of being hot-cool. This is motivated by the obser-
vation that the final temperature of tasks executing in the hot-cool
order is lower than that of tasks executing in the cool-hot order (Yang
etal., 2008). Compared to the online scheduler presented in Yang et al.
(2008), the proposed method does not necessitate the deployment of
a runtime temperature monitor and thermal sensors. Moreover, the
proposed DVFS-based scheme is more practical since it takes into
account the time overhead of frequency switching, which is not con-
sidered in Jayaseelan and Mitra (2008), Zhang and Chatha (2010), and
Yang et al. (2008).

In this paper, the authors propose a stochastic thermal-aware
real-time task scheduling algorithm under the constraint of system
reliability requirement. The algorithm takes as input a given set of
real-time tasks, the customer-defined target reliability, and the max-
imum peak temperature. It generates a task schedule that meets the
design requirements by selecting the energy efficient operating fre-
quency for each task and alternating the execution of a hot task and
a cool task at the scaled operating frequency. The energy efficient op-
erating frequency for a task is the one that achieves the maximum
energy efficiency. The major contributions of this paper are summa-
rized as follows.

o The proposed task scheduling algorithm jointly tackles the energy
efficiency, fault tolerance, and thermal control for real-time sys-
tems. A fault adaption variable « is also introduced to adapt task
execution time including fault recovery overhead to the Poisson
probability distribution of fault occurrences, which enables the
designing of stochastic real-time systems based on status quo of
fault occurrences.

The proposed algorithm enhances the efficiency of reducing the
energy consumption. An energy efficiency factor § that indicates
the energy saved per unit slack is introduced and maximized
for each task. In addition, practical issues such as temperature’s
dependency of leakage power and time overhead of frequency
switching are also taken into account.

Task sequencing combined with dynamic voltage/frequency scal-
ing is adopted to meet the thermal requirement of the system.
The proposed algorithm alternates the execution of a hot task and
a cool task at the scaled operating frequency for better thermal
control.

Two sets of simulation experiments have been implemented to
validate the effectiveness of the proposed algorithm in energy effi-
ciency and thermal management. Simulation results have demon-
strated that the proposed algorithm achieves better performance
when compared to the benchmarking schemes.

The rest of the paper is organized as follows. Section 2 introduces
the system architecture and models. Section 3 formulates the problem
definition. Section 4 describes the proposed stochastic thermal-aware
task scheduling algorithm under the target reliability goal constraint.
Section 5 presents the experimental results and Section 6 concludes
the paper.

2. System architecture and models

In this paper, real-time tasks in a task set are assumed to execute on
a DVFES-enabled processor. The processor is equipped with L discrete
normalized frequencies {f1,f>,....ft},and 0 < fin =f1 <fo <--- <
fi = fmax = 1.0 holds for the sake of easy presentation, where fyin
indicates the minimum operating frequency and fmax denotes the
maximum operating frequency. The task set I consisting of N real-
time tasks {1, 72, ..., Ty} is a frame-based task set, in which all tasks
share a common deadline D that is also the frame size (Yang et al.,
2009). There are many embedded real-time systems (Berten et al.,
2008; Li et al., 2013; Yang et al., 2009; Zhu et al., 2004) operating on
a cyclic basis and having a set of tasks that must execute in a frame.
When all task executions have finished, the whole frame is repeated.
These real-time systems find their applications in multimedia data
transmissions, delay and jitter control in ATM networks, chemical
process control, and air traffic control (Han et al., 1996; Nguyen and
Cheng, 1996).

It is assumed that tasks in the task set are independent and non-
preemptive. As a result, the frequency transition occurs before a task
starts its execution or after the task finishes its execution. The pro-
posed method hence produces exactly one frequency level for each
task and at most one frequency transition occurs for a task in a frame.
The incurred frequency switching overhead can be incorporated in

J. Zhou, T. Wei/ The Journal of Systems and Software 102 (2015) 123-133 125

task execution time for simplicity. Let Osy denote the time overhead
of frequency switching, and e; represent the worst case execution
time of task 7; (1 < i < N) at the maximum operating frequency fmax,
then the execution time of task 7; at its operating frequency f(t;) is
given by J%r:) + Osw.

2.1. Fault and recovery model

Due to the ever increasing level of integration and continued
reducing size of transistor features, the number of transient faults
in circuits has been rising rapidly, especially for embedded systems
deployed in harsh operating environment. Moreover, blindly applying
DVFS for energy savings without fault-tolerant techniques will result
in drastic increase in transient fault rates. Therefore, fault-tolerant
techniques need to be deployed in energy-efficient design. In this pa-
per, a widely used technique for fault-tolerance, equidistant check-
pointing, is adopted for improving system reliability. In equidistant
checkpointing, checkpointintervals for a given task are set to be equal.
At each checkpoint, the state of the system is saved in a secure de-
vice to prepare for rolling back to the most recent checkpoint and
re-execution. Given the worst case number of transient fault occur-
rences during the execution of task 7; at the operating frequency f(t;),
which is denoted as k;, the optimal number of checkpoints for task t;
at f(t;) is then represented by Ny ;, as is given by

ki e;

s (76 +0) -1 =

where O is the time overhead of checkpointing (Zhang and

Chakrabarty, 2006), e; is the task execution time at the maximum

frequency fmax, and Osy is the time overhead of frequency switching.
Let Wy ; be the execution time of task 7; including checkpointing

overhead in the case of no fault occurrences, then it is given by

e:
lI"best,i = f(ii') + Osw + Nopt,i X Ock, (2)
i

where f(% + Osw is the execution time of task t; at the frequency
f(@).

Let Wyorst.i be the execution time of task 7; including checkpoint-
ing and fault recovery overhead in the presence of k; transient fault
occurrences. In other words, the Wy,q; consists of two terms. The
first term is the Wy, ; and the second term is the fault recovery over-
head in the presence of k; transient fault occurrences. The Wyt i iS
then given by

k,’ e;
v, i =W <+7<—+O >+2k-0 , 3
worst,i best,i (Nopt,i T 1) f(Ti) sw iYck ()

ki e
where m(f(fi) + Osw) represents the recovery overheads to

tolerate k; faults and 2k;O., denotes the overheads of k; checkpoint
savings and system state retrievals (Zhang and Chakrabarty, 2006).

The Wpegr; and Wyyors; are constant if the variables Nope i, f(7;)
and k; are fixed. However, due to the stochastic property of transient
fault occurrences, the execution time of a task is not determined. A
fault adaptation variable, which is denoted as « € [0, 1], is introduced
in this work to model the uncertainty in task execution caused by
transient fault occurrences. As a consequence, the execution time W;
of task 7; can be formulated as a function of Wy ; and Wyors¢.i, aS is
given by

Wi = o x Wiyorei + (1 —) x Whest,i- (4)

The execution time of task t; is Wpesr ; Whena = 0and is e ; Wwhen
a=1.

The average fault arrival rate at the operating frequency level ¢
for 1 < ¢ <L is denoted by v,, where L is the number of frequency
levels supported by the processor. Assuming the operating frequency

is f, then the v, can be obtained using the equation v, = A x e~5%,
where A and & are constant parameters (Zhu et al., 2004). Since the
Poisson distribution is typically utilized to model transient faults, the
probability of x transient fault occurrences during the execution of
task 7; at frequency f; is then given by
e VWi (vp x W)
2 : (5)
The reliability of a real-time task is defined as the probability that
the task executes successfully till its deadline in the presence of soft
errors. For a task 7; that is supposed to tolerate k; errors during its
execution at the frequency f;, the task is deemed to be able to finish
its execution successfully in the presence of at most k; errors. When
the number of transient fault occurrences exceeds k;, the execution
of the task fails. Hence, the reliability of task t; is the probability that
at most k; errors occur during its execution, which is written as

Px) =

ki —Vex X
Ri=P(O§X§k,‘)=Ze XX('WX\I/l).

x=0
The correct operation of a system depends on the successful ex-
ecution of all tasks in a task set. The target system contains N tasks,
thus, the current reliability of the system, which is denoted by Rey;r,
is given by the product of reliabilities of individual tasks in the task
set, that is,

(6)

N
Rcurr = l_[Ri~ (7)
i=1

In a reliability-constrained real-time system, the target reliability is
denoted by R, and the reliability of the system is maintained if the
inequality Rgoa < Reurr holds for o = 1.

2.2. Power model

The power consumption of a CMOS device can be modeled as the
sum of dynamic power dissipation and leakage power dissipation.
The dynamic power consumption is independent of the temperature
and can be formulated as Pgy,, o ngf (Weste and Eshraghian, 1992),
where Vyq is the supply voltage, and f is the operating frequency.
Assuming processors use voltage/frequency scaling technique to scale
frequency, the operating frequency is then approximately linear with
the supply voltage (Weste and Eshraghian, 1992). As a result, the
average dynamic power consumption can be estimated by a strictly
increasing and convex function of the operating frequency, that is,
Payn o f3. Thus, the dynamic power consumption of task 7; on the
processor at frequency f(t;) is given by Py, = Ceff (7;)3, where Cgf is
the effective switching capacitance.

The leakage power consumption is temperature dependent and
can be expressed as Pieax = Ngate Vadljeak, Where Ngate is the number of
gates and Ijqy is the leakage current. The leakage current [je,, can be
formulated by a nonlinear exponential equation (Liao et al., 2005) as

Leax = IS(ATZe@lVddH?z)/T + Be(ﬁBVdd+l94))’ (8)

where [; is the leakage current at a certain reference temperature and
supply voltage, T is the operating temperature, Vg4 is the supply volt-
age, and A, B, ¥4, ,, ¥3, and 14 are empirically determined technol-
ogy constants. Since the operating frequency is nearly linear with the
supply voltage (Weste and Eshraghian, 1992) and the leakage current
changes super linearly with temperature (Liu et al., 2007), the leakage
power consumption of task 7; on the processor at frequency f(z;) can
be effectively estimated to be Pjey = C1f(7;) + G Tf (t;) (Huang et al.,
2011), where C; and C, are curve fitting constants, and T is the op-
erating temperature. Therefore, the power consumption of task t; on
the processor at frequency f(z;) is given by

Pi = Ceif () + Cif () + G T f (), 9)
where Ce is the effective switching capacitance.

126 J. Zhou, T. Wei/ The Journal of Systems and Software 102 (2015) 123-133

Checkpointing operations including checkpoint saving and
retrieval incurs power consumption. It has been shown in Zhang and
Chakrabarty (2006) that checkpointing power consumption depends
on the checkpoint size, access speed of the checkpoint storage, and
power consumption of the checkpoint storage. The checkpoint size
strongly depends on the task set. The embedded applications may
produce relatively small checkpoint with sizes in the order of a few
kilobytes. It is clear that the checkpointing power consumption is
independent of the processor operating frequency and temperature.
On the contrary, the processor power consumption is a function of
processor operating frequency and temperature, as is given in Eq. (9).
It also has been shown in Meneses et al. (2012) that processor power
consumption drops to the power draw of idle state during checkpoint-
ing. Owing to this analysis, we adopt processor power consumption in
the DVFS-based frequency selection scheme described in Algorithm 2
and consider both processor power consumption and checkpointing
power consumption when energy is derived in the experimental sec-
tion.

2.3. Temperature model

An accurate and practical dynamic model of temperature is needed
to accurately characterize the thermal behavior of an application.
In this paper, a dynamic thermal model proposed by Skadron et al.
(2004) that is widely used in the literature is adopted as the temper-
ature model to predict the temperature of the processor. The model
is based on a lumped RC model, and the temperature T(t) at the time
instance t is given by

T(t) = Tsta — (Tsea — Tini)€, (10)

where Ty is the steady state temperature of a task, Tip; is the ini-
tial temperature, R is the thermal resistance, and C is the thermal
capacitance. The thermal resistance R and capacitance C are proces-
sor architecture dependent constants.

The steady state temperature of a task is the temperature that
will be reached if infinite number of instances of the task execute
continuously on the processor. It is associated with a certain average
input power, and is given by

Tstd:PR+Tamb- (11)

where P is the power consumption, R is the thermal resistance and
Tamp is the die’s ambient temperature. Since the power consumptions
of different tasks vary significantly, the steady state temperatures of
tasks in the task set are different.

3. Problem definition

The focus of the study is to minimize the energy consumed by
tasks in a task set using dynamic voltage/frequency scaling under the
thermal constraint and system reliability constraint. Let Ey; denote
the energy consumed by all tasks in a task set, then it is given by

N
Eot = Y Ei. (12)
i=1

where E; is the energy consumed by task t;, including the energy cost
of task execution and checkpointing operations. The energy consump-
tion is calculated as the product of power consumption and execution
time.

For thermal-aware task scheduling, the maximum temperature
limit, which is denoted by Tax, is in general specified based on system
design requirements. Let Tpe, denote the peak temperature of tasks
in a task set, then it is given by

Tpeak = max{T(t)| Vte [0’ D]}’ (13)

where T(t) is the temperature at the time instance t and can be de-
rived by using Eq. (10). The system is deemed to be in a safe mode

when the peak temperature Tpe,, does not exceed the threshold
temperature Tmax. With regards to the reliability, the system oper-
ates dependably in its expected environment if the current reliability
Recurr is no less than the system target reliability Rgoal- In addition to
the thermal constraint and the reliability constraint, all task in a task
set must finish their execution before the deadline D. Considering the
above design constraints, the proposed stochastic scheduling prob-
lem can be formulated as follows. For a given task set of real-time
tasks that share a common deadline and a DVFS-capable processor,
it is expected to derive the operating frequency for each task and ar-
range the execution sequence for all tasks in the task set such that the
energy consumption of the system is minimized under the reliability
and thermal design constraints. In other words, the problem can be
formulated into the below form.

N
Minimize: Eiot = Y E;

i=1
Subject to: Tpeak < Tmax

N
Rgoal < Reurr = 1_[R;
i=1

M-

\IjifD

i=1

where Etot, Tpeaks Reurr, and W; are given by Eqgs. (12), (13),(7), and (4),
respectively.

4. Stochastic task scheduling with reliability and thermal
considerations

The objective of the proposed stochastic task scheduling scheme
is to generate an energy optimum schedule without violating the re-
liability and thermal design constraints. The uncertainty in transient
fault occurrences is considered and modeled using the Poisson prob-
ability distribution in the proposed scheme. Algorithm 1 is developed
in this section to present the overview of the proposed stochastic
task scheduling scheme. Inputs to the algorithm are a given task set
I", the target reliability Rg,, and the thermal constraint Tmax. Line
1 of the algorithm randomly assigns a value for the fault adaptation
variable «, and the execution time of each task is updated based on
the selected « (line 3). Energy optimization is achieved when each
task executes at the energy efficient operating frequency (line 4) and
the method to obtain the energy efficient frequency is described in
Algorithm 2. To avoid the violation of the maximum temperature
limit Trhax, @ thermal-aware task sequencing is utilized to reduce the
peak temperature Tpe,y Of tasks (line 5), as is given in Algorithm 3.
The reliability of the obtained task schedule is produced using the
Monte Carlo simulation method (line 6), and if it does not satisfy
the stop-condition of Algorithm 1, the value of fault adaptation vari-
able « is adjusted and the above procedures is repeated. In contrast, if
(Reurr — Rgoa1) = € > Oholds for an arbitrarily small positive number e,
the reliability of the system satisfies the stop-condition of Algorithm 1
and the output is the desired task schedule. The time complexity of
Algorithm 1 is O(NL + N2), where N is the number of tasks in the task
set, and L is the processor-supported frequency levels.

Slack is generated due to early completion of real-time tasks. In
this paper the generated slack is utilized to provide fault tolerance,
save energy, and reduce the temperature, which necessitates a trade-
off among fault tolerance, energy efficiency, and thermal manage-
ment. The major contributions of this paper are three-fold. First, the
slack is utilized to guarantee a certain level of reliability require-
ment in the presence of stochastic soft errors, second, the energy
efficiency of the proposed scheme is achieved by utilizing the slack
under the reliability constraint, and finally, the temperature is re-
duced by utilizing the task sequencing technique. The temperature

J. Zhou, T. Wei/ The Journal of Systems and Software 102 (2015) 123-133 127

Algorithm 1 Generate the energy optimum task schedule under the
reliability and thermal constraints.
Require: task set I' & the target reliability goal Rgo, & the thermal
constraint Tpax;
1: randomly pick avalueof ¢ in0 <@ < 1;

2: repeat

3: update the execution time of each task based on ¢, then update
a;

4: calculate the energy efficient operating frequency of each task
using Algorithm 2;

5. derive the thermal-aware task sequence under Tmax using
Algorithm 3;

6: obtain Reyrr of the task set I' using Monte Carlo simulation;
7: until (Reurr — Rgoal) = € > 0;

is further reduced by using the remaining slack. Unlike the previous
work presented by Zhu and Aydin (2006) that utilizes all slack for en-
ergy savings when the reliability constraint is satisfied, the proposed
scheme trades energy for thermal control by maximizing the energy
efficiency with respect to slack and utilizing the remaining slack for
thermal management, which is demonstrated in Algorithms 2 and 3.
In other words, Algorithm 2 aims at maximizing the energy efficiency
with respect to slack instead of maximizing energy savings, and con-
sequently Algorithm 3 reduces temperature by using both the re-
maining slack and task sequencing technique. The details of each step
in the proposed scheme including Algorithms 2 and 3 are described
in the following subsections.

4.1. Parallel schedule generation based on the fault adaptation
variable o

In this paper, the authors introduce a fault adaptation variable
o which adapts the task execution behavior to the Poisson distribu-
tion of probabilistic transient fault occurrences. In comparison with
the traditional method of designing for corner cases, the proposed
scheme features the consideration of the uncertainty in fault occur-
rences. The variable o ranges from 0 to 1, indicating the fault-free
scenario to the scenario of the worst case fault occurrences. The « is
a deterministic variable. Due to the statistical property of transient
fault occurrences, there is no existence of deterministic relationship
between the deterministic fault adaptation variable « and the reli-
ability of tasks in the task set. Thus, if the current system reliability
Reurr does not satisfy the stop-condition of Algorithm 1, it cannot be
utilized to direct the value assignment of « to be employed in the
next iteration of Algorithm 1. In other words, the selection of the « is
independent of the current value of the system reliability. The « that
models the status quo of fault occurrences could be any value in the
range of [0, 1]. As a result, a binary search-based approach is adopted
to search for the target fault adaptation variable.

The binary search is a simple yet efficient search algorithm to find
the position of a specific key value in an ordered value sequence. In
contrast to other search algorithms, it needs less comparisons since
the search interval is halved in each step. The binary search-based
approach operates as follows. For a given initial range of « € [0, 1],
the initial value of « is denoted by «g, then the next values of «
could be varied in the range of both [0, «g] and [, 1]. If the current
system reliability Reyr does not reach the target system reliability
Rgoar, the next values of «, which will be exploited to generate the
task schedule, are updated to oy = /2 and oy = (g + 1)/2, as is
shown in Fig. 1. The search is stopped when the Ry, is greater than
yet close enough to the Ry, ; otherwise, repeat this process until
the stop-condition is met. This approach can strikingly accelerate
the generation of the desired task schedule by running the proposed
algorithm with different o on multiple computing nodes.

0 1

ay = agl2 ay a, = (ag+1)/2

Fig. 1. An example of the binary search-based approach.

4.2. Efficient frequency selection based on the energy efficiency factor &

It is evident that the energy efficiency is maximized if slack is
allocated in a way that a unit slack generates the maximum energy
saving. Let AS; denote the slack allocated to task 7; and AE; denote
the energy saved when the operating frequency is scaled from frax
down to f(t;), then §; = ﬁ—g, referred to as the energy efficiency factor
for task t;, is introduced to indicate the energy saving of a unit slack
for task 7;. The AS; and AE; are given by

AS; = Vi(f (1) —ei. (14)
and
AE; = Ei(fnax) — Ei(f (7)), (15)

respectively, where W;(f(t;)) givenin Eq. (4) is the task execution time
atf(t;) considering fault recovery overhead and e; is the task execution
time at fmax. The E;(fmax) and E;(f (z;)) are the energy consumptions of
task 7; at fmax and f(t;), respectively. The energy efficiency factor §; is
in fact a function of the operating frequency f(z;), that is,

AEi(f(ti)) _ Ei(fmax) — Ei(f(Ti)
W)= 35w~ wG@) - e
It is clear that the energy efficiency factor §;(f(t;)) is optimized when
the derivative of §;(f(z;)) with respect to f(7;), 8/ (f(%;)), is set equal to
zero. In this case, the expression

AE(f(m)ASi(f (i) — AE(f(t) ASi(f(zi)) = 0 (17)

holds, where AE(f(;)) and AS;(f(z;)) are the derivatives of AE;(f(z;))
and AS;(f(t;)) respectively, which are given in Eqs. (15) and (14). The
aforementioned optimization approach is well suited for continuous
variable while general embedded processors only support discrete
frequencies. In addition, the above higher order equation of compli-
cated structure is difficult to solve. Thus, a heuristic that iteratively
derives the sub-optimal operating frequency for each taskis proposed,
as is described in Algorithm 2.

Algorithm 2 iteratively derives the operating frequency for the
N tasks in the task set. It takes as input the execution times of N
tasks updated by the fault adaptation variable «. For each task, it
calculates the optimal number of check points for the task at the
current frequency using Eq. (1), computes the energy efficiency factor
of the task at the current frequency using Eq. (16), and checks if the
current energy efficiency factor is maximal. The frequency that results
in the maximum energy efficiency factor is selected as the operating
frequency of the current task.

Let §;(f,) be the energy efficiency factor of task t; at the frequency
fo, Smax be the maximum of §;(f;) (1 <¢ <L), flag be the index of
the frequency in {fi.f>,....f.} that generates the maximum energy
efficiency factor of the task, and S;em be the remaining slack time of
the system. Algorithm 2 operates as follows. Line 1 of the algorithm
initializes the remaining slack time Syem, to D — Z{‘V:] e;. Lines 3-5 cal-
culate the energy efficiency factor §;(f,) of task t; at the frequency f;
and initialize the §max to 8;(f¢). In lines 6-12, the energy efficiency fac-
tor 8;(f;) at the operating frequency f, for 2 < ¢ < Lis derived, and the
frequency fq,g that generates the maximum energy efficiency factor
Smax is picked. If the slack demand AS;(fg,) required to scale down
the frequency to fg,, is not greater than the available system slack
Srem, the required slack AS;(fa,g) is allocated to task ;, and the re-
maining system slack Srem is updated to Srem — AS;(fnag). Otherwise,
the task 7; is set to run at the highest operating frequency fmax. Re-
peat this process until all N tasks in the task set are examined once.

128 J. Zhou, T. Wei/ The Journal of Systems and Software 102 (2015) 123-133

Algorithm 2 Select the energy efficient operating frequency for tasks
in the task set I'.
Require: the N tasks with execution times updated by «
1: initialize the remaining slack Syem to D — Z{-\’: 1€
2: fori=1toNdo
3: calculate the optimal checkpoint number Ny ; of task 7; at the
frequency f; using Eq. (1);
4: derive the energy efficiency factor §;(f;) of task t; at the fre-
quency fi using Eq. (16);
5. Omax = 6i(f1), flag =1;
6: fore¢=2toLdo

7: calculate the optimal checkpoint number Ny ; of task z; at
the frequency f; using Eq. (1);
8: derive the energy efficiency factor §;(f,) of task t; at the
frequency f; using Eq. (16);
9: if §;(f;) > Smax then
10: Smax = 6i(f), flag = ¢;
11: end if

12: end for
13: if AS,-(fﬂag) < Stem then
14: f@) =fﬂag;

15: allocate AS;(f(z;)) for task t;;

16: update the remaining slack: Syem— = AS;(f(1}));
17: else

18: F (@) = fmax;

19: end if

20: end for

The remaining system slack Srem can further be utilized for thermal
management of tasks in the task set after application of the frequency
selection procedure, as is discussed in the next subsection. The time
complexity of Algorithms 2 is O(NL), where N is the number of tasks
in the task set, and L is the processor-supported frequency levels.

4.3. Thermal-aware task sequencing based on the hot-cool task pairing

Unlike traditional cooling solutions, thermal-aware task sequenc-
ing utilizes temperature characteristics of tasks to reduce peak tem-
perature of the processor without degrading system performance
and incurring extra monetary expenses. The proposed thermal-aware
task sequencing heuristic is based on the observation that the execu-
tion order of a hot task and a cool task has non-negligible impact on
the peak temperature. It has been proven that the final temperature
of tasks executing in the hot-cool order is lower than that of tasks
executing in the cool-hot order (Yang et al., 2008). In other words, se-
quencing tasks in the order of hot-cool is more effective for thermal
management. In this subsection, a static sequencing scheme based
on the hot-cool task order is proposed to generate a thermal-aware
task sequence for tasks in the task set. When compared to the online
regulation approach presented in Yang et al. (2008), the proposed
scheme does not necessitate the deployment of a runtime temper-
ature monitor and thermal sensors. In addition, it achieves better
thermal performance when combined with the frequency selection
scheme presented in Subsection 4.2.

The proposed scheme iteratively derives the thermal-aware task
sequence for task set I' under the maximum temperature limit Tyyax
by exploiting thermal characteristics of tasks. It maintains a hot queue
with the hottest task at the head, a cool queue with the coolest task
at the head, a target queue with all tasks ready for execution, and the
remaining slack Sem used for thermal management.

In each iteration, tasks in the target queue are dequeued from
the queue, classified into hot or cool tasks, and enqueued onto the
respective hot or cool queue. The target queue becomes empty. The
hottest task in the hot queue and the coolest task in the cool queue
are then dequeued and paired in the order of hot-cool, which is in

turn pushed into the target queue as a newly formed task. If either
the hot queue or the cool queue is empty, the tasks in the non-empty
queue are appended to the target queue. The tasks in the target queue
becomes ready for the next iteration of task pairing.

Since the task paring technique postulates opposite thermal
characteristics of tasks, the iteration stops when the tasks in the target
queue Qg are of the same type (cool or hot). After thermal-aware task
pairing and sequencing is finished, the remaining slack Syer, is parti-
tioned and assigned to tasks in the target queue to further improve
temperature profiles in the case where all tasks in Qg are cool or to
avoid thermal emergency in the case where all tasks in Qg are hot.
The peak temperature of all tasks in the target queue is then derived
using Eq. (13). If the peak temperature is below the maximum tem-
perature limit, the algorithm returns the task sequence in the target
queue; otherwise, the algorithm exits and it cannot find a thermally
feasible task schedule.

Let Qnot» Qeool, and Qg denote the hot queue, cool queue, and
target queue, respectively, and let Tpe, denote the peak temperature
of the target queue and len(Qgg) indicate the length of the target
queue. The proposed task sequencing scheme given in Algorithm 3
operates as follows. Line 1 of the algorithm initializes the target queue
by pushing all tasks into the queue. Lines 3-8 classify a task t; or a
newly formed task 7;* into hot or cool task category based on the
steady state temperature Tgq(z;*) of the task and insert the task into
the corresponding queue. If Tyiq (7;) > Tmax, the task 7;* is deemed to
be a hot task and inserted into the hot queue Q. Otherwise, it is a
cool task and inserted into the cool queue Q.-

Algorithm 3 Derive the thermal-aware task sequence for task set I"
under Thax by exploiting thermal characteristics of tasks.

Require: maintain a hot queue Qy,,; with the hottest task at the head,
a cool queue Qoo With the coolest task at the head, a target queue
Qtgt, and the remaining slack Sem

1: move all tasks in task set I' into the target queue Qg;
2: repeat
3: fori=1tolen(Qy)do

4: calculate the steady state temperature T4 for newly formed
task 7;* using Eq. (11);{7;* = 7; in the 1st iteration of repeat-
until}

5 classify 7;* into hot (cool) task based on T (7;);

6: derive Tstart (7;*) if hot and Tepq (7;°) if cool;

7: insert 7;* into hot queue Qy (cool queue Qgyor);

8 end for

9: while (Qpo¢ # NULL) or (Qo0; # NULL) do

10: if (Qpor # NULL) and (Qo0; # NULL) then

11: pair tasks at the head of Qo and Qoo to form new
task 7%;

12: sequence the t* in the order of hot-cool;

13: push the 7* into the target queue Qgt;

14: update the Q¢ and Qgoor;

15: else

16: append tasks in the non-empty queue to Qxgt;

17: end if

18: end while

19: until tasks in Qg are of the same type (cool or hot);

20: partition and allocate the remaining slack Srem to tasks in Qgt;
21: set the initial temperature Tiyj¢ Of Qtgt t0 Tamp;

22: derive the peak temperature Tpe,i for 7; € Qrgr using Eq. (13);
23: if Tpeak < Tmax then

24: return the task sequence in the target queue Qgt;

25: else

26: exit(1);{Exit when infeasible}

27: end if

J. Zhou, T. Wei/ The Journal of Systems and Software 102 (2015) 123-133 129

The Tstare is defined to be the start temperature of a hot task
assuming the task ends its execution at the maximum temperature
limit Tiax, and the Tepq is defined to be the end temperature of a cool
task assuming the task starts its execution at the ambient tempera-
ture Tymp. The Tseart and Tepq are key characteristics of hot tasks and
cool tasks, respectively. A lower Tsar¢ Of a task indicates that the task
is hotter. Similarly, a lower T.q of a task shows that the task is cooler.
Tasks in the hot queue Qy, are sorted in the increasing order of Tsart
and tasks in the cool queue Q.y are sorted in the increasing order
of Tepq. In other words, the hot queue has the hottest task at its head
while the cool queue has the coolest task at its head.

Lines 9-18 describe the procedure of task paring and sequencing.
In each round of the iteration, if neither Qo nor Q.o is empty, the
task at the head of Qy,¢ and the task at the head of Q. are paired in
the order of hot-cool, both tasks are removed from the Qy,or and Qgoo)s
and the pair is pushed into the target queue Qg. Otherwise, the tasks
in the non-empty queue are appended to the tail of the target queue.
After task paring and sequencing is finished, the algorithm partitions
and allocates the remaining slack Srem to tasks in Qg to further im-
prove thermal profiles or avoid thermal emergency in line 20. Line 21
sets the initial temperature of the task sequence to the environmental
temperature T,,p, that is, the initial temperature Tj,;; of the task at
the head of Qg is set to Typ. The initial temperature of the current
task is the final temperature of its predecessor since tasks in the se-
quence execute continuously. The initial temperature of tasks in the
sequence is thus derived. Considering the derived initial temperature
and given steady state temperature of tasks in the sequence, the cur-
rent temperature T(t) of a task at the time instance t can be derived
using Eq. (10). Given the T(f), the peak temperature Tpeai for 7; € Qrgt
can be derived using Eq. (13) (line 22). If the peak temperature Tpe, is
not greater than the maximum temperature limit Tpax, the algorithm
generates a task sequence that meets system thermal requirements
(lines 23-24); otherwise, Algorithm 3 exits (lines 25-27). The time
complexity of Algorithm 3 is O(N?), where N is the number of tasks in
the task set.

4.4. Using the Monte Carlo simulation to obtain the reliability

In this section, the Monte Carlo simulation method is utilized to
evaluate the reliability of the generated task schedule under transient
fault occurrences of Poisson probability distribution. In general, one
sample of the Monte Carlo simulation is obtained in two major steps.
In the first step, based on the probability distribution of transient
fault occurrences, the number of transient fault occurrences during
the execution of the current task schedule is produced, and the exe-
cution time of each task is hence updated to include the overhead of
fault recovery. In the second step, the feasibility of the current task
schedule is verified. The current task schedule is feasible if all tasks
in the task schedule complete their executions before the deadline
D. Repeat the two steps to generate more than 10000 Monte Carlo
samples. The reliability Rcyrr of the current task schedule is calculated
as the ratio of the number of feasible schedules to the total number
of schedules. If Reyrr is greater than but close enough to Ry, the
current task schedule is the desired schedule and the execution of
Algorithm 1 exits. Otherwise, Algorithm 1 jumps from line 6 to line 3
and continues its execution.

5. Numerical results

Two sets of simulation experiments have been carried out to val-
idate the proposed algorithms in energy efficiency and effectiveness
of thermal management. In the first set of simulations, synthetic real-
time tasks were generated to verify the proposed schemes while in
the second set of simulations, the characteristics of real-life bench-
marking tasks were utilized to validate the proposed algorithms. The
proposed algorithms were implemented in C++, and the simulation

was performed on a machine with Intel Dual-Core 3.0 GHz processor
and 4 GB memory.

5.1. Simulations for synthetic real-time tasks

This subsection first describes experimental settings for the sim-
ulation, then compares the energy consumptions of the proposed
scheme under three different scenarios of transient fault occurrences,
and compares the peak temperature of the proposed scheme with that
of the benchmarking schemes.

5.1.1. Experimental settings

The simulated processor is assumed to support five normalized
discrete frequency levels {0.5, 0.65, 0.8, 0.9, 1.0}. The analytical for-
mula, Eq. (8) developed by Liao et al. (2005), is utilized to compute
leakage currents for temperatures ranging from 20°C to 100 °C with
the step size of 10°C. The currents are then utilized to determine the
curve-fitting constants C; and C; in Eq. (9). The effective switching
capacitance Cey is set equal to 1.0 (Zhu and Aydin, 2006).

The time overhead of frequency switching is typically on the order
of tens of microseconds to tens of milliseconds. For instance, the
worst case frequency switching time of ARM microprocessor core
isin arange from 10 to 520 us (Zhang and Chakrabarty, 2006). Hence,
the time overhead of frequency switching Osy is set to 100 ps. The
worst case execution time of each task in a task set at the maximum
frequency is randomly generated in the range of 10-40 ms and task
sets of varying number of tasks (5, 10, 20, 40) are utilized to validate
the proposed scheme. The common deadline D of tasks in a task set is
set to 1.4 "N, e;, where N is the number of tasks in the task set and
e; is the execution time of task t; at the maximum frequency fmax.

Checkpoint data are saved in DRAM, and the size of checkpoint
is assumed to be 5KB so that the time overhead O, and power con-
sumption of checkpointing are set to 0.4 ms and 400 mW, respectively
(Zhang and Chakrabarty, 2006). Transient fault occurrences are as-
sumed to follow the Poisson probability distribution. For the lumped
RC model, the thermal resistance R and the thermal capacitance C
are set equal to 1.83°C/W and 0.0084]/°C, respectively (Wang et al.,
2012).

5.1.2. Comparison of the energy consumption

Three designing approaches are implemented and compared to
evaluate the energy efficiency of the proposed scheme, which in-
clude the best case scenario, the worst case scenario, and the pro-
posed stochastic approach. Task sets with varying sizes are executed
under different levels of reliability requirements. Let Epest, Eworst
and Eproposeq denote the energy consumed by a task set under the
best case scenario of transient fault occurrences (o = 0), the worst
case scenario of transient fault occurrences (o = 1) and the stochas-
tic transient fault occurrences (0 < « < 1), respectively. Eproposeq in
fact indicates the energy consumed by the proposed algorithm. Then

Ewp = W x 100% denotes energy savings of the proposed
algorithm (0 < o < 1) as compared to the approach designing for the
worst case scenario of transient fault occurrences (o = 1).

The energy consumptions of task sets with varying sizes under
different levels of reliability requirements are shown in Table 1. Tasks
inatask set are executed under three levels of reliability requirements
(Rgoal = 0.7, Rgpa1 = 0.8,and Ry, = 0.9) fora = 0, = 1,and 0 < o <
1, respectively. The proposed algorithm (0 < o < 1) achieves energy
savings of up to 17% when compared to the approach of designing
for the worst case fault occurrences (« = 1). For instance, for tasks
of a given task set the size of which is 20 and the target reliability
Rgoa1 = 0.7, the proposed algorithm (0 < o < 1) consumes 17.8% less
energy when compared to the designing approach for the worst case
fault occurrences (o« = 1).The better energy efficiency of the proposed
algorithm benefits from the consideration of stochastic characteristics
of transient fault occurrences. As compared to the designing approach

130 J. Zhou, T. Wei/ The Journal of Systems and Software 102 (2015) 123-133

Table 1
The energy consumptions of task sets with varying sizes and different target reliability Rgoq).
Taskset Rgoa = 0.7 Rgoal = 0.8 Rgoa = 0.9
size a=0 O<a<l1 a=1 a=0 O<a<l1 a=1 a=0 O<a<l1 a=1
Ebest Eproposed Ewp (%) Eworst Ebesr Eproposed Ewp (%) Eworsr Ebest Eproposed Ewp (%) Eworst
5 168.3 179.2 14.8 2104 182.4 198.6 11.6 2247 183.4 2123 9.2 2338
10 3854 410.1 7.1 4413 415.2 486.3 12.2 553.8 428.1 475 16.5 569.2
20 841.7 889.6 17.8 1082.5 866.1 1001.2 83 1092.1 859.7 962.3 15.2 11354
40 1567.2 1832.5 15.1 2159.2 1621.3 18153 174 2198.5 1672 1940.7 14.8 2278.9

for the worst case fault occurrences (o = 1), the proposed algorithm
with a fault adaptation variable (0 < @ < 1) has more slack to reduce
energy consumption while satisfying the reliability constraint Rggy;.
In addition, Table 1 shows that task sets with higher target reliability
consume more energy than task sets with lower target reliability. This
increase in energy consumption is primarily due to the fault recovery
overhead for higher reliability.

5.1.3. Comparison of the effectiveness of thermal management scheme

In the proposed scheme, the temperature profiles of tasks in task
sets are improved by selecting an energy efficient operating frequency
for each task and alternating the execution of a hot task and a cool
task at the scaled operating frequency. Firstly, the proposed algo-
rithm is compared with three benchmarking methods in terms of
peak temperature to demonstrate its effectiveness of thermal man-
agement. The first benchmarking scheme, referred to as NOTM, does
not utilize any thermal management techniques while the second
benchmarking scheme, referred to as VSTM, utilizes greedy dynamic
voltage/frequency scaling for thermal management. The third bench-
marking scheme, referred to as SEQ (Zhang and Chatha, 2010), calcu-
lates an optimal initial temperature for a task sequence and utilizes
thermal characteristics of cool tasks and sleep tasks in the task se-
quence to reduce temperatures.

Then two scenarios, that is, the worst case task sequence (Worst
Sequence) and the best case task sequence (Best Sequence), and a
state-of-the-art scheme, referred to as TSVS (Jayaseelan and Mitra,
2008), are implemented and compared to demonstrate the effec-
tiveness of the proposed task sequencing algorithm in thermal man-
agement. To obtain the two task sequences, an exhaustive search of
peak temperatures of all possible task sequences is conducted. The
sequence with the lowest peak temperature is the best case task
sequence, whereas the one that generates the highest peak tempera-
ture is the worst case task sequence. The TSVS (Jayaseelan and Mitra,
2008) scheme utilizes thermal characteristics of tasks to derive a
task sequence in the alternate order of being cool-hot and allocates
available slack time in a greedy way for voltage/frequency scaling.
On the contrary, in the proposed algorithm, the task sequence is
formed in the alternate order of being hot-cool to obtain a lower tem-
perature, and slack time is allocated based on the tradeoff between
energy efficiency and thermal management. The reliability require-
ment for the proposed algorithm is set to 0.99 in the comparison
study.

Fig. 2 shows the peak temperatures of four different task sets
with the size of 40. The maximum temperature limit Tmax iS as-
sumed to be 70°C. The initial temperature of each task set is as-
sumed to equal the ambient temperature T,,,, Which is set to 40°C
in this study. It has been demonstrated in Fig. 2 that the peak tem-
perature of the proposed algorithm is much lower than that of the
NOTM, VSTM, and SEQ (Zhang and Chatha, 2010) method. For exam-
ple, for the task set I'4, when the system reliability requirement is
0.99, the proposed algorithm reduces the peak temperature by 14.8%
as compared to the NOTM method, 7.5% as compared to the VSTM
method, and 3.4% as compared to the SEQ (Zhang and Chatha, 2010)
method. The NOTM method does not employ any thermal control
techniques and is utilized as a baseline to show the highest efficiency

85

1 | IR NOTM I VSTM I SEQ I Proposed
80 - Worst Sequence Best Sequence KN\J TSVS

Peak temperature(°C)

r

2

Task set

Fig. 2. Peak temperatures of four synthetic task sets under the thermal benchmarking
methods NOTM, VSTM, SEQ (Zhang and Chatha, 2010), Worst Sequence, Best Sequence,
TSVS (Jayaseelan and Mitra, 2008), and the proposed scheme (Rgoa = 0.99).

of the proposed algorithm in reducing temperature. The proposed
algorithm also outperforms the benchmarking method VSTM and SEQ
(Zhang and Chatha, 2010) in thermal management since it not only
executes the tasks at a scaled operating frequency, but also exploits
thermal characteristics of cool tasks and slack time together to cool
down hot tasks. Especially, the proposed algorithm alternates the ex-
ecution of tasks in the order of being hot-cool to achieve a lower
temperature.

Fig. 2 also plots the peak temperatures of the four task sets under
the benchmarking algorithms Worst Sequence, Best Sequence, TSVS
(Jayaseelan and Mitra, 2008), and the proposed scheme. When the
system reliability requirement is 0.99, the peak temperature of the
proposed scheme is very close to that of the Best Sequence within
a small margin which varies from 0.8°C to 1.6°C, and can be up
to 9.6°C lower than that of the Worst Sequence. For example, for
tasks in task set I'y, the peak temperature of the proposed scheme
is 0.8 °C higher than that of the Best Sequence. For tasks in task set
I'3, the peak temperature of the proposed scheme is 9.6 °C lower than
that of the Worst Sequence. Moreover, the proposed scheme achieves
better thermal profiles than that of the state-of-the-art scheme TSVS
(Jayaseelan and Mitra, 2008). On average, the proposed scheme can
reduce peak temperatures of tasks by 1.5°C. This experiment has
further demonstrated the effectiveness of the proposed thermal-ware
task sequencing scheme in reducing peak temperature.

5.2. Simulations for real-life benchmarking tasks

This subsection validates the proposed scheme in terms of the
energy consumption and effectiveness of the thermal management
for real-life tasks. The TSVS (Jayaseelan and Mitra, 2008) and NOEM
algorithms are utilized to benchmark the energy consumption of the
proposed scheme, as is described in Subsection 5.1.2. The thermal
effectiveness of the proposed scheme is compared with that of the

J. Zhou, T. Wei/ The Journal of Systems and Software 102 (2015) 123-133 131

Table 2
Configuration of the simulated processor.

Issue width 2-width, partial, in-order issue
Pipeline An 8-stages pipeline
L1 cache 32KB instruction and data caches
L2 Configurable cache size of 128KB to 1MB,
Cache 8-way set-associative cache structure
Memory MMU and fully-associative I/D TLBs of 10 entries each
Branch Dynamic branch prediction, 8-entry branch target address cache,
Predictor Global history buffer, and 8-entry return stack
Table 3

The four constructed sets of real-life benchmarking tasks.

Task set Tasks that comprise the task set

I lame, djpeg, sha, ghostscript, blowfish, epic, gsm, dijkstra
I, epic, gsm, strsearch, adpcm, lame, mp3, sha, pegwit

I's susan, gsm, ghostscript, mp3, pegwit, dijkstra, epic, crc
Iy crc, djpeg, dijkstra, lame, patricia, strsearch, sha, blowfish

benchmarking algorithms NOTM, VSTM, SEQ (Zhang and Chatha,
2010), Worst Sequence, Best Sequence, and TSVS (Jayaseelan and
Mitra, 2008), as is described in Subsection 5.2.3.

5.2.1. Experimental settings

The simulated processor is modeled based on the ARM Cortex
A7 processor (ARM Cortex A7 Processor), which can assemble 1-4
cores. The number of core is set to 1 in the simulation. The configu-
ration of the simulated processor is shown in Table 2. The maximal
frequency supported by the processor is 1.6 GHz, and five different
frequencies between 1.6 GHz and 800 MHz are exploited for dynamic
voltage/frequency scaling. The thermal resistance and thermal capac-
itance are derived as 1.85°C/W and 0.12]/°C, respectively, by using
the default HotSpot configuration and equations (Huang et al., 2007).
The floorplan (ARM Cortex A7 Processor) of Cortex A7 processor
(1-core) is taken by the thermal simulator HotSpot (Skadron et al.,
2004) as input. In this floorplan, the entire die is divided into three
sections. The data processing unit (dpu) dominates one section, which
is located in one edge of the die. The central area of the die that is
another section, has store buffer (stb), bus interface unit (biu), data
cache unit (dcu), instruction cache unit (icu), main translation looka-
side buffer (tlb), and prefetch unit (pfu). The L2 cache occupies the
last section, which is located in the opposite edge to make the entire
die as a square.

Fifteen benchmarking tasks from Mibench (Guthaus et al., 2001)
and Mediabench (Lee et al., 1997), including the lame, djpeg, sha,
ghostscript, blowfish, epic, gsm, dijkstra, strsearch, adpcm, mp3, peg-
wit, susan, crc, and patricia, are utilized to construct four task sets, as
is shown in Table 3. The numbers of clock cycles of these tasks are in
the range of [4 x 107, 6 x 108]. The architecture-level power simula-
tor McPAT (Li et al., 2009) is utilized to obtain power consumptions
of tasks in the table. It can model all three types of power dissipation,
including dynamic, leakage, and short-circuit power, and provide a
complete view of power consumptions.

5.2.2. Comparison of the energy consumption

Two benchmarking algorithms are implemented and compared
with the proposed scheme in energy efficiency. The first one is the
TSVS (Jayaseelan and Mitra, 2008) algorithm that combines task
sequencing and voltage/frequency scaling for energy saving and
temperature control. The second one, referred to as NOEM, is the
algorithm that does not utilize any techniques for energy man-
agement. In other words, the algorithm operates at the high-
est processor frequency. Let E;, E; and E3 denote the energy
consumption of a task set using the NOEM algorithm, the TSVS
(Jayaseelan and Mitra, 2008) algorithm and the proposed algo-
rithm, respectively. Then Eq3 = % x 100% denotes energy sav-

Table 4
The energy consumptions of four task sets for the common target reliability
goal Rgqy = 0.99.

Task k NOEM TSVS Proposed Ei3 Eys3
set Eq E; E3 (%) (%)
Iy 1 25.79 22.64 21.8 15.5 3.7
2 25.79 23.45 22.43 13 4.4
3 25.79 NF 23.02 10.7 -
I, 1 21.84 20.07 18.7 14.4 6.7
2 21.84 19.59 18.91 13.4 34
3 21.84 20.32 19.33 11.5 49
I3 1 23.52 20.48 19.4 17.5 52
2 23.52 21.05 19.57 16.7 7
3 23.52 NF 204 133 -
j 1 26.63 23.72 22.59 15.2 4.9
2 26.63 22.89 22.46 15.7 1.9
3 26.63 24.45 23.08 13.3 5.6

ings of the proposed scheme when compared to the NOEM
algorithm, and E»3 = % x 100% denotes energy savings of the pro-
posed scheme when compared to the algorithm TSVS (Jayaseelan and
Mitra, 2008).

In general, the reliability requirements of a system are given at
requirements analysis stage. For instance, the reliability of a system
may be no less than 0.99. Table 4 shows the energy consumptions of
four benchmarking task sets for a common target reliability of 0.99.
Tasks in a task set are executed under three levels of transient fault
occurrences (k =1, k = 2, and k = 3), where k is the worst case num-
ber of fault occurrences during the execution of a task. NF indicates
that tasks in a task set cannot be feasibly scheduled under the given
requirement of fault tolerance.

It has been shown in Table 4 that the proposed scheme outper-
forms the benchmarking algorithms NOEM and TSVS (Jayaseelan and
Mitra, 2008) in terms of energy efficiency. The proposed scheme
achieves energy savings of up to 17% and 7% when compared to the al-
gorithms NOEM and TSVS (Jayaseelan and Mitra, 2008), respectively.
For example, for tasks in task set I's with k = 1, the proposed scheme
consumes 17.5% less energy when compared to the NOEM algorithm.
For tasks in task set I'3 with k = 2, the energy consumption of the pro-
posed scheme is 7% less than that of the TSVS (Jayaseelan and Mitra,
2008) algorithm. NOEM plays the role of a baseline to exhibit the max-
imum energy efficiency achieved by the proposed approach since it
does not adopt any energy management technique. As compared to
the TSVS (Jayaseelan and Mitra, 2008) that allocates the available
slack in a greedy way for voltage/frequency scaling, the proposed
approach consumes less energy since it selects the energy efficient
operating frequency for each task. In addition, the proposed scheme
is more resilient to fault occurrences. When the requirement of fault
tolerance becomes high (k = 3), the TSVS (Jayaseelan and Mitra, 2008)
algorithm may be infeasible, whereas the proposed scheme can fea-
sibly schedule all tasks in the task set. The enhanced reliability of the
proposed scheme is due to the consideration of stochastic property
of transient fault occurrences and the reasonable allocation of slack.
As expected, the proposed scheme consumes more energy when the
number of faults to be tolerated is large. For instance, for tasks in task
set I'1, the proposed scheme saves 15.5% energy over the NOEM al-
gorithm with k = 1, but it saves only 10.7% energy for the case where
k = 3. The increased energy consumption is mainly caused by the
recovery overhead of growing faults.

5.2.3. Comparison of the effectiveness of thermal management scheme
The same set of benchmarking schemes adopted in
Subsection 5.1.3, including NOTM, VSTM, SEQ (Zhang and Chatha,
2010), Worst Sequence, Best Sequence, and TSVS (Jayaseelan and
Mitra, 2008), is implemented and compared to demonstrate the
effectiveness of the proposed algorithm in thermal management.

132 J. Zhou, T. Wei/ The Journal of Systems and Software 102 (2015) 123-133

80

I NOTM [VSTM I SEQ I Proposed
Worst Sequence Best Sequence X\J TSVS

75

Peak temperature(°C)

Task set

Fig. 3. Peak temperatures of four benchmarking task sets under the thermal bench-
marking methods NOTM, VSTM, SEQ (Zhang and Chatha, 2010), Worst Sequence, Best
Sequence, TSVS (Jayaseelan and Mitra, 2008), and the proposed scheme (Rgoy = 0.99).

The peak temperatures of four benchmarking task sets under the
aforementioned benchmarking methods and the proposed scheme
are shown in Fig. 3. It has been demonstrated in Fig. 3 that the peak
temperature of the proposed algorithm is much lower than that of
the NOTM, VSTM, and SEQ (Zhang and Chatha, 2010) method. For
example, for the task set I'y, when the system reliability requirement
is 0.99, the proposed algorithm reduces the peak temperature by 13%
as compared to the NOTM method, 6.2% as compared to the VSTM
method, and 2.3% as compared to the SEQ (Zhang and Chatha, 2010)
method.

Fig. 3 also plots the peak temperatures of the four benchmark-
ing task sets under the benchmarking algorithms Worst Sequence,
Best Sequence, TSVS (Jayaseelan and Mitra, 2008), and the proposed
scheme. When the system reliability requirement is 0.99, the peak
temperature of the proposed scheme is very close to that of the Best
Sequence within a small margin which varies from 0.5°C to 1.3°C,
and can be up to 7.2 °Clower than that of the Worst Sequence. For ex-
ample, for tasks in task set I'4, the peak temperature of the proposed
scheme is 0.5 °C higher than that of the Best Sequence. For tasks in
task set I',, the peak temperature of the proposed scheme is 7.2°C
lower than that of the Worst Sequence. In addition, when compared
to the state-of-the-art scheme TSVS (Jayaseelan and Mitra, 2008), the
proposed scheme exhibits better performance in thermal manage-
ment. Specifically, the peak temperature of tasks is reduced by 1.8 °C
on average using the proposed scheme.

Synthetic real-time tasks have been produced to validate the pro-
posed thermal management scheme in Subsection 5.1.3. In this sub-
section, from the simulation results of real-life tasks shown above,
the same conclusion can be drawn that the proposed scheme out-
performs the benchmarking methods in thermal control. The analysis
has been given in Subsection 5.1.3 such that it is omitted here for the
sake of brevity.

6. Summary and future work

In this paper, the authors propose a stochastic real-time task
scheduling algorithm to generate an energy efficient task schedule
under constraints of the customer-defined target reliability and max-
imum peak temperature. The proposed algorithm first employs dy-
namic voltage/frequency scaling to reduce the energy consumption
of tasks in the task set and selects the operating frequency that max-
imizes the energy saved per unit slack. It then classifies tasks into
hot and cool tasks, sorts hot tasks and cool tasks in the increasing

order of Tstart and Tepq respectively, and alternates the execution of
hot tasks and cool tasks. The stochastic property of transient fault oc-
currences is handled by modeling the uncertainty using a fault adap-
tation variable & and accommodating task execution to transient fault
occurrences by varying the « iteratively. Two sets of simulation re-
sults have demonstrated the effectiveness of the proposed algorithm
in energy conservation and thermal management. In the simulations
for synthetic tasks, the proposed algorithm achieves energy savings
of up to 17.8% as compared to the approach of designing for the worst
case transient fault occurrence. In the simulations for real-life bench-
marking tasks, the peak temperature of the proposed algorithm is
very close to that of the best case task sequence within a small mar-
gin which varies from 0.5°C to 1.3°C, and can be up to 7.2°C lower
than that of the worst case task sequence. Moreover, the peak tem-
perature of the proposed algorithm is 1.8 °C lower than that of the
benchmarking scheme on average.

The proposed task sequencing approach is designed for indepen-
dent real-time tasks. If the target tasks are real-time tasks with data
dependency or precedence constraints, task sequencing should be ju-
diciously employed. In addition, due to the differences in actual task
execution time, real-time systems can experience great variations of
temperature and fault occurrence at run-time. The authors intend
to extend their framework and address the two problems in future
work.

Acknowledgments

The authors would like to thank the reviewers for their helpful
suggestions. This work was supported in part by the Natural Science
Foundation of Shanghai, China under the grant no. 12ZR1409200 and
by the Scientific Research Foundation for Returned Scholars, Ministry
of Education of China, under the grant no. 44420340.

References

ARM Cortex A7 Processor. http://www.arm.com/zh/products/processors/cortex-a/
cortex-a7.php.

Bao, M., Andrei, A., Eles, P., Peng, Z., 2009. On-line thermal aware dynamic voltage
scaling for energy optimization with frequency/temperature dependency consid-
eration. In: The Proceedings of the International Conference on Design Automation,
pp. 490-495.

Berten, V., Chang, C., Kuo, T., 2008. Discrete frequency selection of frame-based stochas-
tic real-time tasks. In: The Proceedings of the International Conference on Embed-
ded and Real-Time Computing Systems and Applications, pp. 269-278.

Chandrakasan, A., Bowhill, W., Fox, F., 2000. Design of High-Performance Microproces-
sor Circuits. Wiley-IEEE Press.

Chen, J., Heusse, M., Urvoy-Keller, G., 2011. EFD: an efficient low-overhead scheduler.
In: The Proceedings of the International Conference on Networking 2011, pp. 150-
163.

Chen, J., Huang, K, Thiele, L., 2012. Dynamic frequency scaling schemes for hetero-
geneous clusters under quality of service requirements. Int. J. Inf. Sci. Eng. 28 (6),
1073-1090.

Coronel, J., Simo, J., 2012. High performance dynamic voltage/frequency scaling algo-
rithm for real-time dynamic load management. J. Syst. Softw. 85 (4), 906-919.
Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R., 2001. Mibench: a
free, commercially representative embedded benchmark suite. In: The Proceedings

of the International Workshop on Workload Characterization, pp. 3-14.

Han, C, Lin, K., Hou, C., 1996. Distance-constrained scheduling and its applications to
real-time systems. [EEE Trans. Comput. 45 (7), 814-826.

Huang, H., Quan, G., Fan, J., Qiu, M., 2011. Throughput maximization for periodic real-
time systems under the maximal temperature constraint. In: The Proceedings of
the International Conference on Design Automation, pp. 363-368.

Huang, W., Sankaranarayanan, K., Ribando, R., Stan, M., Skadron, K., 2007. An Im-
proved Block-Based Thermal Model in Hotspot 4.0 with Granularity Considerations.
University of Virginia.

Jayaseelan, R., Mitra, T., 2008. Temperature aware task sequencing and voltage scaling.
In: The Proceedings of the International Conference on Computer-Aided Design,
pp. 618-623.

Lee, C., Potkonjak, M., Mangione-Smith, W., 1997. Mediabench: a tool for evaluating
and synthesizing multimedia and communications systems. In: The Proceedings of
the International Symposium on Microarchitecture, pp. 330-335.

Li, S., Ahn, J., Strong, R., Brockman, J., Tullsen, D., Jouppi, N., 2009. Mcpat: an integrated
power, area, and timing modeling framework for multicore and manycore archi-
tectures. In: The Proceedings of the International Symposium on Microarchitecture,
pp. 469-480.

http://dx.doi.org/10.13039/100007219
http://www.arm.com/zh/products/processors/cortex-a/cortex-a7.php
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib001
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib002
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib003
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib004
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib005
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib006
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib007
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib008
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib009
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib010
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib011
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib012
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib013
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib014

J. Zhou, T. Wei/ The Journal of Systems and Software 102 (2015) 123-133 133

Li,Z.,Wang, L., Li,S.,Ren, S., Quan, G., 2013. Reliability guaranteed energy-aware frame-
based task set execution strategy for hard real-time systems. J. Syst. Softw. 86 (12),
3060-3070.

Liao, W., He, L., Lepak, K., 2005. Temperature and supply voltage aware performance
and power modeling at microarchitecture level. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 24 (7), 1042-1053.

Liu, Y., Dick, R., Shang, L., Yang, H., 2007. Accurate temperature-dependent integrated
circuit leakage power estimation is easy. In: The Proceedings of the International
Conference on Design, Automation and Test in Europe, pp. 1526-1531.

Meneses, E., Sarood, O., Kale, L., 2012. Assessing energy efficiency of fault tolerance
protocols for hpc systems. In: The Proceedings of the International Symposium on
Computer Architecture and High Performance Computing, pp. 35-42.

Nguyen, L., Cheng, A., 1996. An imprecise real-time image magnification algorithm. In:
The Proceedings of the International Conference on Multimedia Systems.

Skadron, K., Stan, M., Sankaranarayanan, K., Huang, W., Velusamy, S., Tarjan, D., 2004.
Temperature-aware microarchitecture: modeling and implementation. ACM Trans.
Arch. Code Optimization 1 (1), 94-125.

Terzopoulos, G., Karatza, H., 2012. Maximizing performance and energy efficiency of a
real-time heterogeneous 2-level grid system using dvs. In: The Proceedings of the
International Conference on Distributed Simulation and Real Time Applications,
pp. 185-191.

Terzopoulos, G., Karatza, H., 2014. Energy-efficient real-time heterogeneous clus-
ter scheduling with node replacement due to failures.]. Supercomput. 68 (2),
867-889.

Ukhov, I., Bao, M., Eles, P., Peng, Z., 2012. Steady-state dynamic temperature analysis and
reliability optimization for embedded multiprocessor systems. In: The Proceedings
of the International Conference on Design Automation, pp. 197-204.

Wang, S., Chen,]., Shi, Z., Thiele, L., 2009. Energy-efficient speed scheduling for real-time
tasks under thermal constraints. In: The Proceedings of the International Conference
on Embedded and Real-Time Computing Systems and Applications, pp. 201-209.

Wang, Z., Ranka, S., Mishra, P., 2012. Temperature-aware task partitioning for real-
time scheduling in embedded systems. In: The Proceedings of the International
Conference on VLSI Design, pp. 161-166.

Wei, T., Chen, X,, Hu, S., 2011. Reliability-driven energy efficient task scheduling for
multiprocessor real-time systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 30 (10), 1569-1573.

Wei, T., Mishra, P., Wu, K., Liang, H., 2006. Online task-scheduling for fault-tolerant
low-energy real-time systems. In: The Proceedings of the International Conference
on Computer-Aided Design, pp. 522-527.

Wei, T., Mishra, P., Wu, K., Liang, H., 2008. Fixed-priority allocation and scheduling
for energy-efficient fault-tolerance in hard real-time multiprocessor systems. IEEE
Trans. Parallel Distrib. Syst. 19 (11), 1511-1526.

Wei, T., Mishra, P., Wu, K., Zhou,], 2012. Quasi-static fault-tolerant scheduling schemes
for energy-efficient hard real-time systems. J. Syst. Softw. 85 (6), 1386-1399.

Weste, N., Eshraghian, K., 1992. Principles of CMOS VLSI Design: A System Perspective.
Addison-Wesley Publishing Company.

Xu, F.,, Liu, F, Jin, H., Vasilakos, A., 2014. Managing performance overhead of virtual
machines in cloud computing: a survey, state of the art, and future directions. Proc.
IEEE 102 (1), 11-31.

Yang, C., Chen, J., Kuo, T., Thiele, L., 2009. An approximation scheme for energy-efficient
scheduling of real-time tasks in heterogeneous multiprocessor systems. In: The
Proceedings of the International Conference on Design, Automation and Test in
Europe, pp. 694-699.

Yang, J., Zhou, X., Chrobak, M., Zhang, Y., Jin, L., 2008. Dynamic thermal management
through task scheduling. In: The Proceedings of the International Symposium on
Performance Analysis of Systems and Software, pp. 191-201.

Zhang, S., Chatha, K., 2010. Thermal aware task sequencing on embedded processors.
In: The Proceedings of the International Conference on Design Automation, pp.
585-590.

Zhang, Y., Chakrabarty, K., 2006. A unified approach for fault tolerance and dynamic
power management in fixed-priority real-time embedded systems. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 25 (1), 111-125.

Zhu, D., Aydin, H., 2006. Energy management for real-time embedded systems with
reliability requirements. In: The Proceedings of the International Conference on
Computer-Aided Design, pp. 528-534.

Zhu, D., Melhem, R., Mosse, D., 2004. The effects of energy management on reliability in
real-time embedded systems. In: The Proceedings of the International Conference
on Computer-Aided Design, pp. 35-40.

Junlong Zhou is currently working toward his Ph.D. degree in Computer Science and
Technology Department at East China Normal University. His research interests are in
the areas of real-time systems, energy efficient and reliable embedded system design,
and thermal-aware scheduling techniques. He is an active reviewer of many interna-
tional journals, including Journal of Circuits, Systems, and Computers (World Scientific),
Journal of Scheduling, IEEE Transactions on Industrial Informatics, Journal of Modeling and
Simulation (ACTA Press).

Tongquan Wei received his Ph.D. degree in Electrical Engineering from Michigan Tech-
nological University in 2009. He is currently an Associate Professor in the Department
of Computer Science and Technology at the East China Normal University. His research
interests are in the areas of real-time systems, green and reliable computing, and paral-
lel and distributed systems. He serves as a Regional Editor for Journal of Circuits, Systems,
and Computers (World Scientific) since 2012. He also served as the Guest Editor of the
IEEE Transactions on Industrial Informatics Special Section on Building Automation, Smart
Homes, and Communities, and the ACM Transactions on Embedded Computing Systems
Special Issue on Embedded Systems for Energy-Efficient, Reliable, and Secure Smart Homes.
He is a member of the IEEE.

http://refhub.elsevier.com/S0164-1212(14)00281-7/bib015
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib016
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib017
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib018
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib019
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib020
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib021
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib022
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib023
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib024
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib025
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib026
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib027
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib028
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib029
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib030
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib031
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib032
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib033
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib034
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib035
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib036
http://refhub.elsevier.com/S0164-1212(14)00281-7/bib037

	Stochastic Thermal-Aware Real-Time Task Scheduling with Considerations of Soft Errors
	1 Introduction
	2 System Architecture and Models
	2.1 Fault and Recovery Model
	2.2 Power Model
	2.3 Temperature Model

	3 Problem Definition
	4 Stochastic Task Scheduling with Reliability and Thermal Considerations
	4.1 Parallel Schedule Generation Based on the Fault AdaptationVariable
	4.2 Efficient Frequency Selection Based on the Energy Efficiency Factor
	4.3 Thermal-aware Task Sequencing Based on the Hot–cool Task Pairing
	4.4 Using the Monte Carlo Simulation to Obtain the Reliability

	5 Numerical Results
	5.1 Simulations for Synthetic Real-Time Tasks
	5.1.1 Experimental Settings
	5.1.2 Comparison of the Energy Consumption
	5.1.3 Comparison of the Effectiveness of Thermal Management Scheme

	5.2 Simulations for Real-Life Benchmarking Tasks
	5.2.1 Experimental Settings
	5.2.2 Comparison of the Energy Consumption
	5.2.3 Comparison of the Effectiveness of Thermal Management Scheme

	6 Summary and Future Work
	Acknowledgments
	References

