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With the continued scaling of the CMOS devices, the exponential increase in power density has strikingly

elevated the temperature of on-chip systems. Dynamic voltage/frequency scaling is a widely utilized system

level power management technique to reduce the energy consumption and lower the on-chip temperature.

However, scaling the voltage or frequency for thermal management leads to an increase in soft error rates,

thus has adverse impact on system reliability. In this paper, the authors propose a stochastic thermal-aware

task scheduling algorithm that considers soft errors in real-time embedded systems. For the given customer-

defined soft error related target reliability and the maximum peak temperature, the proposed scheduling

algorithm generates an energy-efficient task schedule by selecting the energy efficient operating frequency

for each task and alternating the execution of hot tasks and cool tasks at the scaled operating frequency.

The proposed stochastic scheduling algorithm features the consideration of uncertainty in transient fault

occurrences. To handle the uncertainty, a fault adaptation variable α is introduced to adapt task execution

to the stochastic property of fault occurrences. An energy efficiency factor δ is also introduced to facilitate

the enhancement of energy efficiency by maximizing the energy saved per unit slack. Extensive simulations

of synthetic real-time tasks and real-life benchmarking tasks were performed to validate the effectiveness of

the proposed algorithm. Experimental results show that the proposed algorithm consumes up to 17.8% less

energy as compared to the benchmarking schemes, and the peak temperature of the proposed algorithm is

always below the maximum temperature limit and can be up to 9.6 ◦C lower than that of the benchmarking

schemes.

© 2015 Elsevier Inc. All rights reserved.

1

c

t

t

r

e

h

t

t

s

i

c

d

d

s

e

2

d

d

t

i

c

i

i

t

h

0

. Introduction

As technology advances toward the deep submicron region, the

hip power density has increased exponentially, which in turn leads

o huge energy consumption and elevated chip temperature. A sys-

em will fall into the predicament of functional incorrectness, low

eliability and even hardware failures if the operating temperature

xceeds a certain threshold. Thus, energy and thermal management

as been a significant and pressing research issue in computing sys-

ems, especially for real-time embedded systems with limited cooling

echniques.

The dynamic voltage and frequency scaling (DVFS) is a widely used

ystem level power management technique that exploits technolog-

cal advances in power supply circuits to reduce processor power
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onsumption and lower chip temperature by dynamically scaling

own the processor speed. Considerable research effort has been

evoted to the design of energy-efficient thermal-aware real-time

ystems by using DVFS in the past decades (Bao et al., 2009; Chen

t al., 2011, 2012; Coronel and Simo, 2012; Terzopoulos and Karatza,

012; Wang et al., 2009). These works are originally motivated to ad-

ress the issues of high energy consumption and high temperature

ue to high power density. However, they ignore the fact that the

ransient fault rate increases dramatically when a system is running

n the low power state. It has been shown that scaling down the pro-

essor speed increases the transient fault rates, especially for those

nduced by cosmic ray radiations, and thus degrades system reliabil-

ty (Zhu et al., 2004). Thus soft errors need to be tolerated to provide

emporal and logical correctness for real-time tasks when DVFS is op-

rated to reduce energy consumption and temperature. In this paper,

he checkpointing technique is utilized to tolerate soft errors while

DVFS-based scheme is designed to minimize energy consumption

nder the thermal constraint. Checkpointing with rollback-recovery

s a popular fault-tolerant technique deployed in real-time embedded

http://dx.doi.org/10.1016/j.jss.2014.12.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.12.009&domain=pdf
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mailto:tqwei@cs.ecnu.edu.cn
http://dx.doi.org/10.1016/j.jss.2014.12.009
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systems to maintain the system reliability (Zhang and Chakrabarty,

2006). In checkpointing, the state of the system is saved on a stable

storage at each checkpoint. When a transient fault occurs, the system

rolls back to the most recent checkpoint and resumes the execution.

Most existing studies (Li et al., 2013; Terzopoulos and Karatza,

2014; Wei et al., 2011, 2006, 2008, 2012; Xu et al., 2014; Zhu and

Aydin, 2006) on the fault-tolerance real-time scheduling exploit all

the slack generated due to early completion of real-time tasks to save

energy under the reliability constraint. The slack available is utilized

for both energy savings and fault tolerance, in which temperature op-

timization is ignored. However, this is not suitable for real-time sys-

tems deployed certain safety-critical applications (e.g. implantable

cardioverters in medical applications) where energy, reliability and

thermal control are all crucial for the correct operation of systems.

Thus, in this paper the generated slack is utilized to provide fault tol-

erance, save energy, and reduce the temperature. The existing works

(Li et al., 2013; Wei et al., 2011, 2006, 2008, 2012; Xu et al., 2014;

Zhu and Aydin, 2006) also adopt an imprecise power model which

considers dynamic power the main source of power dissipation, or

assumes that static/leakage power is a constant. These claims are in-

accurate since it is known that leakage power can contribute as much

as 50% of the total power dissipation of modern microprocessor cir-

cuits (Chandrakasan et al., 2000). In addition, temperature-dependent

leakage power is ignored in these works. The proposed thermal-aware

fault-tolerance task scheduling scheme takes into account the tem-

perature’s dependency of leakage power. It trades energy for thermal

control by maximizing the energy efficiency with respect to slack and

exploiting the remaining slack for thermal management.

Little research has been conducted on the management of

reliability for thermal-aware real-time systems. In Ukhov et al. (2012),

the authors proposed a fast and accurate technique for the steady

state dynamic temperature profile (SSDTP) calculation, and pro-

vided an analytical solution for the steady state dynamic tempera-

ture analysis (SSDTA) of embedded multiprocessor systems. Based

on the temperature-aware reliability model and the thermal cycling

failure mechanism, the presented approach efficiently performs a

temperature-aware reliability optimization for embedded multipro-

cessor systems. The lifetime of an embedded system can be improved

significantly by considering the steady state dynamic temperature

profile of the system during the design stage. However, instead of

transient faults, the technique focuses on the thermal cycling failure.

The authors are interested in transient faults in this study. Further-

more, the technique does not consider energy as an optimization

constraint.

Recently, a novel thermal management technique, referred to as

the thermal-aware task sequencing combined with dynamic volt-

age/frequency scaling, has attracted considerable research attention.

It utilizes temperature characteristics of tasks to reduce the peak

temperature of processors at a scaled operating frequency without

incurring extra monetary expenses (Jayaseelan and Mitra, 2008; Yang

et al., 2008; Zhang and Chatha, 2010). The slack available is allocated

for voltage/frequency scaling and tasks are paired and alternatively

executed at the scaled frequency in the order of being cool–hot. Un-

like Jayaseelan and Mitra (2008) and Zhang and Chatha (2010) that

alternate the execution of tasks in the order of being cool–hot, the

proposed algorithm alternates the execution of a hot task and a cool

task in the order of being hot–cool. This is motivated by the obser-

vation that the final temperature of tasks executing in the hot–cool

order is lower than that of tasks executing in the cool–hot order (Yang

et al., 2008). Compared to the online scheduler presented in Yang et al.

(2008), the proposed method does not necessitate the deployment of

a runtime temperature monitor and thermal sensors. Moreover, the

proposed DVFS-based scheme is more practical since it takes into

account the time overhead of frequency switching, which is not con-

sidered in Jayaseelan and Mitra (2008), Zhang and Chatha (2010), and

Yang et al. (2008).
In this paper, the authors propose a stochastic thermal-aware

eal-time task scheduling algorithm under the constraint of system

eliability requirement. The algorithm takes as input a given set of

eal-time tasks, the customer-defined target reliability, and the max-

mum peak temperature. It generates a task schedule that meets the

esign requirements by selecting the energy efficient operating fre-

uency for each task and alternating the execution of a hot task and

cool task at the scaled operating frequency. The energy efficient op-

rating frequency for a task is the one that achieves the maximum

nergy efficiency. The major contributions of this paper are summa-

ized as follows.

• The proposed task scheduling algorithm jointly tackles the energy

efficiency, fault tolerance, and thermal control for real-time sys-

tems. A fault adaption variable α is also introduced to adapt task

execution time including fault recovery overhead to the Poisson

probability distribution of fault occurrences, which enables the

designing of stochastic real-time systems based on status quo of

fault occurrences.
• The proposed algorithm enhances the efficiency of reducing the

energy consumption. An energy efficiency factor δ that indicates

the energy saved per unit slack is introduced and maximized

for each task. In addition, practical issues such as temperature’s

dependency of leakage power and time overhead of frequency

switching are also taken into account.
• Task sequencing combined with dynamic voltage/frequency scal-

ing is adopted to meet the thermal requirement of the system.

The proposed algorithm alternates the execution of a hot task and

a cool task at the scaled operating frequency for better thermal

control.
• Two sets of simulation experiments have been implemented to

validate the effectiveness of the proposed algorithm in energy effi-

ciency and thermal management. Simulation results have demon-

strated that the proposed algorithm achieves better performance

when compared to the benchmarking schemes.

The rest of the paper is organized as follows. Section 2 introduces

he system architecture and models. Section 3 formulates the problem

efinition. Section 4 describes the proposed stochastic thermal-aware

ask scheduling algorithm under the target reliability goal constraint.

ection 5 presents the experimental results and Section 6 concludes

he paper.

. System architecture and models

In this paper, real-time tasks in a task set are assumed to execute on

DVFS-enabled processor. The processor is equipped with L discrete

ormalized frequencies {f1, f2, . . . , fL}, and 0 < fmin = f1 < f2 < · · · <

L = fmax = 1.0 holds for the sake of easy presentation, where fmin

ndicates the minimum operating frequency and fmax denotes the

aximum operating frequency. The task set � consisting of N real-

ime tasks {τ1, τ2, . . . , τN} is a frame-based task set, in which all tasks

hare a common deadline D that is also the frame size (Yang et al.,

009). There are many embedded real-time systems (Berten et al.,

008; Li et al., 2013; Yang et al., 2009; Zhu et al., 2004) operating on

cyclic basis and having a set of tasks that must execute in a frame.

hen all task executions have finished, the whole frame is repeated.

hese real-time systems find their applications in multimedia data

ransmissions, delay and jitter control in ATM networks, chemical

rocess control, and air traffic control (Han et al., 1996; Nguyen and

heng, 1996).

It is assumed that tasks in the task set are independent and non-

reemptive. As a result, the frequency transition occurs before a task

tarts its execution or after the task finishes its execution. The pro-

osed method hence produces exactly one frequency level for each

ask and at most one frequency transition occurs for a task in a frame.

he incurred frequency switching overhead can be incorporated in
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ask execution time for simplicity. Let Osw denote the time overhead

f frequency switching, and ei represent the worst case execution

ime of task τi (1 ≤ i ≤ N) at the maximum operating frequency fmax,

hen the execution time of task τi at its operating frequency f (τi) is

iven by
ei

f (τi)
+ Osw.

.1. Fault and recovery model

Due to the ever increasing level of integration and continued

educing size of transistor features, the number of transient faults

n circuits has been rising rapidly, especially for embedded systems

eployed in harsh operating environment. Moreover, blindly applying

VFS for energy savings without fault-tolerant techniques will result

n drastic increase in transient fault rates. Therefore, fault-tolerant

echniques need to be deployed in energy-efficient design. In this pa-

er, a widely used technique for fault-tolerance, equidistant check-

ointing, is adopted for improving system reliability. In equidistant

heckpointing, checkpoint intervals for a given task are set to be equal.

t each checkpoint, the state of the system is saved in a secure de-

ice to prepare for rolling back to the most recent checkpoint and

e-execution. Given the worst case number of transient fault occur-

ences during the execution of task τi at the operating frequency f (τi),
hich is denoted as ki, the optimal number of checkpoints for task τi

t f (τi) is then represented by Nopt,i, as is given by

opt,i =
∥∥∥∥∥∥
√

ki

Ock

(
ei

f (τi)
+ Osw

)
− 1

∥∥∥∥∥∥ , (1)

here Ock is the time overhead of checkpointing (Zhang and

hakrabarty, 2006), ei is the task execution time at the maximum

requency fmax, and Osw is the time overhead of frequency switching.

Let �best,i be the execution time of task τi including checkpointing

verhead in the case of no fault occurrences, then it is given by

best,i = ei

f (τi)
+ Osw + Nopt,i × Ock, (2)

here
ei

f (τi)
+ Osw is the execution time of task τi at the frequency

(τi).
Let �worst,i be the execution time of task τi including checkpoint-

ng and fault recovery overhead in the presence of ki transient fault

ccurrences. In other words, the �worst,i consists of two terms. The

rst term is the �best,i and the second term is the fault recovery over-

ead in the presence of ki transient fault occurrences. The �worst,i is

hen given by

worst,i = �best,i + ki

(Nopt,i + 1)

(
ei

f (τi)
+ Osw

)
+ 2kiOck, (3)

here
ki

(Nopt,i+1)(
ei

f (τi)
+ Osw) represents the recovery overheads to

olerate ki faults and 2kiOck denotes the overheads of ki checkpoint

avings and system state retrievals (Zhang and Chakrabarty, 2006).

The �best,i and �worst,i are constant if the variables Nopt,i, f (τi)
nd ki are fixed. However, due to the stochastic property of transient

ault occurrences, the execution time of a task is not determined. A

ault adaptation variable, which is denoted as α ∈ [0, 1], is introduced

n this work to model the uncertainty in task execution caused by

ransient fault occurrences. As a consequence, the execution time �i

f task τi can be formulated as a function of �best,i and �worst,i, as is

iven by

i = α × �worst,i + (1 − α)× �best,i. (4)

he execution time of task τi is �best,i when α = 0 and is �worst,i when

= 1.

The average fault arrival rate at the operating frequency level �

or 1 ≤ � ≤ L is denoted by ν�, where L is the number of frequency

evels supported by the processor. Assuming the operating frequency
s f�, then the ν� can be obtained using the equation ν� = λ × e−ξ f� ,

here λ and ξ are constant parameters (Zhu et al., 2004). Since the

oisson distribution is typically utilized to model transient faults, the

robability of x transient fault occurrences during the execution of

ask τi at frequency f� is then given by

(x) = e−ν�×�i × (ν� × �i)
x

x!
. (5)

The reliability of a real-time task is defined as the probability that

he task executes successfully till its deadline in the presence of soft

rrors. For a task τi that is supposed to tolerate ki errors during its

xecution at the frequency f�, the task is deemed to be able to finish

ts execution successfully in the presence of at most ki errors. When

he number of transient fault occurrences exceeds ki, the execution

f the task fails. Hence, the reliability of task τi is the probability that

t most ki errors occur during its execution, which is written as

i = P(0 ≤ x ≤ ki) =
ki∑

x=0

e−ν�×�i × (ν� × �i)x

x!
. (6)

The correct operation of a system depends on the successful ex-

cution of all tasks in a task set. The target system contains N tasks,

hus, the current reliability of the system, which is denoted by Rcurr,

s given by the product of reliabilities of individual tasks in the task

et, that is,

curr =
N∏

i=1

Ri. (7)

n a reliability-constrained real-time system, the target reliability is

enoted by Rgoal, and the reliability of the system is maintained if the

nequality Rgoal ≤ Rcurr holds for α = 1.

.2. Power model

The power consumption of a CMOS device can be modeled as the

um of dynamic power dissipation and leakage power dissipation.

he dynamic power consumption is independent of the temperature

nd can be formulated as Pdyn ∝ V2
dd

f (Weste and Eshraghian, 1992),

here Vdd is the supply voltage, and f is the operating frequency.

ssuming processors use voltage/frequency scaling technique to scale

requency, the operating frequency is then approximately linear with

he supply voltage (Weste and Eshraghian, 1992). As a result, the

verage dynamic power consumption can be estimated by a strictly

ncreasing and convex function of the operating frequency, that is,

dyn ∝ f 3. Thus, the dynamic power consumption of task τi on the

rocessor at frequency f (τi) is given by Pdyn = Ceff (τi)
3, where Cef is

he effective switching capacitance.

The leakage power consumption is temperature dependent and

an be expressed as Pleak = NgateVddIleak, where Ngate is the number of

ates and Ileak is the leakage current. The leakage current Ileak can be

ormulated by a nonlinear exponential equation (Liao et al., 2005) as

leak = Is(AT2e(ϑ1Vdd+ϑ2)/T + Be(ϑ3Vdd+ϑ4)), (8)

here Is is the leakage current at a certain reference temperature and

upply voltage, T is the operating temperature, Vdd is the supply volt-

ge, and A, B, ϑ1, ϑ2, ϑ3, and ϑ4 are empirically determined technol-

gy constants. Since the operating frequency is nearly linear with the

upply voltage (Weste and Eshraghian, 1992) and the leakage current

hanges super linearly with temperature (Liu et al., 2007), the leakage

ower consumption of task τi on the processor at frequency f (τi) can

e effectively estimated to be Pleak = C1f (τi)+ C2Tf (τi) (Huang et al.,

011), where C1 and C2 are curve fitting constants, and T is the op-

rating temperature. Therefore, the power consumption of task τi on

he processor at frequency f (τi) is given by

i = Ceff (τi)
3 + C1f (τi)+ C2T f (τi), (9)

here C is the effective switching capacitance.
ef
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Checkpointing operations including checkpoint saving and

retrieval incurs power consumption. It has been shown in Zhang and

Chakrabarty (2006) that checkpointing power consumption depends

on the checkpoint size, access speed of the checkpoint storage, and

power consumption of the checkpoint storage. The checkpoint size

strongly depends on the task set. The embedded applications may

produce relatively small checkpoint with sizes in the order of a few

kilobytes. It is clear that the checkpointing power consumption is

independent of the processor operating frequency and temperature.

On the contrary, the processor power consumption is a function of

processor operating frequency and temperature, as is given in Eq. (9).

It also has been shown in Meneses et al. (2012) that processor power

consumption drops to the power draw of idle state during checkpoint-

ing. Owing to this analysis, we adopt processor power consumption in

the DVFS-based frequency selection scheme described in Algorithm 2

and consider both processor power consumption and checkpointing

power consumption when energy is derived in the experimental sec-

tion.

2.3. Temperature model

An accurate and practical dynamic model of temperature is needed

to accurately characterize the thermal behavior of an application.

In this paper, a dynamic thermal model proposed by Skadron et al.

(2004) that is widely used in the literature is adopted as the temper-

ature model to predict the temperature of the processor. The model

is based on a lumped RC model, and the temperature T(t) at the time

instance t is given by

T(t) = Tstd − (Tstd − Tinit)e
−t
RC , (10)

where Tstd is the steady state temperature of a task, Tinit is the ini-

tial temperature, R is the thermal resistance, and C is the thermal

capacitance. The thermal resistance R and capacitance C are proces-

sor architecture dependent constants.

The steady state temperature of a task is the temperature that

will be reached if infinite number of instances of the task execute

continuously on the processor. It is associated with a certain average

input power, and is given by

Tstd = PR + Tamb. (11)

where P is the power consumption, R is the thermal resistance and

Tamb is the die’s ambient temperature. Since the power consumptions

of different tasks vary significantly, the steady state temperatures of

tasks in the task set are different.

3. Problem definition

The focus of the study is to minimize the energy consumed by

tasks in a task set using dynamic voltage/frequency scaling under the

thermal constraint and system reliability constraint. Let Etot denote

the energy consumed by all tasks in a task set, then it is given by

Etot =
N∑

i=1

Ei, (12)

where Ei is the energy consumed by task τi, including the energy cost

of task execution and checkpointing operations. The energy consump-

tion is calculated as the product of power consumption and execution

time.

For thermal-aware task scheduling, the maximum temperature

limit, which is denoted by Tmax, is in general specified based on system

design requirements. Let Tpeak denote the peak temperature of tasks

in a task set, then it is given by

Tpeak = max{T(t)| ∀t ∈ [0, D]}, (13)

where T(t) is the temperature at the time instance t and can be de-

rived by using Eq. (10). The system is deemed to be in a safe mode
hen the peak temperature Tpeak does not exceed the threshold

emperature Tmax. With regards to the reliability, the system oper-

tes dependably in its expected environment if the current reliability

curr is no less than the system target reliability Rgoal. In addition to

he thermal constraint and the reliability constraint, all task in a task

et must finish their execution before the deadline D. Considering the

bove design constraints, the proposed stochastic scheduling prob-

em can be formulated as follows. For a given task set of real-time

asks that share a common deadline and a DVFS-capable processor,

t is expected to derive the operating frequency for each task and ar-

ange the execution sequence for all tasks in the task set such that the

nergy consumption of the system is minimized under the reliability

nd thermal design constraints. In other words, the problem can be

ormulated into the below form.

inimize: Etot =
N∑

i=1

Ei

ubject to: Tpeak ≤ Tmax

Rgoal ≤ Rcurr =
N∏

i=1

Ri

N∑
i=1

�i ≤ D

here Etot, Tpeak, Rcurr, and �i are given by Eqs. (12), (13), (7), and (4),

espectively.

. Stochastic task scheduling with reliability and thermal

onsiderations

The objective of the proposed stochastic task scheduling scheme

s to generate an energy optimum schedule without violating the re-

iability and thermal design constraints. The uncertainty in transient

ault occurrences is considered and modeled using the Poisson prob-

bility distribution in the proposed scheme. Algorithm 1 is developed

n this section to present the overview of the proposed stochastic

ask scheduling scheme. Inputs to the algorithm are a given task set

, the target reliability Rgoal, and the thermal constraint Tmax. Line

of the algorithm randomly assigns a value for the fault adaptation

ariable α, and the execution time of each task is updated based on

he selected α (line 3). Energy optimization is achieved when each

ask executes at the energy efficient operating frequency (line 4) and

he method to obtain the energy efficient frequency is described in

lgorithm 2. To avoid the violation of the maximum temperature

imit Tmax, a thermal-aware task sequencing is utilized to reduce the

eak temperature Tpeak of tasks (line 5), as is given in Algorithm 3.

he reliability of the obtained task schedule is produced using the

onte Carlo simulation method (line 6), and if it does not satisfy

he stop-condition of Algorithm 1, the value of fault adaptation vari-

ble α is adjusted and the above procedures is repeated. In contrast, if

Rcurr − Rgoal) ≥ ε > 0 holds for an arbitrarily small positive number ε,

he reliability of the system satisfies the stop-condition of Algorithm 1

nd the output is the desired task schedule. The time complexity of

lgorithm 1 is O(NL + N2), where N is the number of tasks in the task

et, and L is the processor-supported frequency levels.

Slack is generated due to early completion of real-time tasks. In

his paper the generated slack is utilized to provide fault tolerance,

ave energy, and reduce the temperature, which necessitates a trade-

ff among fault tolerance, energy efficiency, and thermal manage-

ent. The major contributions of this paper are three-fold. First, the

lack is utilized to guarantee a certain level of reliability require-

ent in the presence of stochastic soft errors, second, the energy

fficiency of the proposed scheme is achieved by utilizing the slack

nder the reliability constraint, and finally, the temperature is re-

uced by utilizing the task sequencing technique. The temperature
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Algorithm 1 Generate the energy optimum task schedule under the

reliability and thermal constraints.

Require: task set � & the target reliability goal Rgoal & the thermal

constraint Tmax;

1: randomly pick a value of α in 0 ≤ α ≤ 1;

2: repeat

3: update the execution time of each task based on α, then update

α;

4: calculate the energy efficient operating frequency of each task

using Algorithm 2;

5: derive the thermal-aware task sequence under Tmax using

Algorithm 3;

6: obtain Rcurr of the task set � using Monte Carlo simulation;

7: until (Rcurr − Rgoal) ≥ ε > 0;
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Fig. 1. An example of the binary search-based approach.
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s further reduced by using the remaining slack. Unlike the previous

ork presented by Zhu and Aydin (2006) that utilizes all slack for en-

rgy savings when the reliability constraint is satisfied, the proposed

cheme trades energy for thermal control by maximizing the energy

fficiency with respect to slack and utilizing the remaining slack for

hermal management, which is demonstrated in Algorithms 2 and 3.

n other words, Algorithm 2 aims at maximizing the energy efficiency

ith respect to slack instead of maximizing energy savings, and con-

equently Algorithm 3 reduces temperature by using both the re-

aining slack and task sequencing technique. The details of each step

n the proposed scheme including Algorithms 2 and 3 are described

n the following subsections.

.1. Parallel schedule generation based on the fault adaptation

ariable α

In this paper, the authors introduce a fault adaptation variable

which adapts the task execution behavior to the Poisson distribu-

ion of probabilistic transient fault occurrences. In comparison with

he traditional method of designing for corner cases, the proposed

cheme features the consideration of the uncertainty in fault occur-

ences. The variable α ranges from 0 to 1, indicating the fault-free

cenario to the scenario of the worst case fault occurrences. The α is

deterministic variable. Due to the statistical property of transient

ault occurrences, there is no existence of deterministic relationship

etween the deterministic fault adaptation variable α and the reli-

bility of tasks in the task set. Thus, if the current system reliability

curr does not satisfy the stop-condition of Algorithm 1, it cannot be

tilized to direct the value assignment of α to be employed in the

ext iteration of Algorithm 1. In other words, the selection of the α is

ndependent of the current value of the system reliability. The α that

odels the status quo of fault occurrences could be any value in the

ange of [0, 1]. As a result, a binary search-based approach is adopted

o search for the target fault adaptation variable.

The binary search is a simple yet efficient search algorithm to find

he position of a specific key value in an ordered value sequence. In

ontrast to other search algorithms, it needs less comparisons since

he search interval is halved in each step. The binary search-based

pproach operates as follows. For a given initial range of α ∈ [0, 1],

he initial value of α is denoted by α0, then the next values of α
ould be varied in the range of both [0, α0] and [α0, 1]. If the current

ystem reliability Rcurr does not reach the target system reliability

goal, the next values of α, which will be exploited to generate the

ask schedule, are updated to α1 = α0/2 and α2 = (α0 + 1)/2, as is

hown in Fig. 1. The search is stopped when the Rcurr is greater than

et close enough to the Rgoal; otherwise, repeat this process until

he stop-condition is met. This approach can strikingly accelerate

he generation of the desired task schedule by running the proposed

lgorithm with different α on multiple computing nodes.
.2. Efficient frequency selection based on the energy efficiency factor δ

It is evident that the energy efficiency is maximized if slack is

llocated in a way that a unit slack generates the maximum energy

aving. Let 
Si denote the slack allocated to task τi and 
Ei denote

he energy saved when the operating frequency is scaled from fmax

own to f (τi), then δi = 
Ei

Si

, referred to as the energy efficiency factor

or task τi, is introduced to indicate the energy saving of a unit slack

or task τi. The 
Si and 
Ei are given by

Si = �i(f (τi))− ei, (14)

nd

Ei = Ei(fmax)− Ei(f (τi)), (15)

espectively, where �i(f (τi))given in Eq. (4) is the task execution time

t f (τi)considering fault recovery overhead and ei is the task execution

ime at fmax. The Ei(fmax)and Ei(f (τi))are the energy consumptions of

ask τi at fmax and f (τi), respectively. The energy efficiency factor δi is

n fact a function of the operating frequency f (τi), that is,

i(f (τi)) = 
Ei(f (τi))


Si(f (τi))
= Ei(fmax)− Ei(f (τi))

�i(f (τi))− ei

. (16)

t is clear that the energy efficiency factor δi(f (τi)) is optimized when

he derivative of δi(f (τi)) with respect to f (τi), δ
′
i
(f (τi)), is set equal to

ero. In this case, the expression

E′
i(f (τi))
Si(f (τi))− 
Ei(f (τi))
S′

i(f (τi)) = 0 (17)

olds, where 
E′
i
(f (τi))and 
S′

i
(f (τi))are the derivatives of 
Ei(f (τi))

nd 
Si(f (τi)) respectively, which are given in Eqs. (15) and (14). The

forementioned optimization approach is well suited for continuous

ariable while general embedded processors only support discrete

requencies. In addition, the above higher order equation of compli-

ated structure is difficult to solve. Thus, a heuristic that iteratively

erives the sub-optimal operating frequency for each task is proposed,

s is described in Algorithm 2.

Algorithm 2 iteratively derives the operating frequency for the

tasks in the task set. It takes as input the execution times of N

asks updated by the fault adaptation variable α. For each task, it

alculates the optimal number of check points for the task at the

urrent frequency using Eq. (1), computes the energy efficiency factor

f the task at the current frequency using Eq. (16), and checks if the

urrent energy efficiency factor is maximal. The frequency that results

n the maximum energy efficiency factor is selected as the operating

requency of the current task.

Let δi(f�) be the energy efficiency factor of task τi at the frequency

�, δmax be the maximum of δi(f�) (1 ≤ � ≤ L), f lag be the index of

he frequency in {f1, f2, . . . , fL} that generates the maximum energy

fficiency factor of the task, and Srem be the remaining slack time of

he system. Algorithm 2 operates as follows. Line 1 of the algorithm

nitializes the remaining slack time Srem to D − ∑N
i=1 ei. Lines 3–5 cal-

ulate the energy efficiency factor δi(f�) of task τi at the frequency f1

nd initialize the δmax to δi(f�). In lines 6–12, the energy efficiency fac-

or δi(f�)at the operating frequency f� for 2 ≤ � ≤ L is derived, and the

requency fflag that generates the maximum energy efficiency factor

max is picked. If the slack demand 
Si(fflag) required to scale down

he frequency to fflag is not greater than the available system slack

rem, the required slack 
Si(fflag) is allocated to task τi, and the re-

aining system slack Srem is updated to Srem − 
Si(fflag). Otherwise,

he task τi is set to run at the highest operating frequency fmax. Re-

eat this process until all N tasks in the task set are examined once.
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Algorithm 2 Select the energy efficient operating frequency for tasks

in the task set �.

Require: the N tasks with execution times updated by α
1: initialize the remaining slack Srem to D − ∑N

i=1 ei;

2: for i = 1 to N do

3: calculate the optimal checkpoint number Nopt,i of task τi at the

frequency f1 using Eq. (1);

4: derive the energy efficiency factor δi(f1) of task τi at the fre-

quency f1 using Eq. (16);

5: δmax = δi(f1), f lag = 1;

6: for � = 2 to L do

7: calculate the optimal checkpoint number Nopt,i of task τi at

the frequency f� using Eq. (1);

8: derive the energy efficiency factor δi(f�) of task τi at the

frequency f� using Eq. (16);

9: if δi(f�) > δmax then

10: δmax = δi(f�), flag = �;

11: end if

12: end for

13: if 
Si(fflag) ≤ Srem then

14: f (τi) = fflag;

15: allocate 
Si(f (τi)) for task τi;

16: update the remaining slack: Srem− = 
Si(f (τi));
17: else

18: f (τi) = fmax;

19: end if

20: end for
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Algorithm 3 Derive the thermal-aware task sequence for task set �

under Tmax by exploiting thermal characteristics of tasks.

Require: maintain a hot queue Qhot with the hottest task at the head,

a cool queue Qcool with the coolest task at the head, a target queue

Qtgt, and the remaining slack Srem

1: move all tasks in task set � into the target queue Qtgt;

2: repeat

3: for i = 1 to len(Qtgt) do

4: calculate the steady state temperature Tstd for newly formed

task τ ∗
i

using Eq. (11);{τ ∗
i

= τi in the 1st iteration of repeat-

until}

5: classify τ ∗
i

into hot (cool) task based on Tstd(τ
∗
i
);

6: derive Tstart(τ ∗
i
) if hot and Tend(τ

∗
i
) if cool;

7: insert τ ∗
i

into hot queue Qhot (cool queue Qcool);

8: end for

9: while (Qhot 
= NULL) or (Qcool 
= NULL) do

10: if (Qhot 
= NULL) and (Qcool 
= NULL) then

11: pair tasks at the head of Qhot and Qcool to form new

task τ ∗;

12: sequence the τ ∗ in the order of hot–cool;

13: push the τ ∗ into the target queue Qtgt;

14: update the Qhot and Qcool;

15: else

16: append tasks in the non-empty queue to Qtgt;

17: end if

18: end while

19: until tasks in Qtgt are of the same type (cool or hot);

20: partition and allocate the remaining slack Srem to tasks in Qtgt;

21: set the initial temperature Tinit of Qtgt to Tamb;

22: derive the peak temperature Tpeak for τi ∈ Qtgt using Eq. (13);

23: if Tpeak ≤ Tmax then

24: return the task sequence in the target queue Qtgt;

25: else

26: exit(1);{Exit when infeasible}

27: end if
The remaining system slack Srem can further be utilized for thermal

management of tasks in the task set after application of the frequency

selection procedure, as is discussed in the next subsection. The time

complexity of Algorithms 2 is O(NL), where N is the number of tasks

in the task set, and L is the processor-supported frequency levels.

4.3. Thermal-aware task sequencing based on the hot–cool task pairing

Unlike traditional cooling solutions, thermal-aware task sequenc-

ing utilizes temperature characteristics of tasks to reduce peak tem-

perature of the processor without degrading system performance

and incurring extra monetary expenses. The proposed thermal-aware

task sequencing heuristic is based on the observation that the execu-

tion order of a hot task and a cool task has non-negligible impact on

the peak temperature. It has been proven that the final temperature

of tasks executing in the hot–cool order is lower than that of tasks

executing in the cool–hot order (Yang et al., 2008). In other words, se-

quencing tasks in the order of hot–cool is more effective for thermal

management. In this subsection, a static sequencing scheme based

on the hot–cool task order is proposed to generate a thermal-aware

task sequence for tasks in the task set. When compared to the online

regulation approach presented in Yang et al. (2008), the proposed

scheme does not necessitate the deployment of a runtime temper-

ature monitor and thermal sensors. In addition, it achieves better

thermal performance when combined with the frequency selection

scheme presented in Subsection 4.2.

The proposed scheme iteratively derives the thermal-aware task

sequence for task set � under the maximum temperature limit Tmax

by exploiting thermal characteristics of tasks. It maintains a hot queue

with the hottest task at the head, a cool queue with the coolest task

at the head, a target queue with all tasks ready for execution, and the

remaining slack Srem used for thermal management.

In each iteration, tasks in the target queue are dequeued from

the queue, classified into hot or cool tasks, and enqueued onto the

respective hot or cool queue. The target queue becomes empty. The

hottest task in the hot queue and the coolest task in the cool queue

are then dequeued and paired in the order of hot–cool, which is in
urn pushed into the target queue as a newly formed task. If either

he hot queue or the cool queue is empty, the tasks in the non-empty

ueue are appended to the target queue. The tasks in the target queue

ecomes ready for the next iteration of task pairing.

Since the task paring technique postulates opposite thermal

haracteristics of tasks, the iteration stops when the tasks in the target

ueue Qtgt are of the same type (cool or hot). After thermal-aware task

airing and sequencing is finished, the remaining slack Srem is parti-

ioned and assigned to tasks in the target queue to further improve

emperature profiles in the case where all tasks in Qtgt are cool or to

void thermal emergency in the case where all tasks in Qtgt are hot.

he peak temperature of all tasks in the target queue is then derived

sing Eq. (13). If the peak temperature is below the maximum tem-

erature limit, the algorithm returns the task sequence in the target

ueue; otherwise, the algorithm exits and it cannot find a thermally

easible task schedule.

Let Qhot, Qcool, and Qtgt denote the hot queue, cool queue, and

arget queue, respectively, and let Tpeak denote the peak temperature

f the target queue and len(Qtgt) indicate the length of the target

ueue. The proposed task sequencing scheme given in Algorithm 3

perates as follows. Line 1 of the algorithm initializes the target queue

y pushing all tasks into the queue. Lines 3–8 classify a task τi or a

ewly formed task τ ∗
i

into hot or cool task category based on the

teady state temperature Tstd(τ
∗
i
) of the task and insert the task into

he corresponding queue. If Tstd(τ
∗
i
) ≥ Tmax, the task τ ∗

i
is deemed to

e a hot task and inserted into the hot queue Qhot. Otherwise, it is a

ool task and inserted into the cool queue Qcool.
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The Tstart is defined to be the start temperature of a hot task

ssuming the task ends its execution at the maximum temperature

imit Tmax, and the Tend is defined to be the end temperature of a cool

ask assuming the task starts its execution at the ambient tempera-

ure Tamb. The Tstart and Tend are key characteristics of hot tasks and

ool tasks, respectively. A lower Tstart of a task indicates that the task

s hotter. Similarly, a lower Tend of a task shows that the task is cooler.

asks in the hot queue Qhot are sorted in the increasing order of Tstart

nd tasks in the cool queue Qcool are sorted in the increasing order

f Tend. In other words, the hot queue has the hottest task at its head

hile the cool queue has the coolest task at its head.

Lines 9–18 describe the procedure of task paring and sequencing.

n each round of the iteration, if neither Qhot nor Qcool is empty, the

ask at the head of Qhot and the task at the head of Qcool are paired in

he order of hot–cool, both tasks are removed from the Qhot and Qcool,

nd the pair is pushed into the target queue Qtgt. Otherwise, the tasks

n the non-empty queue are appended to the tail of the target queue.

fter task paring and sequencing is finished, the algorithm partitions

nd allocates the remaining slack Srem to tasks in Qtgt to further im-

rove thermal profiles or avoid thermal emergency in line 20. Line 21

ets the initial temperature of the task sequence to the environmental

emperature Tamb, that is, the initial temperature Tinit of the task at

he head of Qtgt is set to Tamb. The initial temperature of the current

ask is the final temperature of its predecessor since tasks in the se-

uence execute continuously. The initial temperature of tasks in the

equence is thus derived. Considering the derived initial temperature

nd given steady state temperature of tasks in the sequence, the cur-

ent temperature T(t) of a task at the time instance t can be derived

sing Eq. (10). Given the T(t), the peak temperature Tpeak for τi ∈ Qtgt

an be derived using Eq. (13) (line 22). If the peak temperature Tpeak is

ot greater than the maximum temperature limit Tmax, the algorithm

enerates a task sequence that meets system thermal requirements

lines 23–24); otherwise, Algorithm 3 exits (lines 25–27). The time

omplexity of Algorithm 3 is O(N2), where N is the number of tasks in

he task set.

.4. Using the Monte Carlo simulation to obtain the reliability

In this section, the Monte Carlo simulation method is utilized to

valuate the reliability of the generated task schedule under transient

ault occurrences of Poisson probability distribution. In general, one

ample of the Monte Carlo simulation is obtained in two major steps.

n the first step, based on the probability distribution of transient

ault occurrences, the number of transient fault occurrences during

he execution of the current task schedule is produced, and the exe-

ution time of each task is hence updated to include the overhead of

ault recovery. In the second step, the feasibility of the current task

chedule is verified. The current task schedule is feasible if all tasks

n the task schedule complete their executions before the deadline

. Repeat the two steps to generate more than 10 000 Monte Carlo

amples. The reliability Rcurr of the current task schedule is calculated

s the ratio of the number of feasible schedules to the total number

f schedules. If Rcurr is greater than but close enough to Rgoal, the

urrent task schedule is the desired schedule and the execution of

lgorithm 1 exits. Otherwise, Algorithm 1 jumps from line 6 to line 3

nd continues its execution.

. Numerical results

Two sets of simulation experiments have been carried out to val-

date the proposed algorithms in energy efficiency and effectiveness

f thermal management. In the first set of simulations, synthetic real-

ime tasks were generated to verify the proposed schemes while in

he second set of simulations, the characteristics of real-life bench-

arking tasks were utilized to validate the proposed algorithms. The

roposed algorithms were implemented in C++, and the simulation
as performed on a machine with Intel Dual-Core 3.0 GHz processor

nd 4 GB memory.

.1. Simulations for synthetic real-time tasks

This subsection first describes experimental settings for the sim-

lation, then compares the energy consumptions of the proposed

cheme under three different scenarios of transient fault occurrences,

nd compares the peak temperature of the proposed scheme with that

f the benchmarking schemes.

.1.1. Experimental settings

The simulated processor is assumed to support five normalized

iscrete frequency levels {0.5, 0.65, 0.8, 0.9, 1.0}. The analytical for-

ula, Eq. (8) developed by Liao et al. (2005), is utilized to compute

eakage currents for temperatures ranging from 20 ◦C to 100 ◦C with

he step size of 10 ◦C. The currents are then utilized to determine the

urve-fitting constants C1 and C2 in Eq. (9). The effective switching

apacitance Cef is set equal to 1.0 (Zhu and Aydin, 2006).

The time overhead of frequency switching is typically on the order

f tens of microseconds to tens of milliseconds. For instance, the

orst case frequency switching time of ARM microprocessor core

s in a range from 10 to 520μs (Zhang and Chakrabarty, 2006). Hence,

he time overhead of frequency switching Osw is set to 100μs. The

orst case execution time of each task in a task set at the maximum

requency is randomly generated in the range of 10–40 ms and task

ets of varying number of tasks (5, 10, 20, 40) are utilized to validate

he proposed scheme. The common deadline D of tasks in a task set is

et to 1.4
∑N

i=1 ei, where N is the number of tasks in the task set and

i is the execution time of task τi at the maximum frequency fmax.

Checkpoint data are saved in DRAM, and the size of checkpoint

s assumed to be 5KB so that the time overhead Ock and power con-

umption of checkpointing are set to 0.4 ms and 400 mW, respectively

Zhang and Chakrabarty, 2006). Transient fault occurrences are as-

umed to follow the Poisson probability distribution. For the lumped

C model, the thermal resistance R and the thermal capacitance C

re set equal to 1.83 ◦C/W and 0.0084 J/◦C, respectively (Wang et al.,

012).

.1.2. Comparison of the energy consumption

Three designing approaches are implemented and compared to

valuate the energy efficiency of the proposed scheme, which in-

lude the best case scenario, the worst case scenario, and the pro-

osed stochastic approach. Task sets with varying sizes are executed

nder different levels of reliability requirements. Let Ebest, Eworst

nd Eproposed denote the energy consumed by a task set under the

est case scenario of transient fault occurrences (α = 0), the worst

ase scenario of transient fault occurrences (α = 1) and the stochas-

ic transient fault occurrences (0 < α < 1), respectively. Eproposed in

act indicates the energy consumed by the proposed algorithm. Then

wp = Eworst−Eproposed

Eworst
× 100% denotes energy savings of the proposed

lgorithm (0 < α < 1) as compared to the approach designing for the

orst case scenario of transient fault occurrences (α = 1).

The energy consumptions of task sets with varying sizes under

ifferent levels of reliability requirements are shown in Table 1. Tasks

n a task set are executed under three levels of reliability requirements

Rgoal = 0.7, Rgoal = 0.8, and Rgoal = 0.9) for α = 0, α = 1, and 0 < α <

, respectively. The proposed algorithm (0 < α < 1) achieves energy

avings of up to 17% when compared to the approach of designing

or the worst case fault occurrences (α = 1). For instance, for tasks

f a given task set the size of which is 20 and the target reliability

goal = 0.7, the proposed algorithm (0 < α < 1) consumes 17.8% less

nergy when compared to the designing approach for the worst case

ault occurrences (α = 1). The better energy efficiency of the proposed

lgorithm benefits from the consideration of stochastic characteristics

f transient fault occurrences. As compared to the designing approach
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Table 1

The energy consumptions of task sets with varying sizes and different target reliability Rgoal.

Task set Rgoal = 0.7 Rgoal = 0.8 Rgoal = 0.9

size α = 0 0 < α < 1 α = 1 α = 0 0 < α < 1 α = 1 α = 0 0 < α < 1 α = 1

Ebest Eproposed Ewp (%) Eworst Ebest Eproposed Ewp (%) Eworst Ebest Eproposed Ewp (%) Eworst

5 168.3 179.2 14.8 210.4 182.4 198.6 11.6 224.7 183.4 212.3 9.2 233.8

10 385.4 410.1 7.1 441.3 415.2 486.3 12.2 553.8 428.1 475 16.5 569.2

20 841.7 889.6 17.8 1082.5 866.1 1001.2 8.3 1092.1 859.7 962.3 15.2 1135.4

40 1567.2 1832.5 15.1 2159.2 1621.3 1815.3 17.4 2198.5 1672 1940.7 14.8 2278.9

50
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Fig. 2. Peak temperatures of four synthetic task sets under the thermal benchmarking

methods NOTM, VSTM, SEQ (Zhang and Chatha, 2010), Worst Sequence, Best Sequence,

TSVS (Jayaseelan and Mitra, 2008), and the proposed scheme (Rgoal = 0.99).
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for the worst case fault occurrences (α = 1), the proposed algorithm

with a fault adaptation variable (0 < α < 1) has more slack to reduce

energy consumption while satisfying the reliability constraint Rgoal.

In addition, Table 1 shows that task sets with higher target reliability

consume more energy than task sets with lower target reliability. This

increase in energy consumption is primarily due to the fault recovery

overhead for higher reliability.

5.1.3. Comparison of the effectiveness of thermal management scheme

In the proposed scheme, the temperature profiles of tasks in task

sets are improved by selecting an energy efficient operating frequency

for each task and alternating the execution of a hot task and a cool

task at the scaled operating frequency. Firstly, the proposed algo-

rithm is compared with three benchmarking methods in terms of

peak temperature to demonstrate its effectiveness of thermal man-

agement. The first benchmarking scheme, referred to as NOTM, does

not utilize any thermal management techniques while the second

benchmarking scheme, referred to as VSTM, utilizes greedy dynamic

voltage/frequency scaling for thermal management. The third bench-

marking scheme, referred to as SEQ (Zhang and Chatha, 2010), calcu-

lates an optimal initial temperature for a task sequence and utilizes

thermal characteristics of cool tasks and sleep tasks in the task se-

quence to reduce temperatures.

Then two scenarios, that is, the worst case task sequence (Worst

Sequence) and the best case task sequence (Best Sequence), and a

state-of-the-art scheme, referred to as TSVS (Jayaseelan and Mitra,

2008), are implemented and compared to demonstrate the effec-

tiveness of the proposed task sequencing algorithm in thermal man-

agement. To obtain the two task sequences, an exhaustive search of

peak temperatures of all possible task sequences is conducted. The

sequence with the lowest peak temperature is the best case task

sequence, whereas the one that generates the highest peak tempera-

ture is the worst case task sequence. The TSVS (Jayaseelan and Mitra,

2008) scheme utilizes thermal characteristics of tasks to derive a

task sequence in the alternate order of being cool–hot and allocates

available slack time in a greedy way for voltage/frequency scaling.

On the contrary, in the proposed algorithm, the task sequence is

formed in the alternate order of being hot–cool to obtain a lower tem-

perature, and slack time is allocated based on the tradeoff between

energy efficiency and thermal management. The reliability require-

ment for the proposed algorithm is set to 0.99 in the comparison

study.

Fig. 2 shows the peak temperatures of four different task sets

with the size of 40. The maximum temperature limit Tmax is as-

sumed to be 70 ◦C. The initial temperature of each task set is as-

sumed to equal the ambient temperature Tamb, which is set to 40 ◦C

in this study. It has been demonstrated in Fig. 2 that the peak tem-

perature of the proposed algorithm is much lower than that of the

NOTM, VSTM, and SEQ (Zhang and Chatha, 2010) method. For exam-

ple, for the task set �4, when the system reliability requirement is

0.99, the proposed algorithm reduces the peak temperature by 14.8%

as compared to the NOTM method, 7.5% as compared to the VSTM

method, and 3.4% as compared to the SEQ (Zhang and Chatha, 2010)

method. The NOTM method does not employ any thermal control

techniques and is utilized as a baseline to show the highest efficiency
f the proposed algorithm in reducing temperature. The proposed

lgorithm also outperforms the benchmarking method VSTM and SEQ

Zhang and Chatha, 2010) in thermal management since it not only

xecutes the tasks at a scaled operating frequency, but also exploits

hermal characteristics of cool tasks and slack time together to cool

own hot tasks. Especially, the proposed algorithm alternates the ex-

cution of tasks in the order of being hot–cool to achieve a lower

emperature.

Fig. 2 also plots the peak temperatures of the four task sets under

he benchmarking algorithms Worst Sequence, Best Sequence, TSVS

Jayaseelan and Mitra, 2008), and the proposed scheme. When the

ystem reliability requirement is 0.99, the peak temperature of the

roposed scheme is very close to that of the Best Sequence within

small margin which varies from 0.8 ◦C to 1.6 ◦C, and can be up

o 9.6 ◦C lower than that of the Worst Sequence. For example, for

asks in task set �2, the peak temperature of the proposed scheme

s 0.8 ◦C higher than that of the Best Sequence. For tasks in task set

3, the peak temperature of the proposed scheme is 9.6 ◦C lower than

hat of the Worst Sequence. Moreover, the proposed scheme achieves

etter thermal profiles than that of the state-of-the-art scheme TSVS

Jayaseelan and Mitra, 2008). On average, the proposed scheme can

educe peak temperatures of tasks by 1.5 ◦C. This experiment has

urther demonstrated the effectiveness of the proposed thermal-ware

ask sequencing scheme in reducing peak temperature.

.2. Simulations for real-life benchmarking tasks

This subsection validates the proposed scheme in terms of the

nergy consumption and effectiveness of the thermal management

or real-life tasks. The TSVS (Jayaseelan and Mitra, 2008) and NOEM

lgorithms are utilized to benchmark the energy consumption of the

roposed scheme, as is described in Subsection 5.1.2. The thermal

ffectiveness of the proposed scheme is compared with that of the
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Table 2

Configuration of the simulated processor.

Issue width 2-width, partial, in-order issue

Pipeline An 8-stages pipeline

L1 cache 32KB instruction and data caches

L2 Configurable cache size of 128KB to 1MB,

Cache 8-way set-associative cache structure

Memory MMU and fully-associative I/D TLBs of 10 entries each

Branch Dynamic branch prediction, 8-entry branch target address cache,

Predictor Global history buffer, and 8-entry return stack

Table 3

The four constructed sets of real-life benchmarking tasks.

Task set Tasks that comprise the task set

�1 lame, djpeg, sha, ghostscript, blowfish, epic, gsm, dijkstra

�2 epic, gsm, strsearch, adpcm, lame, mp3, sha, pegwit

�3 susan, gsm, ghostscript, mp3, pegwit, dijkstra, epic, crc

�4 crc, djpeg, dijkstra, lame, patricia, strsearch, sha, blowfish
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Table 4

The energy consumptions of four task sets for the common target reliability

goal Rgoal = 0.99.

Task k NOEM TSVS Proposed E13 E23

set E1 E2 E3 (%) (%)

�1 1 25.79 22.64 21.8 15.5 3.7

2 25.79 23.45 22.43 13 4.4

3 25.79 NF 23.02 10.7 –

�2 1 21.84 20.07 18.7 14.4 6.7

2 21.84 19.59 18.91 13.4 3.4

3 21.84 20.32 19.33 11.5 4.9

�3 1 23.52 20.48 19.4 17.5 5.2

2 23.52 21.05 19.57 16.7 7

3 23.52 NF 20.4 13.3 –

�4 1 26.63 23.72 22.59 15.2 4.9

2 26.63 22.89 22.46 15.7 1.9

3 26.63 24.45 23.08 13.3 5.6
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enchmarking algorithms NOTM, VSTM, SEQ (Zhang and Chatha,

010), Worst Sequence, Best Sequence, and TSVS (Jayaseelan and

itra, 2008), as is described in Subsection 5.2.3.

.2.1. Experimental settings

The simulated processor is modeled based on the ARM Cortex

7 processor (ARM Cortex A7 Processor), which can assemble 1–4

ores. The number of core is set to 1 in the simulation. The configu-

ation of the simulated processor is shown in Table 2. The maximal

requency supported by the processor is 1.6 GHz, and five different

requencies between 1.6 GHz and 800 MHz are exploited for dynamic

oltage/frequency scaling. The thermal resistance and thermal capac-

tance are derived as 1.85 ◦C/W and 0.12 J/◦C, respectively, by using

he default HotSpot configuration and equations (Huang et al., 2007).

he floorplan (ARM Cortex A7 Processor) of Cortex A7 processor

1-core) is taken by the thermal simulator HotSpot (Skadron et al.,

004) as input. In this floorplan, the entire die is divided into three

ections. The data processing unit (dpu) dominates one section, which

s located in one edge of the die. The central area of the die that is

nother section, has store buffer (stb), bus interface unit (biu), data

ache unit (dcu), instruction cache unit (icu), main translation looka-

ide buffer (tlb), and prefetch unit (pfu). The L2 cache occupies the

ast section, which is located in the opposite edge to make the entire

ie as a square.

Fifteen benchmarking tasks from Mibench (Guthaus et al., 2001)

nd Mediabench (Lee et al., 1997), including the lame, djpeg, sha,

hostscript, blowfish, epic, gsm, dijkstra, strsearch, adpcm, mp3, peg-

it, susan, crc, and patricia, are utilized to construct four task sets, as

s shown in Table 3. The numbers of clock cycles of these tasks are in

he range of [4 × 107, 6 × 108]. The architecture-level power simula-

or McPAT (Li et al., 2009) is utilized to obtain power consumptions

f tasks in the table. It can model all three types of power dissipation,

ncluding dynamic, leakage, and short-circuit power, and provide a

omplete view of power consumptions.

.2.2. Comparison of the energy consumption

Two benchmarking algorithms are implemented and compared

ith the proposed scheme in energy efficiency. The first one is the

SVS (Jayaseelan and Mitra, 2008) algorithm that combines task

equencing and voltage/frequency scaling for energy saving and

emperature control. The second one, referred to as NOEM, is the

lgorithm that does not utilize any techniques for energy man-

gement. In other words, the algorithm operates at the high-

st processor frequency. Let E1, E2 and E3 denote the energy

onsumption of a task set using the NOEM algorithm, the TSVS

Jayaseelan and Mitra, 2008) algorithm and the proposed algo-

ithm, respectively. Then E13 = E1−E3
E1

× 100% denotes energy sav-
ngs of the proposed scheme when compared to the NOEM

lgorithm, and E23 = E2−E3
E2

× 100% denotes energy savings of the pro-

osed scheme when compared to the algorithm TSVS (Jayaseelan and

itra, 2008).

In general, the reliability requirements of a system are given at

equirements analysis stage. For instance, the reliability of a system

ay be no less than 0.99. Table 4 shows the energy consumptions of

our benchmarking task sets for a common target reliability of 0.99.

asks in a task set are executed under three levels of transient fault

ccurrences (k = 1, k = 2, and k = 3), where k is the worst case num-

er of fault occurrences during the execution of a task. NF indicates

hat tasks in a task set cannot be feasibly scheduled under the given

equirement of fault tolerance.

It has been shown in Table 4 that the proposed scheme outper-

orms the benchmarking algorithms NOEM and TSVS (Jayaseelan and

itra, 2008) in terms of energy efficiency. The proposed scheme

chieves energy savings of up to 17% and 7% when compared to the al-

orithms NOEM and TSVS (Jayaseelan and Mitra, 2008), respectively.

or example, for tasks in task set �3 with k = 1, the proposed scheme

onsumes 17.5% less energy when compared to the NOEM algorithm.

or tasks in task set �3 with k = 2, the energy consumption of the pro-

osed scheme is 7% less than that of the TSVS (Jayaseelan and Mitra,

008) algorithm. NOEM plays the role of a baseline to exhibit the max-

mum energy efficiency achieved by the proposed approach since it

oes not adopt any energy management technique. As compared to

he TSVS (Jayaseelan and Mitra, 2008) that allocates the available

lack in a greedy way for voltage/frequency scaling, the proposed

pproach consumes less energy since it selects the energy efficient

perating frequency for each task. In addition, the proposed scheme

s more resilient to fault occurrences. When the requirement of fault

olerance becomes high (k = 3), the TSVS (Jayaseelan and Mitra, 2008)

lgorithm may be infeasible, whereas the proposed scheme can fea-

ibly schedule all tasks in the task set. The enhanced reliability of the

roposed scheme is due to the consideration of stochastic property

f transient fault occurrences and the reasonable allocation of slack.

s expected, the proposed scheme consumes more energy when the

umber of faults to be tolerated is large. For instance, for tasks in task

et �1, the proposed scheme saves 15.5% energy over the NOEM al-

orithm with k = 1, but it saves only 10.7% energy for the case where

= 3. The increased energy consumption is mainly caused by the

ecovery overhead of growing faults.

.2.3. Comparison of the effectiveness of thermal management scheme

The same set of benchmarking schemes adopted in

ubsection 5.1.3, including NOTM, VSTM, SEQ (Zhang and Chatha,

010), Worst Sequence, Best Sequence, and TSVS (Jayaseelan and

itra, 2008), is implemented and compared to demonstrate the

ffectiveness of the proposed algorithm in thermal management.
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Fig. 3. Peak temperatures of four benchmarking task sets under the thermal bench-

marking methods NOTM, VSTM, SEQ (Zhang and Chatha, 2010), Worst Sequence, Best
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The peak temperatures of four benchmarking task sets under the

aforementioned benchmarking methods and the proposed scheme

are shown in Fig. 3. It has been demonstrated in Fig. 3 that the peak

temperature of the proposed algorithm is much lower than that of

the NOTM, VSTM, and SEQ (Zhang and Chatha, 2010) method. For

example, for the task set �2, when the system reliability requirement

is 0.99, the proposed algorithm reduces the peak temperature by 13%

as compared to the NOTM method, 6.2% as compared to the VSTM

method, and 2.3% as compared to the SEQ (Zhang and Chatha, 2010)

method.

Fig. 3 also plots the peak temperatures of the four benchmark-

ing task sets under the benchmarking algorithms Worst Sequence,

Best Sequence, TSVS (Jayaseelan and Mitra, 2008), and the proposed

scheme. When the system reliability requirement is 0.99, the peak

temperature of the proposed scheme is very close to that of the Best

Sequence within a small margin which varies from 0.5 ◦C to 1.3 ◦C,

and can be up to 7.2 ◦C lower than that of the Worst Sequence. For ex-

ample, for tasks in task set �4, the peak temperature of the proposed

scheme is 0.5 ◦C higher than that of the Best Sequence. For tasks in

task set �2, the peak temperature of the proposed scheme is 7.2 ◦C

lower than that of the Worst Sequence. In addition, when compared

to the state-of-the-art scheme TSVS (Jayaseelan and Mitra, 2008), the

proposed scheme exhibits better performance in thermal manage-

ment. Specifically, the peak temperature of tasks is reduced by 1.8 ◦C

on average using the proposed scheme.

Synthetic real-time tasks have been produced to validate the pro-

posed thermal management scheme in Subsection 5.1.3. In this sub-

section, from the simulation results of real-life tasks shown above,

the same conclusion can be drawn that the proposed scheme out-

performs the benchmarking methods in thermal control. The analysis

has been given in Subsection 5.1.3 such that it is omitted here for the

sake of brevity.

6. Summary and future work

In this paper, the authors propose a stochastic real-time task

scheduling algorithm to generate an energy efficient task schedule

under constraints of the customer-defined target reliability and max-

imum peak temperature. The proposed algorithm first employs dy-

namic voltage/frequency scaling to reduce the energy consumption

of tasks in the task set and selects the operating frequency that max-

imizes the energy saved per unit slack. It then classifies tasks into

hot and cool tasks, sorts hot tasks and cool tasks in the increasing
rder of Tstart and Tend respectively, and alternates the execution of

ot tasks and cool tasks. The stochastic property of transient fault oc-

urrences is handled by modeling the uncertainty using a fault adap-

ation variable α and accommodating task execution to transient fault

ccurrences by varying the α iteratively. Two sets of simulation re-

ults have demonstrated the effectiveness of the proposed algorithm

n energy conservation and thermal management. In the simulations

or synthetic tasks, the proposed algorithm achieves energy savings

f up to 17.8% as compared to the approach of designing for the worst

ase transient fault occurrence. In the simulations for real-life bench-

arking tasks, the peak temperature of the proposed algorithm is

ery close to that of the best case task sequence within a small mar-

in which varies from 0.5 ◦C to 1.3 ◦C, and can be up to 7.2 ◦C lower

han that of the worst case task sequence. Moreover, the peak tem-

erature of the proposed algorithm is 1.8 ◦C lower than that of the

enchmarking scheme on average.

The proposed task sequencing approach is designed for indepen-

ent real-time tasks. If the target tasks are real-time tasks with data

ependency or precedence constraints, task sequencing should be ju-

iciously employed. In addition, due to the differences in actual task

xecution time, real-time systems can experience great variations of

emperature and fault occurrence at run-time. The authors intend

o extend their framework and address the two problems in future

ork.
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